

Supplementary Materials

Synthesis of new water soluble β-Cyclodextrin@Curcumin conjugates and *in vitro* safety evaluation in primary cultures of rat cortical neurons

Amina Ben Mihoub ^{1,2,3,*}, Samir Acherar ^{2,*}, Céline Frochot ³, Catherine Malaplate ⁴, Frances T. Yen ⁴ and Elmira Arab-Tehrany ^{1,*}

- ¹ LIBio Laboratory, Université de Lorraine, F-54000 Nancy, France
- ² LCPM, CNRS, Université de Lorraine, F-54000 Nancy, France
- ³ LRGP, CNRS, Université de Lorraine, F-54000 Nancy, France; celine.frochot@univ-lorraine.fr
- ⁴ URAFPA, INRAE, Université de Lorraine, F-54000 Nancy, France; catherine.malaplate-armand@univ-lorraine.fr (C.M.); frances.yen-potin@univ-lorraine.fr (F.T.Y.)

* Correspondence: amina.ben-mihoub@univ-lorraine.fr (A.B.M.); samir.acherar@univ-lorraine.fr (S.A.); elmira.arab-tehrany@univ-lorraine.fr (E.A.-T.)

Table of contents

Characterization of Cur mono-alkyne 1	S-2
Characterization of Cur di-alkyne 2	S-3
1D and 2D NMR spectra (¹ H, ¹³ C, HSQC and HMBC) of β -CD@Cur 4 nanoconjugate	S-4
1D and 2D NMR spectra (1H, 13C, HSQC and HMBC) of (β-CD)2@Cur 5 nanoconjugate	S-9

Characterization of Cur mono-alkyne 1

- ✓ **TLC**: R_f = 0.63 (EtOAc/Hexane = 50:50, v/v)
- ✓ Analytical HPLC: Rt = 12.62 min (ACN/H₂O, v/v) gradients from 10/90 to 100/0 in 25 min, then 100/0 for 10 min containing 0.1 % trifluoroacetic acid (TFA). A flow rate of 1.0 mL/min with UV detection at 254 nm and 420 nm.)
- ✓ ¹H NMR (300 MHz, DMSO-*d*₆): δ 3.59 (t, *J* = 2.1 Hz, 1H, H₁₃), 3.84 (s, 6H, H₇-OMe and H₇⁻OMe), 4.85 (d, *J* = 2.1 Hz, 2H, H₁₁), 6.10 (s, 2H, H₁), 6.79 (d, *J* = 1.8 Hz, 1H, H₆), 6.83 (d, *J* = 8.1 Hz, 1H, H₉), 6.87 (d, *J* = 1.8 Hz, 1H, H₆), 7.08 (d, *J* = 8.4 Hz, 1H, H₉), 7.16 (dd, *J* = 7.8 and 1.8 Hz, 1H, H₁₀), 7.27 (dd, *J* = 8.7 and 1.8 Hz, 1H, H₁₀), 7.35 (d, *J* = 15.6 Hz, 2H, H₃ and H₃), 7.57 (d, *J* = 15.6 Hz, 2H, H₄ and H₄), 9.65 (s, 1H, H₈-OH)
- ✓ HRMS (ESI) for C₂₄H₂₂O₆: [M+H]⁺ calculated 407.1494, found 407.1867 and [M+K]⁺ calculated 445.1053, found 445.1531

The physical data (NMR and HRMS) are in agreement with the values reported in the literature [1].

Characterization of Cur di-alkyne 2

- ✓ **TLC**: R_f = 0.72 (EtOAc/Hexane = 50:50, v/v)
- Analytical HPLC: Rt = 13.64 min (ACN/H₂O, v/v) gradients from 10/90 to 100/0 in 25 min, then 100/0 for 10 min containing 0.1 % trifluoroacetic acid (TFA). A flow rate of 1.0 mL/min with UV detection at 254 nm and 420 nm.)
- ✓ ¹H NMR (300 MHz, DMSO-*d*₆): δ 3.59 (t, *J* = 2.1 Hz, 2H, H₁₃), 3.85 (s, 6H, H₇-OMe), 4.86 (d, *J* = 2.1 Hz, 4H, H₁₁), 6.13 (s, 2H, H₁), 6.84 (d, *J* = 1.5 Hz, 2H, H₆), 6.95 (d, *J* = 7.9 Hz, 2H, H₉), 7.19 (dd, *J* = 8.1 and 1.5 Hz, 2H, H₁₀), 7.37 (d, *J* = 16.0 Hz, 2H, H₃), 7.60 (d, *J* = 16.0 Hz, 2H, H₄)
- ✓ HRMS (ESI) for C₂₇H₂₄O₆: [M+H]⁺ calculated 445.1651, found 445.1962 and [M+K]⁺ calculated 483.1209, found 483.1643

The physical data (NMR and HRMS) are in agreement with the values reported in the literature [1].

1D and 2D NMR spectra (¹H, ¹³C, HSQC and HMBC) of β -CD@Cur 4 nanoconjugate

Figure S1. ¹H NMR spectrum (300 MHz, DMSO-*d*₆, 298K) of β-CD@Cur **4** nanoconjugate.

Figure S2. J mod ¹³C NMR spectrum (75 MHz, DMSO-d₆, 298K) of β-CD@Cur 4 nanoconjugate (C and CH₂ up; CH₃ and CH down).

Figure S3. 2D HSQC NMR spectrum (300 MHz, DMSO-*d*₆, 298K) of β-CD@Cur 4 nanoconjugate.

Figure S4. 2D HMBC NMR spectrum (300 MHz, DMSO-d₆, 298K) of β-CD@Cur 4 nanoconjugate.

Figure S5. ¹H NMR spectrum (300 MHz, DMSO-*d*₆, 298K) of (β-CD)₂@Cur 5 nanoconjugate.

Figure S6. J mod ¹³C NMR spectrum (75 MHz, DMSO-d₆, 298K) of (β-CD)₂@Cur **5** nanoconjugate (C and CH₂ up; CH₃ and CH down).

Figure S7. 2D HSQC NMR spectrum (300 MHz, DMSO-*d*₆, 298K) of (β-CD)₂@Cur **5** nanoconjugate.

Figure S8. 2D HMBC NMR spectrum (300 MHz, DMSO-*d*₆, 298K) of (β-CD)₂@Cur 5 nanoconjugate.

References

1. Raja, K.; Alonso, A.; Banerjee, P.; Dolai, S.; Corbo, C.; Averick, S.; Mogha, A.; Debnath, S. Curcumin derivatives. WO2011106691A2.2011. https://patentimages.storage.googleapis.com/44/6a/79/e7561b802ebbd8/WO2011106691A2.pdf