Supplementary Materials

Figure S1. Imino proton resonance assignments of fluoride riboswitch in the free state by Watergate NOESY spectra at 25 °C.

Figure S2. 1D ¹H spectra of water magnetization transfer experiments showing imino protons of the fluoride riboswitch in the (**A**) free, (**B**) apo and (**C**) holo states. The control spectrum with no selective water inversion is indicated at the bottom. The delay times between the selective water inversion and acquisition pulses are shown on the left side of the spectra.

Figure S3. 1D spectra of *CrcB* aptamer measured with increasing Tris concentration in a 90% H₂O/10% D₂O solution containing 10mM Tris (pH 8.0 at 25 °C), 50mM KCl, 50uM EDTA (pH 8.0). The Tris concentrations are shown to the left of each spectrum. (**A**) free, (**B**) apo(add 2mM MgCl₂) and (**C**) holo(add 2mM MgCl₂ and 10mM NaF).

P1

P2

P3

(N)

Figure S4. Hydrogen exchange data of the *CrcB* aptamer. The *R*_{1a} of the imino protons as a function of the Tris concentration in NMR buffer at 25 °C. The location of the imino protons in the *CrcB* aptamer is marked on the left.

Base pair	Imino proton	Free	Apo	Holo
G1·C16	G1	_ a	17.3 ± 0.09	15.8 ± 0.1
G2·C15	G2	7.47 ± 0.02	4.73 ± 0.02	4.56 ± 0.04
C3·G14	G14	5.63 ± 0.03	5.83 ± 0.05	9.22 ± 0.1
G4·C13	G4	9.62 ± 0.03	5.45 ± 0.03	4.77 ± 0.04
G23·C34	G23	20.9 ± 0.1	5.65 ± 0.09	4.74 ± 0.03
C24·G33	G33	4.44 ± 0.01	4.85 ± 0.03	3.68 ± 0.08
U25·A32	U25	4.72 ± 0.02	4.29 ± 0.02	4.22 ± 0.02
C26·G31	G31	5.12 ± 0.02	5.80 ± 0.03	5.42 ± 0.04
U27·G30	G30	17.4 ± 0.04	16.9 ± 0.1	17.0 ± 0.09
U12·G39	G39	_ a	4.53 ± 0.03	3.74 ± 0.04
U12·G39	U12	_ a	3.10 ± 0.04	1.94 ± 0.02
U11·A40	U11	_ a	4.33 ± 0.02	3.28 ± 0.02
G10·C41	G10	_ a	5.56 ± 0.03	5.86 ± 0.07
U9·A42	U9	_ a	4.39 ± 0.03	4.22 ± 0.03
G8·C43	G8	_ a	4.97 ± 0.03	5.09 ± 0.05
G7·C44	G7	_ a	4.88 ± 0.03	4.56 ± 0.04
A37·U45	U45	_ a	3.70 ± 0.03	2.79 ± 0.03
	U38	_ a	4.44 ± 0.07	2.28 ± 0.07

Supplementary table 1. Hydrogen exchange rate constants (*k*_{ex}, *s*⁻¹) of the *CrcB* aptamer.

^a No imino proton resonance.

Substructure	Base pair	Imino proton		Free	Аро	Holo
P1	G2·C15	G2	Kop (x10-6)	1.26 ± 0.04	0.12 ± 0.007	0.16 ± 0.005
			το (ms)	n.d. ^b	n.d. ^b	n.d. ^b
			τ_{op} (ns)			
			kint (x10 ⁶)			
	C3·G14	G14	Kop (x10-6)	1.04 ± 0.09	0.17 ± 0.002	$< 0.01 \text{ x} 10^{-6}$
			το (ms)	n.d. ^b	n.d. ^b	n.d. ^b
			τ_{op} (ns)			
			kint (x106)			
	G4·C13	G4	Kop (x10-6)	34 ± 0.4	0.82 ± 0.01	0.047 ± 0.001
			το (ms)	n.d. ^b	n.d. ^b	n.d. ^b
			τ_{op} (ns)			
			kint (x106)			
P2	G23·C34	G23	Kop (x10-6)	n.d. ^d	0.27 ± 0.007	0.089 ± 0.002
			το (ms)		n.d. ^b	n.d. ^b
			τ_{op} (ns)			
			kint (x106)			
	C24·G33	G33	Kop (x10-6)	4.29 ± 0.5	0.095 ± 0.003	0.070 ± 0.002
			το (ms)	52 ± 1	n.d. ^b	n.d. ^b
			τ _{op} (ns)	224 ± 27		
			kint (x106)	2.03 ± 0.2		
	U25·A32	U25	Kop (x10-6)	10 ± 0.1	5.32 ± 0.03	5.03 ± 0.03
			το (ms)	n.d. ^b	n.d. ^b	n.d. ^b
			τ _{op} (ns)			
			kint (x106)			
	C26·G31	G31	Kop (x10-6)	63 ± 35	20 ± 11	9.17 ± 4
			το (ms)	67 ± 0.4	69 ± 0.8	67 ± 1
			τ _{op} (ns)	4243 ± 2388	1359 ± 762	611 ± 253
			kint (x106)	0.31 ± 0.1	1.57 ± 0.2	190 ± 0.3
P3	U12·G39	G39	Kop (x10-6)	n.d. ^e	2.72 ± 0.4	2.10 ± 1
			το (ms)		70 ± 2	104 ± 6
			τ_{op} (ns)		192 ± 32	219 ± 107
			kint (x106)		2.98 ± 0.3	3.27 ± 1
	U12·G39	U12	Kop (x10-6)	n.d. ^e	4.93 ± 0.4	2.34 ± 0.7
			το (ms)		15 ± 0.6	20 ± 4
			τ_{op} (ns)		72 ± 6	47 ± 16
			kint (x106)		0.55 ± 0.03	0.83 ± 0.2
	U11 · A40	U11	Kop (x10-6)	n.d. ^e	0.27 ± 0.004	0.079 ± 0.002
			$\tau_0 \ (ms)$		n.d. ^b	n.d. ^b
			τ_{op} (ns)			
			kint (x106)			

Supplementary table 2. Base-pair dissociation constants (K_{op}), base-pair lifetimes ($\tau_0 = 1/k_{op}$) and lifetimes for base-pair opening ($\tau_{open} = 1/k_{cl}$) of the *CrcB* motif determined by the Tris-catalyzed NMR exchange experiments at 25 °C^a.

	G10 · C41	G10	Kop (x10-6)	n.d. ^e	0.12 ± 0.003	< 0.01 x 10 ^{-6 c}
			$ au_0$ (ms)		n.d. ^b	n.d. ^b
			$ au_{op}$ (ns)			
			kint (x106)			
	U9·A42	U9	Kop (x10-6)	n.d. ^e	1.28 ± 0.1	1.88 ± 0.2
			το (ms)		51 ± 1	51 ± 2
			$ au_{op}$ (ns)		65 ± 5	96 ± 12
			kint (x106)		6.25 ± 0.3	3.69 ± 0.3
	G8·C43	G8	Kop (x10-6)	n.d. ^e	$< 0.01 \ge 10^{-6}$	$< 0.01 \ge 10^{-6}$
			$\tau_0 (ms)$		n.d. ^b	n.d. ^b
			$ au_{op}$ (ns)			
			kint (x106)			
	G7·C44	G7	Kop (x10-6)	n.d. ^e	2.61 ± 0.8	0.073 ± 0.002
			$\tau_0 (ms)$		84 ± 3	n.d. ^b
			$ au_{op}$ (ns)		219 ± 69	
			kint (x10 ⁶)		5.20 ± 0.7	
Tertiary	A37·U45	U45	Kop (x10-6)	n.d. ^e	5.05 ± 0.8	1.05 ± 0.007
interactions			το (ms)		15 ± 1	n.d. ^b
			$ au_{op}$ (ns)		73 ± 14	
			kint (x106)		0.72 ± 0.1	
	U38 · C41 and	U38	Kop (x10-6)	n.d. ^e	84 ± 0.8	5.52 ± 0.6
	A40		το (ms)		n.d. ^b	5.61 ± 0.4
			$ au_{op}$ (ns)			31 ± 4
			kint (x106)			0.091 ± 0.02

^a Parameters used in the calculation: $k_{coll} = 1.5 \times 10^9 \text{ s}^{-1}$, pK_a (G–NH1) = 9.24, pK_a (U–NH3) = 9.20, pKa (Tris, 25 °C) = 8.192; sample conditions: 10 mM Tris (pH 8.0 at 25 °C), 50 mM KCl, 50 μ M EDTA (pH 8.0) (for free state)/adding 2 mM MgCl₂ (for apo state)/2 mM MgCl₂, 10 mM NaF (for holo state). [Tris] total = 10–339 mM, 25 °C. The errors for these values were determined from the curve fitting using Equation (6) and linear fitting using Equation (7). ^b Not determined. ^c These resonances are partially overlapped with another resonance and this overlap may lead to a systematic error in K_{op} . ^d Not available because the imino proton resonance disappeared. ^e No imino proton resonance.