In silico analysis of huntingtin homologs in lower eukaryotes. Identification of a huntingtin-like protein in Caenorhabditis elegans.

Valentina Brandi¹ and Fabio Polticelli^{1, 2*}

- ¹ Department of Sciences, Roma Tre University, 00146 Rome, Italy
- ² National Institute of Nuclear Physics, Roma Tre University, 00146 Rome, Italy
- * Correspondence: Prof. Fabio Polticelli; fabio.polticelli@uniroma3.it; Tel.: +39-06-5733-6362

Supplementary materials

C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038

C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B. floridae/1-3038

C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038

C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B, floridae/1-3038

C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B. floridae/1-3038

C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038

	1961	1971	1981	1991 2	001 2	011 2021	2031	2041	2051	2061	2071
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	618 - DDWRTTLLCE 1410 RERFLSFLLSN 1376 REVVQFTLLKL 1568 KEVVVSMLLRL 1489 REVVVSMLVRL	ARMPTYVKMTAI LQYSQTIDILIL LQHPQVFKMLIT TQYHQVLEMFTL THYPEVLEMLTI	LRESVN IVTIVQ-PNSTLH ILVHGRRENVEKN VLQQCHKENEDKN VLQQCHKESEDRN	SPEFSHEKV QKFSQQISHQLF KKYSRQVADVLL KRLSRQIADIIL KKLSRQVVDMVL	PLLSQLK PLLSQLK PMLAKQQ PMLARQQ	FIINSIEEVERL VEVTSHDDVSTL MHTDSHEALGVL ICLSTPSALNTI	VVLIDKLHSSS HSLFEAISPSA NTLFEILAPSS HGLFESVTPSS	LSRMHWNSDTLP LSAARWADALLS LRPI LRPV LRPL	AVLQVMTVSLS VSPQFVNKSTS	DSHSKE SSSSSSSST/	685 ATSPSSSSSS 1530 1457 1649 1570
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	2081 686 1531 TTTTTTSTNT 1458 1650 1571	2091 TTTTPSDPLIRK GLLMDL DMLLRS	2101 2 CYHGFHVGMS RILLRESILEAY LLKMPKSLNSISH MFVTPNTMASVST LFSPPTDLTSPDS	111 2121 VLNWVYRNVFIV ELRWLPPLVL IHRWLTNILVL VQLWISGILAIL FLRWSSMVLSVL	RTGCKLPEE RTGCKLPEE RVLICQASE RVLISQSTEE RVLISQSKEE	1 2141 FPFLQHSRT- ARISAA-RQSRF- IDILDNIDLSKVK DIVLSRIQELSFS SVIMARLQELGLS	2151 EMDDTLGNR IKHMTCTHMEY PYLISOTVINR ANIFTNNVIYR	2161 TEFRATLDA LHSDQTSQEEE- LRDGDSTSTLEE AKGRAVD	2171 YYKTVQSSA HDN- KHQPGPS QHMNEVFSP HSEGKQIKNLP LDGDAPFEEVP	2181 DEKLEQLU AATISTLU ADILATFF EETFSRFLU EEALARFLU	2191 PTINLMLAA 770 KLIRNAVSV 1629 OVIGSCCST 1559 OLVGILLED 1754 OVIGALAEE 1670
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	2201 771 MAHDFK 1630 FSL 1560 LLHYSTNPRTK 1755 IVTKQLKVE 1671 IAFRSNTSV	2211 - VKPKNVLFTQL SDESSQILLSQQ MSEQQHTFYCQE LQREGCHSLAQQ	2221 2231 ILEIIVYITVLFT INHLLYYSSIFFN INELFLALTYIHR LGTLLMCLIHIFK LAHLLLYVTYILK	2241 LSP I SALKLLNV KN SG SG	2251 /LLRCLLDPKL	2261 IESLTSGRVFYF VPHISAQSLSNS FKNLTSACKKVS IFRRITAAATRLF FRKVLSAAMALP	2271 - ASSNTNNFE- PNFGATNTTTG - STNINGF RSDGCGGSF - EESPTEAY	2281 - TNDE	2291 2 FLIEA STITV HLTYSHPIITV SMITTHPALVL DMVPSHPTLVL	301 LKCDGD MWAQYLSHF LWCQILLLV QWCQILLLV	2311 KYFNRWG 859 TTMAMGS 1706 VPVTAQFWE 1657 /NHTDYRWWA 1852 .NFNELSWWS 1767
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	2321 860 DDMEVEK I 1707 SLMKOP 1658 NFTGCK 1853 EVQQTPKRHSL 1768 EIMQTPKRSIK	2331 234 SSSLLLSPTVGG SSTKLLSPQMSG ASSSGNSSGGGG	II 2351 SSSTINLFMDSLK EEED	2361 GILALDNGTIIQ	2371 DE ITTSLLSYC	2381 GGTSTS I HAVKLL 	2391 - KMGAMKEEIL LLLGRLPNQQV - KDFPLNRNIV - KLGMCNREIV - SAICCSEEVV	2401 241 EQLEPLITQSLK IEGADLVWKQYA KRGCVILLADYV RRGALILFCDYV RRGGLILFCDYV	1 2421 CFRYRGKNEKK LSNNWOSCGCE CONSNOSELSL CONLHDSEHLT CONLSDVEHMT	24 QVLC HFLTHHIIF WLA WLI WVI	31 21M 906 2LLYCQSIVV 1823 1701 1920 1840
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	245 907 I C 1824 LKSQN I ELSET 1702 EH 1921 VN 1841 I N	1 2461 LMNHKLKLSDAD FLDKIVLLINES HVNDIIMMSEEP HIQDLISLSHEP HVKDLIELAQEP	2471 PTECLMKFAVSTF TVKKLIEFLVKGG PVQDFLTSVHLGA PVQDFISAVHRNS PVQDFISAIHRNS	2481 ARPEECAHSELF SNSDQNQYIEIF EESACL AASGLF AASGLF	2491 DTLMHFLATA TQHLVKIF IKAT IQAT	2501 2 ATRFQKDESYQKP SRVSNSLDLRKK SKLSKTQQNIKA QSRC - ENLSTP HSRC - EKLSKP	511 252 MIAATMLMKSI OKLLRLL SFILRIL TMLKKTL CIVKSML	21 2531 EKLSNPGIVNAM SYLPA KCLSGVSIKS QCLEGIHLSQ GCLEGIHLTQ	2541 KAVSFAL-FNG NRETLELLI-V SESLISLLSP SGAVLTLYV-D SGTLLTLI-D	2551 RYEFTDIEE NFLQTD KFLFSPVRF RLLCTPFR KFLQTPHH	2561 FLHTSHSTW 1018 DI 1921 RVFAASLL 1794 /LARMVDI 2010 ALARMCDS 1930
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	2571 1019 KLC- 1922 SLQVSOER I LN 1795 FLQTTVENI LE 2011 LACRVEMI LA 1931 LACRVEMI LA	2581 	2591 TETLYTLSL QNSLEIIQELYQI TEFTQN MEELNRIQE VEDVEKLQV	2601 2 LLEKNEFGMKNO FMSNFVKSTTNO LM-QKGESLKEK YLQSSGLAQRHO FMRESGLALRHO	611 2 KLFWSVL SVQSLFLKLI SQYILFCDLI RLYSLLDRFF RLASLLARFF	621 2631 .REWTPHDSL KNLSPSSAYQGI SQ-LHSHV RLSTMQDSL (AVITQQAV	2641 KVEVPFSAIAL TPTHNNVIEKL TGEOPITSEK- SPS-PPVSSH- PPVEPPPSSH-	2651 PVSLITNYLTSD KEKELTNNNNN 	2661 KVNIFEIINQM NNNIIEKEEEE	2671 / LE KEKEKEKV	2681 DDPVPENTLK 1108 EEEEGNNIE 2043 GPT 1864 DGH 2087 AN 2007
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	2691 1109 ECTI IVALYFT 2044 K LIQLQIET 1865 IQALME- 2088VSLETV- 2008 INIASL-	2701 I.N	2711 2 IDWKRYFEH VPWDYFVELIKSR PNQNWFNSVIL-S PDKDWYVHLVKSQ INKDLYVATVQDH	721 2731 CFSKFNNTK YSNNLNQHSFN CLDENK-W-SPE CWTRSDSA-LLE CFRRDSNAQE	ATHLLSKYAD INISILSQI CARVLACA GAELVNRI CALMLSKL	1 2751 DSSLLPNRVEESD DKDA DFDD PAED DYSD	2761 LDEELTGNDSV TI-SLLESKSL II-DIQGNNF MN-AFMMNSEF VL-TIMMTKEF	2771 DIDNLLEKHHCG DG NL 	2781 SIQDLCHSII- TLLPAFISSV- QHLASCLYIGI SLLAPCLSLGM RLLEDSISVGL	2791 CSGETS HEVTSIHAP ISEISGGQKS QQSRISSTL	2801 SVLDFLNLI - 1213 (SLEFQDEI - 2132 CLIPYPEDKT 1946 SALF 2165 AY 2083
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	2811 1214	2821 LKKVD- TLLGLA DKK I KAVLE I TP ARVS - GTVQQLP V - SPGNHHP	2831 2841 EREYP GEIGTD-P GNTEFDTP AVHHVFOPELPAE GNHASR-S-RTPP	2851 LKGGPPFL LKDNSNSEIKFI PAAYWSKLNDLF REKYRLKMDMLF	2861 IDDS SDS VW- DE LF GDENF QQN LN GDAAL YQS LF ADREWRHS VF	2871 RETTRCLSNFINK WUNRCLVNMLKF PTLARALAQYLVV HMAAGLTVYLLS	2881 FGLG HHILPTQYQLP VSKLPSHLHLP LNKTPEQCQTP	2891 ELCESKL NVNSNDYLNIIV PEKEKDIVKFVV EDSFTDTCRFST	2901 2 IWGFL LKVSTWAFI LGFKVTQYGIH ATLEALSWHLI LVLETLCYLLY	911 - ESFRRURA 	2921 DDLEHRLDIT 1245 NETINPYDFK 2220 SKIPSLQDIV 2056 GIPLSLDLQ 2276 SRIPSSQQLQ 2187
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	2931 1246 FRLQDLVDALS 2221 LVLELSRS I I L 2057 CVLESLQQAL- 2277 AGLDCCCLAL- 2188 TAVECCCAVL-	2941 295 ERFNSNMFLKLL KSTASILTIT - AV	1 2961 GNTNLAG DDSEWCSLL SSTEFVTHACSLI VATEHANLVTTAV	2971 IHLNNLS IPK IK LCLYKL QSLHAMF IN YCVH GS I HQVVNN	2981 (LMFDQVSFD)	2991 TEDGYVLRGIRN - EVKWMLQTVQV - FILEAVAV - ECDFVLKSVRT	3001 ILLVSPRMLHFI	3011 302 SEDELETAQMFLI YC LF	1 3031 NLAEKVAG IMT LVIRPHFGYIS TIMEIYIGRIS	30 TDALI GQRELE YEPPYL LSPERRTNT IFEFYLLC	41
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	306 1349 ATYSQYR 2277 NFSQDPTQ 2115 EASSI YNNSSN 2345 EVDPNTQ1 PKY 2261 GVCNALSDQQR	1 3071 IDFQVKCDMDEA ISLTQSNEMI PLSSCIKL ITAACEMV ALLACEMV	3081 KVKEIKKFALSMF KFLVSLL YOMLSLF AEMVESL	3091 AFCQEAHLRHSK TNVKSYTPMPGS RR-QHQNREKFA QSVLALGHKRNS	3101 RFSKTLSACF HIGQLIFDSF KIPTYIVRPI GVPAFLTPLL RLPQFLAAPL	3111 3 RHP I IRATIPLSTKAF NNTTLHLATSPL RNTTISLARLPL RNVVLNLARLPL	121 313 LNSMFNIPLVA DFIYPT- FKDYVRTPLV- VNSYTRVPPL- VNSYARTPT-	31 3141 MKCFNWVPVVEI VST-SSEDEFGG WTFGWNPALGG WKLGWSPKPGG WKMGWGASPGG	3151 LRKPT I TCLPP GI I PNCP I F - S DTGTSLPE I - P DFGTAFPE I - P ETGTKLPE L - P	3161 TGHVCDVM SNVS-PEQN SDFLQEKE VEFLQEKE FDFLQERE	3171 LEDMKRRLS 1458 IKALVSFTH 2379 LOEYTALVN 2223 FKEFTYRIN 2454 CKDFTFRTN 2367
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	3181 1459 KVGLVTNAQFE 2380 FVD I DDEFK FK 2224 Q I GWTKRTEFE 2455 TLGWTSRTOFE 2368 AVGWTSRTOFE	3191 VLFTTMQAVIAH QIWEMLEPIFVS ETWASLLGVLVS ETWATLLGVLVT ETWAGLLGILSA	3201 TVIGPEKMHH PLGDA-EM QPVVSDES QPLVMEQEES LPITVPAETFINI	3211 3 DEKDVLEREARS - GSDEITEECK - SGEAMHTEIS PPEEDTERTQIN PPQEEIEKTQAN	221 CNALQLYIAT CLSLSGMATN SSLAIRGLTSL IVLAVQAITSL IVLAVQAITSL	231 3241 TILTSL MIIKVCFEVTGVN VVDCA VLSAM VLDST	3251 KYPNGGDP ISQVNLLETSTI LYPECGRK TVPVAGNP LHPQPGNP	3261 SSGFVLKSPYIS PKSTYNHIPREK ATSKYQVFYRHP AVSCLEQOPRNK ASSVYEYRPRSK	3271 ELFLQSTEFA- DLMFLNTPTGK TFKLGNTKAGR PLKALDTRFGR SPSYINTRWGR	3281 KLNHLLST OLLKVRGIL KLSIIRGIN KLAQVRHIN	3291 YGDMPQSEL 2493 DDESRF 2325 ZQEIQA 2560 ZKEIMA 2476
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	3301 1549 HLCN 2494 PLGGA I ESVSS 2326 - MTHRKSHQDT 2661 - MVSKREN I AT 2477 - I AAERCDLCS	3311 LKSVWKCEPRTA SSSMFGE HHQNTSLNDSSN HHLYQAWDPVPS HHQYFNMQEQQ-	3321 3 FTTPLERHDQ SSGNHQNMSSSS LSSSLQS LSPATTGALISHE	331 3341 KSWTHCDG LSAYHFNIERSF NKWITMNTERVL KLLLQINPEREL GGLYSADVHRTL	I 335 SKTNLYGICOT SSNQFGSDOI SSSAYGLAOS GSMSYKLGOV GFTDYGLGHV	1 3361 TPLFSLWQLCGMM SLSDLRLF SVRSFHLLHGIT /SIHSVWLGNSIT /SIKSIWSDNHIL	3371 PIEFRQHANY- PMKEESYDGDY PLREEEWDEE- NQTPDTDEEP-	3381 HRIDH DSATMHSFEYDN	3391 SASN SLSNDGSDVSD	3401 IY	3411 2553 PDVPTNPAP 2440 PAPSSPPTS 2655 - GGGTSQPM 2560
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	3421 1625 F LTSATNI 2554 KTPYF I GV 2441 PLSPLRIRDGV 2656 PVNSRKHRAGV 2561 VTPRRFRGGL 2541	3431 DT I SNVKOLMN I NFTP I I QKLLES DVHSCVQFLLEL DIHSCSQFLLEL DIHSCLQFLVEL 2551 255	3441 3451 FEYWYSQGI FESFLVN YTEWFRTTAQTNO YSRWILPSSSA YSOWMEPTAM	3461 GE LGDTL PMCPPML ISGSSST I ARPL RRTPA I PRTPVPL 2591	3471 LHSILHTILY KKDILKSTVL LCECVRSLLL ISEVVRSLLY LCEVAKSILL 2591	3481 (LSDFFDDPDLHK LSDLFN-REQVI ISDLFTEKQQFE VSDLFTERNQFE ISDLFTELRQYE 2601	3491 AVLRTTSIIYR WMFKTFTTIYA WMFVALTTLHN LMYVTLTELRR WMFDSLLELNK 2611	3501 HQYDQNSVLSSF QDE I DDF LLKQH AQP ADDDVLMQY VHPSEDE I LQY IHP VEDE I LQY 2621 263	3511 3 VHAMFFKSIAV LILGICKGIAI ITPSMCKAGSV LVPATCKAAAV VVPGVCKAGAV	521 LGADVHGTE LOTPPNVGE LGLNSE LGMDKA MGMEGP	3531 FKPGEPESI 1734 JSN AHSVG 2658 TSEN 2554 VAEP 2762 VAER 2666
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	1735 ALKLVSSGLSN 2659 IFEMLKSALDH 2555 VLRVLEPSLSS 2763 VSRLLESTLRS 2667 VSKLLESSLKS 367	DIKTVRIYTLAG QNISLQVSALDG TLLSCRTSALVG SHLPSRVGALHG THLPTKVGSVYG 1 3681	VLYLVOSDSYES- ILYLLEGKVNKYI LLQCIESYPN-PN VLYVLECDLLDDT SLYILEAGPS-EA 3691	FISSIDILSAYL QGSLQFLFRWI LRGIDLASQFI AKQLIPVISDYL TKLLVPVLQDYL 3701	EKYLKKLANC PTRLSSVPFF PPNFVAISTC LSNLKGIAHC SKNIPPTAQC 3711	35001 SSGRVESDESOFA PVSLTLRV PSLFNEDYVVLL VNIHSOOHVLVM CIVHVEPHVLAM 3721 3	ASULI IKLMETP LATMFLMIEQY ASVAFYLIEKC ICATAFYLIENY ICYILLSDG 731 374	MRLK QDKKT SREAEETLFTKR HDAVMP - EFTSV PLDVGP - EFSAS ALPGGP - EGS - T 11 3751	ILKLLLAS AVTTCIQL IIQACTLIISS IIQMCGVMLSG MLQAAITTASG 3761	MR- VRRERF GQQQSTPVF RDVTSVQSF ISE-ESTPS ISE-EVTPAF 3771	I I E L I AE G I 1848 I VYGVFRGL 2773 XVFHSVTHGL 2674 I YHCALRGL 2882 VYHAVVRGL 2781 3781
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	1849 EQLLCRSNEFN 2774 DRLLVSFSLSH 2675 ORLILSFSISA 2883 ERLLSEOLSR 2782 ERLLVTRVLTG 3704	NEV INFVLVGVD SQREL ISHFSLK SECDS I LKVAAE LDAESLVKLSVD HEAEP LVKLSVD 3801	SGDATPFPADNEY SLP-SENPIRSL OVHTNPWLPRATA RVN-VHSPHRAMA RLC-LPSPPRATA 3811	YCRAVYRILMVA ALGLMVTCIYT- ACGLMMTCMYC- ALGLMLTCMYT- ALGLMLTCMYT- 3821 2	ATREKVAN - GDE TG INSF - GRMR ISSNF - GKEKVSF GF - GKDGGDTGS - 831	PSFTKSSISSIGS PDHGS RT	GGVNSLTAFEG P S G	SFSSSSIESPLN 3871	SALDSVMSSFI	MDDNYSGSC	GONS LINGG 2892
C_elegans/1-2022 D_discoideum/1-3095 C_intestinalis/1-2946 H_sapiens/1-3142 B_floridae/1-3038	1905 2893 GGDPLSSLDRQ 2737 GGSP - EHEDV 2941 PN PAAPD 2843 SE PTTPD	DEVSNTRI- KFSRVNNMEKVK VESRLLAMERVT SESVIVAMERVS NESLIVAMERVT	YNALQI - IGFD MLFDK IRLVSHFS LLFERIR KGYF VLFDRIR KGFP VLFDRIR KGFP	MLSRGETAPAIS YESHVLS HEARVMS CEARVVA CEARVVA	RTLPFFSICV EVLPVVIVDL KVLPSMLDDF RILPOFLDDF RILPTFLDDF	/N-GVETTISKYI FPSVDQVLSFIL FPAQD-IMNKII FPPQD-IMNKVI FPAQD-IMNKVI	ERFVINGNKKD GEFLKQSK-TN AEFISTLQ-PF GEFLSNQQ-PY GEFLSSQQ-PH	RRFVSTLINQIV SKLMCQIISKVF FASVAQILYEVF POFMATVVYKVF PQLMAKVLYDVF	ETAATSKKWSV DFL QSL QTL	ELKLYRERL	KSKSVANAD 2007 TSENTNOHL 2995 OSHL 2829 OSSM 3031 QQQV 2933

Figure S1. Multiple sequence alignment between *H. sapiens, C. intestinalis, B. floridae, D. discoideum* Htt and *C. elegans* Htt-like. Residues are coloured by percentage identity. The red, green and yellow boxes indicate HEAT repeats in ascidian, in human and amphioxus Htt, respectively.

Table S1. Query coverage, *E*-value and percentage identity between human, ascidian, amphioxus, amoeba Htt sequences and *C. elegans* Htt-like sequence, obtained through distinct BLAST searches.

Blast hit	Query	<i>E</i> -value	Identity	Accession
	coverage			number
Ciona intestinalis Htt	88%	0.0	34%	CAJ87484.4
Branchiostoma floridae Htt	99%	0.0	46%	CAM12495.1
Dictyostelium discoideum Htt	33%	2x10-19	29%	XP_645159.1
Caenorhabditis elegans	13%	3x10-6	21%	NP509663.3
C. elegans domain 1	21%	8x10 ⁻⁴	38%	
C. elegans domain 2	49%	5x10-9	21%	

Table S2. Disordered regions identified in *D. discoideum* Htt sequence.

Method	Disordered regions
Foldindex	109-203, 510-572, 727-742, 756-768, 1302-1390, 1985-2061
(Uversky et al., 2000)	
Predictprotein	530-551, 970-980, 1316-1326, 1511-1543, 2004-2041
(Yachdav et al., 2014)	
SMART	Low complexity regions: 140-199, 1103-1127, 1135-1145, 1180-1200,
(Letunic and Bork,	1305-1368, 1425-1438, 1510-1547, 1568-1579, 1679-1701, 1752-1764, 1885-
2018)	1901, 1930-1939, 2000-2054, 2249-2259, 2501-2525, 2833-2842, 2852-2864,
	2878-2900
HMMER	109-204, 539-558, 740-757, 1123-1133, 1306-1370, 1515-1541, 1995-2038
(Potter et al, 2018)	
MOBIDB	105-197, 536-561, 1312-1371, 1509-1547, 2005-2037
(Piovesan et al., 2018)	
GLOBPLOT	1-12, 174-251, 383-407, 609-623, 787-812, 927-938, 1022-1045, 1151-1179,
(Linding, Russell, et	1188-1199, 1366-1433, 1559-1599, 1717-1745, 1765-1781, 2200-2216, 2395-
al., 2003)	2416, 2539-2550, 2554-2573, 2872-2901, 2926-2953
	DOMAIN: 2-173, 252-382, 408-608, 624-790, 813-1021, 1046-1150, 1180-
	1373, 1434-1558, 1600-1716, 1782-2199, 2217-2394, 2417-2553, 2574-2871,
	2954-3147

SPOT-DISORDER	1-20, 125-192, 492-571, 735-760, 971-988, 1099-1130, 1317-1364, 1511-
(Hanson et al., 2017)	1546, 1670-1713
PONDR VLXT	13-36, 119-197, 249-266, 342-356, 537-568, 721-761, 979-987, 1111-1146,
(Romero et al., 2001)	1185-1198, 1319-1380, 1507-1548, 1668-1723, 2272-2285, 2401-2419,
	2488-2520, 2731-2746, 2850-2869, 2882-2895, 2903-2913
Iupred2A	Domains: 1-101, 207-1304, 1375-1993, 2045-3095
(Mészáros et al., 2018)	

Table S3. C-Score of the models of *D. discoideum* Htt ordered domains, obtained with I-TASSER.

Ordered domains of	C-score
Dictyostelium Htt	
Domain 1	0.20
Domain 2	-1.19
Domain 3	-2.10
Domain 4	-0.35

Table S4. Structural homologs of domain 1 of *D. discoideum*, identified by I-TASSER.

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.776	0.76	0.368	0.806
2	5HAS	0.759	2.23	0.098	0.944
3	3L5Q	0.730	2.44	0.050	0.935
4	5VCH	0.730	2.43	0.050	0.935
5	3W3T	0.720	2.47	0.113	0.898
6	3S4W	0.718	2.94	0.085	0.972
7	6COK	0.716	2.24	0.092	0.907
8	2IWH	0.715	2.54	0.150	0.889
9	3FGA	0.713	2.51	0.071	0.907
10	4ATG	0.711	2.36	0.122	0.907

Table S5. Structural homologs of domain 2 of *D. discoideum*, identified by I-TASSER.

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.771	1.18	0.233	0.778
2	1Z3H	0.492	6.07	0.078	0.613
3	2BKU	0.475	5.56	0.066	0.572
4	1QGR	0.474	6.23	0.086	0.602
5	6EMK	0.470	6.75	0.080	0.618

6	2X1G	0.468	7.20	0.061	0.627
7	4XRI	0.463	5.84	0.088	0.568
8	5GM6	0.459	5.87	0.075	0.563
9	5HB4	0.457	7.52	0.044	0.620
10	5DLQ	0.457	7.95	0.083	0.650

Table S6. Structural homologs of domain 3 of *D. discoideum*, identified by I-TASSER.

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.765	1.57	0.170	0.783
2	5HB4	0.565	5.67	0.073	0.754
3	5NVR	0.549	5.65	0.081	0.731
4	5DLQ	0.543	5.40	0.083	0.701
5	5T8V	0.529	6.91	0.067	0.773
6	3A6P	0.525	6.67	0.065	0.769
7	6REY	0.520	6.23	0.087	0.718
8	2JKR	0.517	5.64	0.102	0.694
9	6N1Z	0.517	5.69	0.050	0.681
10	6H7W	0.506	5.96	0.068	0.688

Table S7. Structural homologs of domain 4 of *D. discoideum*, identified by I-TASSER.

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.812	2.01	0.207	0.834
2	3A6P	0.480	6.72	0.081	0.621
3	5DLQ	0.479	8.13	0.061	0.686
4	3M1I	0.469	7.73	0.064	0.654
5	5HB4	0.457	6.71	0.069	0.592
6	4KF7	0.455	7.66	0.063	0.627
7	5IJO	0.444	6.90	0.070	0.584
8	3GB8	0.441	7.27	0.061	0.592
9	5GM6	0.435	6.45	0.049	0.555
10	4FGV	0.434	7.24	0.050	0.578

Table S8. Disordered regions identified in *C. intestinalis* Htt sequence.

Method	Disordered regions
Foldindex (Uversky et al., 2000)	102-139, 370-445, 726-776, 833-863, 981-1056, 1182-1231, 1510-1523, 1546-1550, 1867-1871, 2121-2130, 2133-2138, 2209-2213, 2298-2356, 2383-2387, 2389-2436

Predictprotein (Yachdav et al., 2014)	18-29, 336-356, 373-449, 745-758, 835-865, 974-1036, 1204-1222, 1853- 1863, 2408-2438, 2729-2743
Anchor (Dosztányi et al., 2009)	357-378, 411-420, 434-443, 452-461, 470-481, 951-969, 1040-1051, 2366-2387
SMART (Letunic and Bork, 2018)	303-317, 355-363, 431-440, 693-705, 834-854, 896-908, 1760-1784, 1946- 1957, 2341-2355, 2562-2575
HMMER (Potter et al. 2018)	339-354, 375-444, 835-840, 842-861, 981-1027, 2328-2352, 2415-2442
MOBIDB (Piovesan et al., 2018)	380-447, 836-866, 876-1037, 2329-2350, 2420-2444
GLOBPLOT (Linding, Russell, et al., 2003)	404-456, 742-751, 863-897, 999-1061, 1165-1185, 1215-1229, 1880-1891, 1998-2011, 2215-2231, 2362-2377, 2418-2474, 2751-2769, 2944-2954; Globular domains: 2-403, 442-862, 898-998, 1062-1164, 1230-1997, 2012-2214, 2232-2361, 2475-2750, 2770-2950
SPOT-DISORDER (Hanson et al., 2017)	1-30, 330-452, 746-760, 836-867, 923-935, 976-1036, 1142-1157, 1209-1222, 1853-1864, 2391-2440, 2726-2745
INTERPRO (Finn et al., 2017)	23-324, 471-988, 2334-2915
PONDR VLXT (Romero et al., 2001)	25-43, 50-60, 112-132, 154-164, 305-313, 337-363, 369-463, 567-576, 719- 759, 838-863, 968-1024, 1142-1157, 1206-122, 1338-1351, 1358-1377, 1405-1415, 1524-1539, 1567-1579, 1706-1725, 1802-1820, 1851-1864, 1972-1981, 2243-2266, 2310-2324, 2340-2352, 2414-2446, 2547-2562, 2727-2753

Table S9. C-Score of the models of ascidian Htt ordered domains, obtained with I-TASSER. The models have been selected by Confidence-score, a parameter to evaluate the quality of predicted models. Generally, C-score can range from -5 to 2, where a higher value corresponds to a greater level of confidence of the model.

Ordered domains of	C-score
ascidian Htt	
Domain 1	-0.92
Domain 2	-0.28
Domain 3	0.59

Domain 4	0.33

Table S10. Structural homologs of domain 1 of ascidian Htt, identified by I-TASSER. TM-score and RMSD are known standards for measuring structural similarity between two structures which are usually used to measure the accuracy of structure modelling when the native structure is known.

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.857	0.86	0.397	0.870
2	5YZ0	0.734	4.18	0.071	0.948
3	4A0C	0.700	3.43	0.101	0.849
4	5VCH	0.697	4.19	0.108	0.910
5	5IFE	0.694	4.13	0.079	0.901
6	1VSY	0.691	4.39	0.091	0.914
7	2IAE	0.687	4.26	0.088	0.910
8	3W3T	0.686	4.19	0.103	0.901
9	2JAK	0.685	4.42	0.077	0.910
10	5DLQ	0.682	4.81	0.112	0.957

Table S11. Structural homologs of domain 2 of ascidian Htt, identified by I-TASSER.

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.828	1.13	0.288	0.840
2	5DLQ	0.525	6.19	0.085	0.744
3	4UVK	0.518	6.04	0.103	0.717
4	1VSY	0.515	5.72	0.079	0.696
5	2X1G	0.508	5.54	0.076	0.686
6	3ICQ	0.503	6.07	0.083	0.702
7	1IBR	0.503	4.89	0.084	0.638
8	1U6G	0.499	5.75	0.102	0.683
9	2XWU	0.499	6.40	0.067	0.721
10	4KNH	0.498	6.28	0.083	0.719

Table S12. Structural homologs of domain 3 of ascidian Htt, identified by I-TASSER.

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.866	0.81	0.354	0.870
2	5T8V	0.389	8.26	0.060	0.541
3	5HB4	0.372	8.11	0.044	0.516
4	6BQ1	0.365	8.96	0.037	0.531
5	2X1G	0.362	6.33	0.063	0.449
6	2XWU	0.357	7.15	0.057	0.463

7	1VSY	0.356	7.60	0.065	0.478
8	4C0O	0.354	6.86	0.061	0.455
9	3ICQ	0.352	7.15	0.052	0.460
10	1WA5	0.351	6.55	0.044	0.441

Table S13. Structural homologs of domain 4 of ascidian Htt, identified by I-TASSER.

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.870	1.07	0.458	0.882
2	3ZKV	0.651	5.23	0.061	0.863
3	2XWU	0.638	5.44	0.059	0.861
4	4C0O	0.632	5.10	0.088	0.846
5	1W63	0.630	4.40	0.075	0.784
6	3DW8	0.628	4.67	0.084	0.803
7	3NBZ	0.627	5.48	0.078	0.874
8	3ICQ	0.619	5.30	0.071	0.833
9	1U6G	0.618	4.68	0.078	0.791
10	5DLQ	0.618	5.72	0.071	0.863

Table S14. Disordered regions identified in *B. floridae* Htt sequence

Method	Disordered regions
Foldindex	27-39, 430-452, 517-532, 545-575, 577-592, 868-908, 1025-1059, 1108-1162,
(Uversky et al., 2000)	1260-1285, 1777-1798, 2083-2127, 2441-2472, 2515-2569
Predictprotein	19-50, 416-439, 447-479, 490-532, 534-592, 1030-1051, 1088-1147, 1254-
(Yachdav et al., 2014)	1269, 1780-1799, 2537-2560, 2831-2848
Anchor	7-16, 474-496, 514-539, 1058-1088, 1097-1107
(Dosztányi et al., 2009)	
SMART	217-230, 268-278, 476-488, 984-1024, 1039-1053, 1096-1108, 1123-1141,
(Letunic and Bork,	1365-1381, 1686-1697, 1747-1758, 1774-1794, 1991-2002, 2494-2505, 2538-
2018)	2552, 2827-2843
HMMER	27-43, 426-450, 493-520, 883-892, 1031-1056, 1095-1146, 1782-1791, 2091-
(Potter et al, 2018)	2103, 2537-2560, 2831-2849
MOBIDB	422-441, 1031-1051, 1091-1150, 1777-1798, 2536-2561

(Piovesan et al., 2018)	
GLOBPLOT (Linding, Russell, et al., 2003)	373-385, 402-416, 450-474, 505-514, 528-542, 714-722, 927-941, 1008- 1021, 1060-1080, 1118-1182, 1284-1301, 1606-1618, 1806-1827, 2020- 2034, 2116-2135, 2357-2375, 2459-2483, 2565-2595, 2771-2781, 2854-2878 Globular domain: 1-401, 543-926, 1183-1805, 1828-2019, 2035-2115, 2136-2356, 2376-2458, 2477-2564, 2596-2853, 2879-3038
SPOT-DISORDER (Hanson et al., 2017)	1-50, 370-594, 1033-1050, 1092-1148, 1254-1268, 1298-1308, 1778-1805, 1990-2006, 2538-2564, 2831-2848
PONDR (Romero et al., 2001)	21-56, 128-139, 349-357, 419-482, 491-516, 527-600, 880-935, 981-995, 1024-1034, 1089-1147, 1256-1271, 1322-1331, 1479-1498, 1520-1533, 1607-1619, 1642-1662, 1773-1809, 1944-1963, 1990-2008, 2071-2120, 2320-2334, 2398-2417, 2428-2464, 2537-2557, 2658-2670, 2742-2776, 2788-2805, 2832-2855

Table S15. C-Score of the models of AmphiHtt ordered domains obtained with I-TASSER

Ordered domains of	C-score
AmphiHtt	
Domain 1	0.04
Domain 2	-0.67
Domain 3	0.50
Domain 4	0.49

Table S16. Structural homologs of domain 1 model of AmpiHtt, identified by I-TASSER

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.897	1.32	0.589	0.916
2	4A0C	0.679	3.46	0.091	0.826
3	2BKU	0.677	3.86	0.102	0.845
4	1VSY	0.661	4.46	0.089	0.867
5	4XRI	0.661	3.82	0.068	0.829
6	3FGA	0.656	4.26	0.110	0.863
7	5IFE	0.649	4.27	0.087	0.845
8	3S4Z	0.642	4.34	0.089	0.867
9	5DLQ	0.638	4.76	0.090	0.891

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.890	2.74	0.366	0.956
2	4KF7	0.579	5.10	0.071	0.774
3	4KNH	0.542	5.54	0.080	0.755
4	1IBR	0.540	5.52	0.101	0.744
5	3NBY	0.538	5.16	0.071	0.737
6	4C0O	0.538	5.26	0.107	0.730
7	5VCH	0.538	5.54	0.077	0.741
8	3ND2	0.538	5.63	0.092	0.741
9	4XRI	0.537	4.82	0.059	0.693
10	1VSY	0.535	6.08	0.062	0.797

Table S17. Structural homologs of domain 2 model of AmpiHtt, identified by I-TASSER

Table S18. Structural homologs of domain 3 model of AmpiHtt, identified by I-TASSER

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.824	0.89	0.562	0.829
2	3ICQ	0.495	6.38	0.070	0.642
3	2XWU	0.482	7.04	0.077	0.660
4	6EMK	0.474	7.17	0.054	0.648
5	4C0O	0.472	6.74	0.047	0.633
6	3EA5	0.470	6.76	0.067	0.630
7	5HB4	0.469	7.75	0.071	0.673
8	6BCU	0.461	6.55	0.088	0.607
9	4A0C	0.461	6.45	0.065	0.604
10	5DLQ	0.461	6.65	0.052	0.610

Table S19. Structural homologs of domain 4 model of AmpiHtt identified by I-TASSER

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.839	0.61	0.528	0.842
2	5HB4	0.503	6.50	0.061	0.663
3	4KF7	0.502	6.22	0.085	0.644
4	5IJO	0.488	6.20	0.068	0.628
5	5DLQ	0.480	7.53	0.080	0.685
6	5YZ0	0.479	6.59	0.055	0.632
7	5GM6	0.477	6.34	0.065	0.616
8	3M1I	0.473	6.60	0.076	0.625
9	3NBY	0.473	6.51	0.062	0.620

10	3W3T	0.472	5.89	0.075	0.586

Table S20. Disordered regions identified in the Htt-like sequence of *C. elegans*

Method	Disordered regions
Foldindex	299-303, 317-347, 561-566, 594-598, 728-741, 835-864, 871-880, 1142-1199,
(Uversky et al., 2000)	1224-1228, 1231-1240, 1971-1989
Predictprotein	1, 129, 314-325, 340-348, 1161-1164, 1488-1489, 1494
(Yachdav et al., 2014)	
SMART	801-812, 1027-1041, 1232-1243
(Letunic and Bork,	
2018)	
MORIDR	1 5 646 651 652 654 721 1169 1160 1405 1406 1702 1704
(Piovosan et al. 2018)	1-3, 040-031, 033-034, 731, 1100-1107, 1473-1470, 1793-1794
(1 lovesall et al., 2010)	
GLOBPLOT	630-644, 729-733, 1482-1487, 1564-1578, 1621-1632, 1769-1774, 1917-1926
(Linding, Russell, et	DOMAINS: 3-629, 645-1563, 1579-2068
al., 2003)	
SPOT-DISORDER	1-2, 1159-1170, 1172-1173, 1611-1625, 1627-1628
(Hanson et al., 2017)	
INTERPRO	Htt family domain: 1283-1999
(Finn et al., 2017)	
PONDR VLXT	204-219, 634-651, 1155-1178, 1318-1333, 1487-1502, 1815-1833, 1989-2002
(Komero et al., 2001)	

Table S21. C-Score of the models of the ordered domains of an Htt-like protein identified in C.elegans

Ordered domains of an Htt-like protein	C-score	
Domain 1	-1.26	
Domain 2	0.04	

Table S22. Structural homologs of domain 1 of the Htt-like protein in C. elegans, identified by I-TASSER

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.845	1.88	0.145	0.862
2	1Z3H	0.504	6.30	0.082	0.633
3	3W3T	0.497	6.86	0.075	0.637
4	3ND2	0.496	6.79	0.071	0.644
5	1QGK	0.484	6.71	0.054	0.626
6	6EMK	0.481	6.91	0.063	0.631
7	5YZ0	0.463	6.61	0.048	0.595
8	4XRI	0.459	7.32	0.068	0.621
9	4C0O	0.451	6.85	0.079	0.589
10	5VCH	0.438	7.17	0.070	0.582

Table S23. Structural homologs of domain 2 of the Htt-like protein in C. elegans, identified by I-TASSER

Rank	PDB hit	TM-score	RMSD (Å)	Identity (%)	Coverage
1	6EZ8	0.874	2.09	0.174	0.903
2	4KF7	0.576	6.32	0.061	0.767
3	5IJO	0.550	6.34	0.076	0.735
4	5HB4	0.543	6.27	0.070	0.725
5	5DLQ	0.534	7.40	0.061	0.772
6	3A6P	0.532	6.91	0.065	0.737
7	3GJX	0.530	6.76	0.065	0.733
8	5YZ0	0.523	6.12	0.051	0.692
9	3M1I	0.519	6.80	0.067	0.719
10	4KNH	0.503	6.86	0.062	0.711