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Abstract: This narrative review discusses the genetics of protection against Helicobacter pylori (Hp)
infection. After a brief overview of the importance of studying infectious disease genes, we provide a
detailed account of the properties of Hp, with a view to those relevant for our topic. Hp displays a
very high level of genetic diversity, detectable even between single colonies from the same patient.
The high genetic diversity of Hp can be evaded by stratifying patients according to the infecting Hp
strain. This approach enhances the power and replication of the study. Scanning for single nucleotide
polymorphisms is generally not successful since genes rarely work alone. We suggest selecting genes
to study from among members of the same family, which are therefore inclined to cooperate. Further,
extending the analysis to the metabolism would significantly enhance the power of the study. This
combined approach displays the protective role of MyD88, TIRAP, and IL1RL1 against Hp infection.
Finally, several studies in humans have demonstrated that the blood T cell levels are under the
genetic control of the CD39+ T regulatory cells (TREGS).

Keywords: Helicobacter pylori; resistance genes; metabolism

1. Introduction

Evidence is clear that protection against pathogens is in part genetic. This evidence
is provided by human genetic variants conferring resistance to different pathogens: the
sickle-cell trait to malaria caused by Plasmodium falciparum [1], the absence of the Duffy
blood group to malaria caused by Plasmodium vivax [2], and a variant of the C-C chemokine
Receptor type 5 (CCR5) chemokine to human immunodeficiency virus (HIV) infection [3].
However, the impact of infectious diseases is still present, though considerably reduced by
modern medicine. The persistence of diseases such as malaria, tuberculosis, the COVID-19
pandemic, and the widespread bacterial antibiotic resistance remind us of the importance
of gaining a better understanding of infectious disease genetics.

In this review, we first illustrate the strategy used by Helicobacter pylori (Hp) to create
a long-term relationship with the human host. We then describe the approaches more
frequently used to identify the genes conferring resistance to pathogens. Finally, we discuss
how the knowledge of host-Hp interaction might help the reader to find the best way to
approach further study.

2. Helicobacter pylori–Human Host Interaction

Hp, a Gram-negative bacterium, colonizes the gastric mucosa of about 50% of the
world population [4]. When present, Hp becomes the predominant component of the
stomach microbiota [5]. This result suggests that the altered microbiota of the stomach
might potentially influence the microbiome and immune system of the host. Hp infection
mostly occurs during childhood by vertical transmission from mother to child or by
horizontal transmission from infected siblings [5]. According to evolutionary theory, when
transmitted vertically, pathogens evolve toward reduced virulence [6]. Consistent with this
theory, most Hp infections remain inactive for several decades [7]. However, Hp can also be
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transmitted horizontally. In this case, infection with multiple strains disrupts the reduced
virulence gained by vertical selection, and the bacterium can return virulent [6].

During its long coevolution with humans [7], Hp gained a very high level of genetic
diversity through recombination with other strains during mixed infections [8]. At present,
genetic differences are observed even between single colonies from the same patient. Hp
populations also migrate to specific areas of the stomach [9]. Adaptation to individual
niches and genetic recombination produce a well-structured protection against host immu-
nity and antimicrobials (if one strain succumbs, very likely others will survive). Hp uses
genetic recombination to alter the expression of the host surface antigens and thus escape
recognition by the host immune system [9].

During its long coevolution with the host, Hp, in addition to genetic recombination,
developed several more obstacles to host immunity. Vacuolating cytotoxin A (VacA) and
Cytotoxin-associated gene A (CagA), - two toxins causing adenocarcinoma and mucose-
associated lymphoid tissue (MALT) lymphoma - induce apoptosis [10], whereas urease
controls gastric acidity [11]. Then, lipopolysaccharide (LPS) escapes recognition by phase
variation, a process that helps bacteria to exhibit different LPS epitopes. Hp expresses the
human blood group O-antigen. This molecular mimicry trick enables Hp to evade the
Toll-like receptors (TLRs) that recognize the O-antigen as self. In addition, Hp alters the
net charge of the lipid A portion of LPS, making lipid A highly resistant to the cationic
antimicrobial peptides (CAMPs) [12]. Flagellin (a protein of flagella) escapes recognition by
Toll-like receptor 5 (TLR5) by expressing the less-inflammatory variant FlaA and catalase
neutralizes the release of oxygen radicals from macrophages. This multilayered strategy en-
ables Hp to efficiently evade host immunity and induce a chronic inflammation, compatible
with long-term colonization of the host, but not apt to clear infection.

Hp displays several more properties. Grown in the presence of low iron or high
salt concentrations, the bacterium rapidly selects the carcinogenic variant FuR88H [13],
which is associated with several non-gastric diseases [14]. Furthermore, Hp displays
conflicting properties: it is the main risk factor for gastric carcinoma and gastric MALT
lymphoma [7], but protects against esophageal adenocarcinoma, Barrett’s esophagus, and
gastroesophageal reflux [15]. The conflicting roles of Hp in human diseases demand a clear
understanding of its complex interactions with the host and the environment. A deeper
knowledge of host–pathogen interactions may also help to decide with confidence whether
humans are better off with or without Hp in their stomach.

3. Why Study Infectious Disease Genes?

Detection of this class of genes helps in the preparation of new drugs and vaccines.
Drug discovery against HIV was guided by studies showing that a deletion in the gene
coding for the HIV coreceptor CCR5 reduces the risk of HIV infection [16]. The vaccine
against malaria caused by Plasmodium vivax followed the evidence that absence of the Duffy
blood group confers resistance against this pathogen [2]. Infectious disease genes also
explain the contribution of pathogens to maintaining the genetic diversity of our genome.
Human ABO blood groups and major histocompatibility complex (MHC) polymorphisms
are maintained in the population because they protect against infectious diseases. The
high frequency of cystic fibrosis in the population follows the advantage of heterozy-
gotes for mutations in the chloride channel gene (CFTR) of being resistant to typhoid
infection [17]. Evolution uses different mechanisms to maintain polymorphisms in the
population: heterozygote advantage, frequency-dependent selection, and fluctuation in the
selection pressure caused by its presence in the population of different strains of the same
pathogen recognizing different host genotypes.

4. Detection of Infectious Disease Genes: Candidate Gene Studies

The genetics of resistance to pathogens has its roots in the thoughtful intuition of
Haldane [18] and the experimental demonstrations provided by Allison in 1954, which es-
tablished that, in humans, the gene causing sickle hemoglobin is associated with resistance
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to malaria caused by Plasmodium falciparum. Later studies demonstrated that the LTA4H
gene (LTA4H) is associated with pulmonary tuberculosis, PARK2 and PACRG with leprosy,
and a mutant form of CCR5 with reduced HIV-1 transmission [16]. Independent studies
carried out in twin pairs demonstrated that the concordance rate of tuberculosis and Hp
infection [19] was higher in monozygotic twin pairs than in dizygotic twin pairs.

Out of the many outstanding candidate gene studies, we mention two that illustrate
the following concepts: first, that the same gene can protect against multiple pathogens;
and second, that landmark studies may also originate from the detailed analysis of a limited
number of patients, rather than the survey of large cohorts.

A case-control study of patients from the U.K., Vietnam, and several African countries
with invasive pneumococcal disease (IPD), bacteremia, malaria, or tuberculosis showed
that patients heterozygous for the variant S180L of the protein Mal encoded by TIRAP
are protected against the four diseases in all the study populations (P: 9.9 × 10−8) [20].
Following stimulation of TLR2 and TLR4, the protein Mal triggered the activation of Nuclear
Factor kappa-light-chain-enhancer of activated B cells (NF-kB) and the pro-inflammatory
response [20]. In vitro studies demonstrated that the variant S180L curbs NF-kB4 activation
through the wild form of the Mal protein. Thus, heterozygosis at S180L protects against
multiple diseases by providing a reduced immune response, proving that inflammation
functions best when properly balanced.

The signal transducer and activator of transcription1 (STAT1) controls the down-
stream type 1 interferon and several cytokine receptors expressed in many cell types.
Loss-of-function mutations inhibiting the STAT1 function cause susceptibility to viruses by
inhibiting Interferon-α/β (IFN-α/β) and to mycobacterial diseases by inhibiting IFN-g [21].
In contrast, gain-of-function mutations in the same gene cause chronic mucocutaneous can-
didiasis by hampering the STAT1-dependent repressors of Interleukin-17 (IL-17)-producing
T cells [21]. These studies illustrate the complexity of the in vivo relationship between host
genes and pathogen, in particular, how mutations in the same gene can lead to different dis-
eases by participating in multiple interactions, all causing different adverse consequences
to the host.

Unfortunately, the success and apparent simplicity of candidate gene studies also
yielded a plethora of non-reproducible results.

5. Detection of Infectious Disease Genes: Genome-Wide Association Studies (GWAS)

Genome-wide association studies (GWAS) offer the opportunity to test millions of
single nucleotide polymorphisms (SNPs). However, the method also has serious limitations.
Thousands of cases and controls are required to reach the requested statistical significance
level (p < 5 × 10−7), a number too high to reach even in countries where infectious
diseases are recurrent. In addition, GWAS can explain only 15–20% of the hereditability
measured using twin studies [22]. Accordingly, very few infectious disease studies have
been carried out using GWAS. The best GWAS in infectious diseases are those on leprosy,
which identified five genes tightly associated with this disease [23].

6. Presence in the Population of Different Strains of the Same Pathogen

A review of highly reproducible infectious disease studies included tuberculosis,
malaria, and leprosy [24]. This realization has been attributed to the low genetic variability
of these pathogens, in particular of Mycobacterium leprae [25]. This conclusion suggested
that the difficulties in replicating GWAS case-control studies and their low hereditability, at
least in part, might reflect the presence in the population of multiple strains of the same
pathogen [24]. Preliminary results confirmed that stratification of patients according to the
infecting pathogen strain enhances both the power and replication of the study [26].

7. Infectious Disease Genes Controlled at the Transcriptional Level

Tumor necrosis factor-α (TNF-α) is involved in the pathogenesis of several diseases,
including cerebral malaria, characterized by high levels of this cytokine [27]. TNF-α has
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two allelic forms located in the promoter at −311: TNF1 and TNF2. The latter allele is
associated with higher levels of TNF-α transcription than the former (TNF1). A case-control
study of malaria in Gambia showed that TNF2 homozygous patients are significantly more
numerous among cases of cerebral malaria [27]. In Gambia, the TNF2 allele reaches a
frequency of 0.6, despite its association with cerebral malaria. This finding suggested
that TNF2 is maintained in the population because heterozygotes possess levels of TNF-α
conferring optimal protection against diseases other than cerebral malaria.

More recently, flow cytometry analysis of cell surface protein expression levels in
669 twin pairs demonstrated that the quantitative expression of several regulatory T
cell (TREGS) proteins is under genetic control. One of the most hereditable traits is the
CD39 protein expressed by CD39+ CD4 TREGS [28]. Individuals homozygous for the SNP
rs096317A expressed high levels of the CD39 protein, heterozygous individuals expressed
intermediate levels, and those homozygous for the SNP rs0966317G did not express this
protein at all [28]. The same study described multiple polymorphisms at several other loci
of TREGS cells that control surface protein expression.

TREGS cells also play a role in Hp infection [29]. The gastric mucosa inflammation
caused by Hp infection is in part regulated by TREGS. CD4+/CD5+ TREGS can suppress
cytokine production of other T cells. The role of TREGS in Hp-induced gastritis was studied
in mice. Athymic mice were reconstituted with lymph node cells depleted of CD25+ cells
or with CD25+ lymph node cells. Three weeks later, mice were infected with Hp. At six
weeks from infection, the mice reconstituted with lymph node cells depleted of CD25+

cells developed a form of gastritis more severe than that of mice reconstituted with CD25+

lymph node cells. The experiment demonstrated that TREGS CD25+ cells curb Hp-induced
gastric mucosa inflammation [30].

Gene expression analysis via microarrays was also used to investigate how pathogens
modulate the host’s gene expression [31], detect candidate genes conferring resistance
to pathogens [18], identify the infecting pathogen [31], and explain why some patients
infected with the hepatitis C virus do not respond to interferon therapy [17].

8. Hp Modulates Gene Expression through Epigenetics and Co-Infection

Epigenetics describes reversible mechanisms that regulate gene expression without
altering the DNA sequence [32]. Methyltransferases (MTs) are molecules that transfer
DNA methyl groups from methionine to adenine or cytosine residues. MTs control the
expression of a large number of bacteria, including Hp [32]. Almost every Hp strain has its
unique set of MTs. Transcriptome analysis of two Hp strains (J99 and BCM-300) and their
respective MTs mutants showed that inactivation of MTs leads to changes in the expression
of 225 genes in strain J99 and 29 genes in strain BCM-300, altering bacterial adherence to
host cells, natural competence for DNA uptake, and bacterial cell shape (Table 1) [32].

In patients infected with CagA+ strains of Hp, the methylation level of several tumor-
suppressor genes was up to 300-fold higher than in non-infected individuals [33]. Silencing
of tumor-suppressor genes by methylation sensibly increases the risk of gastric cancer [33].
To study how Hp infection influences methylation, Mongolian gerbils (Meriones unguicu-
latus) were infected with Hp. At 50 weeks from infection, the animals displayed levels of
methylation up to 200-fold higher than controls [33]. Cyclosporine, which inhibits inflam-
mation but not bacterial replication, prevented methylation. This result demonstrated that
gene methylation is induced by Hp-infection-induced inflammation [34].

Hp and Epstein–Barr virus (EBV) share the property of inducing chronic inflammation
in the host, which favors the development of cancer. Gastric epithelial cells infected
with EBV, upon in vitro coinfection with Hp, display enhanced bacterial proliferation
and oncogenic activity, both mediated by the bacterial protein CagA. Hp-EBV coinfection
induces transcription of MTs, which silence tumor suppressor genes, causing altered cell
cycle, apoptosis, and DNA repair genes [35]. In conclusion, epigenetics and coinfection
are major areas to explore to define the role of Hp in the context of extragastric diseases,
including cancer.
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Table 1. Genes involved in the epigenetic control of expression levels in Hp patients.

Biological Function Gene ID Gene Name

Signal transduction
APC Adenomatous Polyposis Coli (APC)

Regulator of WNT Signaling Pathway

RASSF1A Ras Association Domain Family Member 1

Cell cycle regulation

CDH1 Cadherin 1

CHFR Checkpoint with Forkhead and Ring Finger
Domains

P14/ARF Cyclin-Dependent Kinase Inhibitor 2A

P15/INK4B Cyclin-Dependent Kinase Inhibitor 2B

P16/INK4A Cyclin-Dependent Kinase Inhibitor 2A

Inflammatory response COX-2 Mitochondrially Encoded Cytochrome C
Oxidase II

Apoptosis DAP-K Death-Associated Protein Kinase 1

DNA repair

GSTP1 Glutathione S-Transferase Pi 1

hMLH1 MutL Homolog 1

MGMT O-6-Methylguanine-DNA
Methyltransferase

Growth factor HPP1 Hyperpigmentation, Progressive, 1

Transcription factor RUNX3 RUNX Family Transcription Factor 3

Angiogenesis
THBS1 Thrombospondin 1

TIMP3 TIMP Metallopeptidase Inhibitor 3

9. Resistance to Pathogen May Be Ephemeral

This topic is rarely mentioned. To describe it, we refer to an iconic experiment known
as “one of the greatest natural experiments in evolution” [36]. Rabbits, introduced in
Australia by European settlers, caused serious economic and ecological damage. To control
the rabbit population, in 1950, the myxoma virus was released in Australia, and in 1952, it
was introduced in France, reaching the United Kingdom in 1953. In all three countries, a
rapid decrease in rabbit mortality was observed along with an increase in rabbit resistance
to the virus [36]. When resistance reduces the replication of the pathogen in the host rather
than inhibiting infection, selection may evolve into an increase in pathogen virulence [37].
In line with this theory, the decline in virulence that followed the virus release, was replaced
decades later by a highly virulent myxoma strain [38]. This classic experiment reminds us
that pathogens can become more virulent in response to increased resistance of the host,
unless genetic selection or vaccination completely inhibits transmission [39,40]. This is a
gentle reminder to the people responsible for the ongoing COVID-19 vaccination plans.

10. Potential Role of Hp against Inflammatory and Autoimmune Diseases

To establish chronic infection of the host, bacteria first need to modulate the immune
system of the host. The pathogen-associated molecular patterns (PAMPs) are molecules
common to a class of bacteria and recognized by pattern recognition receptors (PRRs)
such as Toll-like receptors. PRRS detect bacterial PAMPs and alert the innate immune
response. In addition to PAMPs, bacteria have also immunoregulatory molecules that
prevent bacterial clearance and enable chronic infection. Hp is particularly well-structured
to establish chronic infection that, in the majority of cases, remains asymptomatic. Further,
Hp protects the host against autoimmune diseases, asthma, and esophageal adenocarci-
noma [41]. Chronic colonization and protection of the host against several diseases suggest
that Hp might promote immune tolerance. This conclusion is validated by the evidence
that Hp induces the production of IL-10, a cytokine with anti-inflammatory activity that
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promotes immune tolerance and enables colonization of gastric mucosa [42]. Transforming
growth factor beta (TGF-β) controls inflammation induced by Hp and homeostasis through
CD4+, CD25+ regulatory (TREG cells). TGF-β secreted by CD4+ TREG cells modulates cy-
tokine production and the T cell immune response in lepromatous disease [43], Foxp3
gene expression, and TREG production [44]. Host colonization, tolerance induction, and
induction of immunoregulatory response require the role of the macrophage peroxisome
proliferator-activated receptor gamma (PPARγ), an anti-inflammatory transcription fac-
tor [45]. These results suggest that Hp might represent a suitable system to identify the
regulatory mechanisms controlling the host immune response [46].

Soon after infection, macrophages and dendritic cells undergo a drastic gene expres-
sion reprogramming, where interacting genes all express the same expression pattern
(all up- or all downregulated). The loss of a single gene interacting with immunity and
metabolism compromises the whole system. In particular, suppression or inactivation of
PPARγ results in stronger inflammatory responses, while activation or enhanced expression
of PPARγ leads to a more balanced response, maintained by activation of immunoregula-
tory pathways that control key metabolic events and limit the upregulation of inflammation
genes [42].

In vitro cocultures of a wild type or of PPARγ-deficient bone-marrow-derived macrophages
with live Hp identified several potential new immunoregulatory genes. One of them (Plexin
domain-containing 2; Plxdc2) was confirmed to play an immunoregulatory role in the Hp
infection, in a mouse model of inflammatory bowel disease, and potentially in other
inflammatory and autoimmune diseases [46].

11. Hp and Metabolic Diseases

Upregulation of TORC1, high levels of branched chain amino acids (BCAAs), inflam-
mation, and mitochondrial dysfunction characterize Hp infection [47–50]. The same traits
also characterize type 2 diabetes (T2D), obesity (OB), Alzheimer’s disease (AD), and car-
diometabolic disease (CMD) [51–53]. These results stimulated further work to determine
whether Hp has a role in these diseases [14]. The use of a conventional epidemiological
study was excluded since it would have required a very large number of Hp-infected
patients and as many controls. In addition, known and unknown confounding factors—in
particular, the presence of multiple Hp strains in the same patient, a frequent event with
Hp infections—would make the replication of results very difficult. An in vitro model of
Hp infection was chosen. The human gastric carcinoma cell line MKN-28 was incubated
for 2 h with Hp culture filtrate (Hpcf ). The cells were then analyzed using nuclear mag-
netic resonance (NMR) and polymerase chain reaction (PCR) array technology. In the
absence of inflammation, mTORC1 is under the control of C-MYC; while in the presence
of inflammation, it is instead under the control of HIF1α [54]. Upregulation of HIF1α and
mTORC1 (Table 2) indicates that MKN-28 cells, following incubation with Hpcf, display the
inflammatory phenotype. This conclusion is confirmed by the production of TNF-α and
Il-6 (Table 2). Mitochondrial dysfunction is documented by upregulation of the antioxidant
superoxide dismutase SOD2 (Table 2), as well as the high levels of amino acids, in particular
of BCAAs (Figure 1A). High levels of BCAAs are a trait common to all the four diseases
under investigation. These data allowed us to conclude that BCAAs are associated with
the four diseases, but are insufficient to attribute a causal role to BCAAs. Despite the clear
evidence that high levels of BCAAs anticipate T2D for many years, it is not yet known
whether BCAAs cause insulin resistance or T2D [55]. Wisely, at present, we classify BCAAs
as biomarkers of the four diseases.
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Table 2. Genes of mammalian Target of Rapamycin (mTOR) signaling, inflammatory, and oxidative stress pathways detected
by polymerase chain reaction (PCR) array technology and differently expressed in MKN-28 cells incubated with Hpcf for 1
or 2 h. Variation of gene expression levels is reported as fold regulation. Values > |2| are considered statistically significant
(Reprinted with permission from ref. [14]. Copyright 2021, Domenico Iannelli)).

Pathway Name Gene ID Gene Name Fold Regulation 1 h Fold Regulation 2 h

mTOR signaling
pathway

RPTOR Regulatory associated protein of mTOR
complex 1 −1.42 286.04

MLST8 mTOR associated protein, LST8 homolog (S.
cerevisiae) −1.42 398.95

AKT1 V-akt murine thymoma viral oncogene
homolog 1 −1.42 50.13

AKT2 V-akt murine thymoma viral oncogene
homolog 2 −1.42 504.97

INSR Insulin receptor −1.42 257.79

IRS1 Insulin receptor substrate 1 −1.42 278.22

PLD1 Phospholipase D1,
phosphatidylcholine-specific −6.31 130.70

RPS6KA2 Ribosomal protein S6 kinase, 90kDa,
polypeptide 2 −1.24 3.37

PDPK1 3-phosphoinositide dependent protein
kinase-1 −1.53 28.25

PIK3CB Phosphoinositide-3-kinase, catalytic, beta
polypeptide −1.42 16.34

PIK3CD Phosphoinositide-3-kinase, catalytic, delta
polypeptide 3.37 184.83

PIK3CG Phosphoinositide-3-kinase, catalytic,
gamma polypeptide −1.42 215.28

CHUK Conserved helix-loop-helix ubiquitous
kinase −4.08 181.03

EIF4E Eukaryotic translation initiation factor 4E −1.42 922.92

HIFIA Hypoxia inducible factor 1, alpha subunit 192.93 955.47

Inflammatory
pathway

CXCL8 Interleukin 8 −3.29 2.96

IL-6 Interleukin 6 14.45 114.56

TLR2 Toll-like receptor 2 58 72.18

TLR9 Toll-like receptor 9 3.29 134.55

TNF Tumor necrosis factor 12.9 154.26

Oxidative stress
pathway

ATOX1 ATX1 antioxidant protein 1 homolog (yeast) 3.57 37.69

GPX2 Glutathione peroxidase 2 (gastrointestinal) 3.57 37.69

GPX4 Glutathione peroxidase 4 (gastrointestinal) 3.57 37.69

GSS Glutathione synthetase 3.57 9.54

NOX5 NADPH oxidase, EF-hand calcium binding
domain 5 3.57 7.54

SOD1 Superoxide dismutase 1, soluble −28.68 −9.67

SOD2 Superoxide dismutase 2, mitochondrial 3.96 4.04
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often a means to update the genome [56]; if the environment changes, genes must also 
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Following incubation with Hpcf, MKN-28 cells show increased concentration of
BCAAs, while the extracellular medium shows reduced concentration of BCAAs (Fig-
ure 1A,B). Since both Hp and MKN-28 cells are auxotrophic for amino acids, it can be
deduced that the high levels of BCAAs detected in MKN-28 cells incubated with Hpcf
derive from depletion of the culture medium. Seemingly, it may be difficult to assume
that both Hp and humans have lost the genes coding for the synthesis of essential amino
acids. However, upon examination, the loss of genes makes sense. Humans obtain essential
amino acids from their diet and Hp finds them in its niche (the gastric mucosa). In this
context, the corresponding genes are no longer adaptive. Then, either the genes are lost
or undergo mutations and return adaptive, assuming a novel function. In short, gene
loss is often a means to update the genome [56]; if the environment changes, genes must
also change.

12. Conclusions

Several factors create challenges in identifying the genes that protect the host from
infection with Hp. Hp displays a high level of genetic recombination. Genetic differences
are observed even between single colonies from the same patient [8], making identification
of the genes that protect the host from infection with this pathogen difficult. This obstacle
can be bypassed by stratifying patients according to the infecting strain of the pathogen,
thus enhancing the power and replication of the study [26]. Second, scanning for single
nucleotide polymorphisms (SNPs) is generally not successful since genes rarely work
alone. This problem can be overcome by selecting genes that are members of the same
family [57] and therefore predisposed to cooperate. The study can be further improved by
analyzing both genes and metabolites. The approach combining genes and metabolites
was exploited in a study that included MyD88, TIRAP, and IL1RL1, members of the same
pathway, with the first two being physically associated [58]. Acting in concert, these genes
identified gene combinations protecting against Hp infection (OR: 0.10; P: 2.8 × 10−17),
while nuclear magnetic resonance (NMR) detected host pathways specifically deregulated
by Hp [59]. NMR distinguished Hp-infected patients heterozygous at the IL1RL1 locus (AC)
from those homozygous (AA and CC) on the basis of their metabolic differences. Further,
the probability calculation indicated that the odds of the above genotype distribution being
due to chance was 1.8 × 10−12. This result shows the under-appreciated opportunity
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offered by metabolomics to reach definitive conclusions when enrolling a small number of
patients [58]. The selective power of metabolomics has been confirmed by an independent
study [14].
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