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Abstract: Pyridine nucleotides such as a nicotinamide adenine dinucleotide (NAD) are known as
plant defense activators. We previously reported that nicotinamide mononucleotide (NMN) en-
hanced disease resistance against fungal pathogen Fusarium graminearum in barley and Arabidopsis.
In this study, we reveal that the pretreatment of nicotinamide (NIM), which does not contain nu-
cleotides, effectively suppresses disease development of Fusarium Head Blight (FHB) in wheat plants.
Correspondingly, deoxynivalenol (DON) mycotoxin accumulation was also significantly decreased
by NIM pretreatment. A metabolome analysis showed that several antioxidant and antifungal
compounds such as trigonelline were significantly accumulated in the NIM-pretreated spikes after
inoculation of F. graminearum. In addition, some metabolites involved in the DNA hypomethylation
were accumulated in the NIM-pretreated spikes. On the other hand, fungal metabolites DON and
ergosterol peroxide were significantly reduced by the NIM pretreatment. Since NIM is relative stable
and inexpensive compared with NMN and NAD, it may be more useful for the control of symptoms
of FHB and DON accumulation in wheat and other crops.

Keywords: nicotinamide; pyridine nucleotide; fusarium head blight; trichothecene mycotoxin; DNA
hypomethylation; antifungal compound; metabolomics

1. Introduction

Plants defend themselves against various pathogens by both of chemical and phys-
ical defense systems [1]. Antimicrobial compounds which accumulate due to pathogen
challenge are known as phytoalexins [2]. However, phytopathogens often overcome plant
chemical defenses and enter the plant tissue. Therefore, biochemicals such as pesticides
and fungicides are useful for the control of crop diseases [3,4]. However, the foods derived
from agrochemical-contaminated crops often present health hazards to humans and do-
mestic animals [5]. In addition, fungicide- and pesticide-resistant pathogen strains have
been widely reported [6]. Plant defense activators induce the plant’s immune response.
Probenazole is one such activator and can enhance resistance against rice blast fungus and
other diseases [7,8]. Additionally, both 2,6-dichloroisonicotinic acid (INA) and benzo (1,2,3)
thiadiazole-7-carbothionic acid S-methyl ester (BTH) are SA analogues which activate the
systemic acquired resistance (SAR) signal transduction pathway [9,10].

Among the various phytopathogens, certain fungal pathogens produce toxic sec-
ondary metabolites (mycotoxins) which are harmful to humans and domestic animals [11,12].
Fusarium species such as Fusarium graminearum infect the flowers of wheat and barley
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spikes, and most of them can produce trichothecene mycotoxins [13,14]. These fusarium
diseases are called Fusarium head blight (FHB). Commercial cultivars showing strong FHB
resistance are not available in wheat and barley [15]. Therefore, fungicides are usually
sprayed multiple times on their flowers [16]. However, pesticide-contaminated grains
are also toxic to humans and animals. Therefore, in the present research, we attempt to
identify useful natural products for the control of Fusarium head blight in cereal crops.
In a previous study, we found that nicotinamide mononucleotide (NMN), a precursor of
nicotinamide adenine dinucleotide (NAD), was highly accumulated in FHB-resistant barley
cultivars [17]. We also revealed that NMN acted as a plant defense activator in Arabidopsis.
Furthermore, the application of NMN was shown to enhance disease resistance against F.
graminearum and suppress deoxynivalenol (DON) mycotoxin accumulation in barley [17].
We also found that L-Thr can suppress trichothecene biosynthesis in F. graminearum [18].
Thus, these metabolites may be useful for the control of disease injury and mycotoxin
reduction in cereals.

Recently, extracellular nicotinamide adenine dinucleotide (eNAD) was shown to be
able to activate plant immune response by binding to plant receptors [19,20]. Therefore,
increasing the eNAD content was found to be effective in suppressing the disease resistance
of Arabidopsis to Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326) [21]. As stated
above, NMN also acts as a plant defense activator and enhances FHB disease resistance
in Arabidopsis and barley [17]. Since NAD and NMN contain the nucleotide, they are
relatively unstable and expensive to produce. Among these derivatives, nicotinamide,
which is stable and cheap, has antioxidant activity [22]. Therefore, herein, we examine
the effects of nicotinamide on the suppression of FHB in wheat plants. For this purpose,
we use a dwarf model wheat cultivar USU-Apogee that is susceptible to FHB. We reveal
that the application of nicotinamide is effective in suppressing FHB in wheat plants. A
metabolome analysis suggested that many defense-related metabolites were likely involved
in the NIM-induced FHB resistance.

2. Results
2.1. Disease Development of FHB in the Wheat Model Cultivar

Since the USU-Apogee is a dwarf wheat cultivar with a short life cycle, this cultivar
is useful for the study of FHB in wheat [23]. USU-apogee revealed the FHB susceptible
phenotype, which is similar to that of the known cultivar, Wheaton [23]. Therefore, we
used the USU-apogee to evaluate the effects of NIM and NMN on FHB resistance. We
monitored the spread of disease on the wheat spike after inoculation of F. graminearum.
Fungal conidia were sprayed onto spikes with open flowers, and then inoculated spikes
were kept in high humidity for two days. The disease symptoms appeared on the wheat
spikes at 3 days postinoculation (dpi) in the control treatment. Figure 1a,b show that the
symptoms of FHB disease became visible at 3 dpi in the flowerets of the control inoculated
spikes. As shown in Figure 1a, the rate of incidence at 3 dpi was only 5%, but this gradually
increased to 10% at 5 dpi in the control treatment. From 5 to 7 dpi, the rates of disease
incidence increased rapidly to about 26% in the control inoculated spikes. As shown in
Figure 1b, severe symptoms were observed only at 7 dpi in control spikes.

2.2. Nicotinamide Pretreatment Enhanced the FHB Resistance in Wheat Plants

In this study, we examined whether NMN and related metabolite NIM were effective
in suppressing the disease symptoms of FHB and DON accumulation in wheat spikes.
NIM does not contain any nucleotides, and is stable at room temperature. In addition,
the cost of NIM is significantly less than those of NMN and NAD. For this purpose,
solutions of NMN or NIM were sprayed onto the wheat spikes prior to inoculation of F.
graminearum. As shown in Figure 1a, the incidence rates of inoculated spikes by NMN-
and NIM-pretreatment decreased at 3 dpi in the water-pretreated control spikes. This fact
indicated that plant immune response had already been activated by NMN- and NIM-
pretreatment in the early stage of infection. Disease symptoms in the inoculated spikes
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after pretreatment with NMN and NIM gradually developed, and finally reached about
12% and 8%, respectively, at 7 dpi (Figure 1a,b). As stated above, the incidence rate in the
water-pretreated spikes was about 26%. Significant differences of disease incidence were
observed in NMN- and NIM-pretreated spikes compared with water-pretreated spikes; see
Figure la. This result clearly showed that both NMN and NIM are capable of inducing
plant defense response to suppress the development of FHB in wheat spikes. As previously
reported, NMN and NAD are effective at decreasing the symptoms of FHB disease in
barley and Arabidopsis. In addition, NMN and NIM application was also found to be
useful in controlling FHB disease in wheat plants. As stated above, although NIM did
not contain any nucleotides, significant suppression of FHB symptoms was observed in
NIM-pretreated wheat spikes. Since NIM has higher stability with lower cost compared
to pyridine nucleotides, NMN and NAD, it is potentially a more useful candidate for the
control of FHB.
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Figure 1. Disease incidence of Fusarium head blight (FHB) gradually increased from 3 dpi to 7 dpi. (a) The incidence of
FHB disease on spikes of wheat cultivar USU-Apogee from 3 to 7 dpi. These spikes were sprayed with water, NMN, or NIM
before inoculation. Each bar represents standard error (n = 12). Results of student’s t-test are shown: * p < 0.05, ** p < 0.01.
(b) Representative photographs of symptom development in the water-treated control spikes at 3, 5, and 7 dpi.

To further analyze the effects of NMN and NIM in the control of FHB, fungal gDNA
and DON accumulation in wheat spikes were measured. The DON accumulation was
sometimes not correlated with the severity of disease symptoms in wheat and barley [24].
Therefore, the measurement of DON accumulation was necessary to evaluate the efficacy
of the FHB control agents. Figure 2a shows that NMN and NIM pretreatment effectively
suppressed the disease symptoms at 7 dpi in wheat spikes. The ratio of the fungal gDNA
to the total gDNA in the control spikes was about 0.13%; however, those were apparently
decreased to 0.06% and 0.02% in NMN- and NIM-pretreated wheat spikes, respectively;
see Figure 2b. This result indicated that the NMN and NIM pretreatment effectively
suppressed the propagation of cells of F. graminearum in wheat spikes. In the control,
DON accumulated at more than 2 ppm at 7 dpi in the inoculated spikes; see Figure 2c. In
contrast, the NMN and NIM-pretreated spike exhibited the about 1 ppm and 0.35 ppm
DON accumulation, respectively. Thus, the propagation of pathogenic cells and DON
accumulation were reduced to one-sixth and one-fifth by NIM pretreatment. The effects of
NMN were similar, but slightly weaker, compared with NIM pretreatment. As mentioned,
both NMN and NIM pretreatment effectively suppressed the initial infections by 3 dpi; see
Figure 1a. Then, the increasing rates of disease incidence in the NMN- and NIM-pretreated
spikes were also lower than those of the water-pretreated control spikes at 3 and 7 dpi.
Therefore, the initial infection and development of FHB disease were effectively suppressed
by NMN and NIM application. Long term incubation after inoculation is important for
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the evaluation of FHB severity. Therefore, we examined the incidence rates of FHB disease
from 4 to 28 dpi in our inoculation system; see Figure S1. In our experimental condition,
the incidence rates reached about 100% at 12 dpi. However, the effects of NIM and NMN
were still observed at 12 dpi (Figure S2).
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Figure 2. Nicotinamide mononucleotide (NMN) and nicotinamide (NIM) pretreatment enhanced
disease resistance against F. graminearum in wheat spikes. NMN or NIM was sprayed onto spikes of
susceptible cultivar USU-Apogee before inoculation. A conidia solution with 1x10* conidia/mL was
applied to these spikes by spraying. (a) The representative photographs of inoculated spikes at 7 dpi
after water, NMN or NIM pretreatment. (b) The ratio of the fungal gDNA to the total gDNA in the
water-, NMN-, NIM-pretreated spikes were quantified by qPCR, (c) DON accumulations of water-,
NMN-, and NIM-pretreated spikes were measured. Each bar represents standard deviation (n = 12).
Student’s t-test: * p < 0.05, ** p < 0.01.

Furthermore, we examined the effects of NMN and NIM on two other Japanese
cultivars; see Figures S3 and S4. It is known that the FHB resistance of Harukirari and
Haruyutaka are intermediate and weak, respectively, among Japanese varieties [25,26].
The effects of NIM and NMN were also observed in two cultivars, although different
degrees of FHB resistance were observed among the two cultivars (Figures S3 and 54).
These results suggested that NIM and NMN may be useful to control FHB disease in many
wheat cultivars.

2.3. Effects of NMN and NIM Pretreatment on Pyridine Metabolites of Wheat Inoculated Spikes

As mentioned above, disease symptoms and DON accumulations were suppressed by
NIM and NMN pretreatment in wheat spikes. To examine the effects of these metabolites,
we investigated the amounts of NMN, NIM and related metabolites using LC-MS/MS.
We extracted the metabolites from inoculated spikes at 7 dpi with water, NMN, and NIM
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pretreatment. These extracted solutions were separated by UPLC and analyzed by MS
spectrometer (Orbitrap QE plus). As shown in Figure 3, we measured pyridine nucleotides
and related metabolites in these samples. The content of NMN was still significantly
accumulated in the inoculated spikes after seven days of NMN spraying. In contrast, the
NMN content was very low in the NIM- and water-pretreated leaves. This result showed
that NMN was still present after seven days of spraying and likely affected the defense
responses of wheat spikes. The contents of NIM and trigonelline (TRG) were slightly
elevated in the NMN-pretreated spikes. The NAD and nicotinic acid (NA) contents in
NMN-pretreated spikes were not different from those of the water-pretreated spikes. The
apparent increase by NMN pretreatment was observed only in NMN content among five
metabolites. NIM pretreatment caused a significant increase in not only NIM, but also TRG.
Since TRG is a pyridine alkaloid which acts as an antimicrobial compound, accumulation
of TRG likely contributed the enhanced FHB resistance in wheat spikes.
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Figure 3. Effects of nicotinamide mononucleotide (NMN) and nicotinamide (NIM) pretreatment on pyridine metabolites
in the wheat inoculated spikes. Relative amounts of metabolites NMN, NIM, nicotinic acid (NA), trigonelline (TRG), and
nicotinamide adenine dinucleotide (NAD*) were measured in water-, NMN-, and NIM-pretreated spikes based on the peak
area of their precursor ions. Each bar represents standard deviation. Student’s ¢-test: * p < 0.05, ** p < 0.01, n = 4-5.
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2.4. Differentially Accumulated Metabolites in the NMN- and NIM-Pretreated Spikes

We also performed comparative metabolome studies on water-, NMN-, and NIM-
pretreated spikes at 7 dpi. Many differentially accumulated metabolites were identified by
LC-MS/MS analysis. In Figure 4, volcano plots show differentially accumulated metabo-
lites by NMN and NIM pretreatment. These metabolites contained unspecified and re-
dundant ones. The red area indicates upregulated metabolites due to NMN or NIM
pretreatments (fold change > 1.5 and p value < 0.05); the green area shows downregulated
metabolites due to NMN or NIM pretreatment (Fold change < 0.67 and p value < 0.05).
It was found that 99 and 486 metabolites were up- and down-regulated, respectively, by
NMN pretreatment in inoculated spikes at 7dpi. On the other hand, NIM pretreatment
induced and reduced the contents of 375 and 1174 metabolites, respectively, in inoculated
spikes. Thus, the effects of NIM pretreatment on the metabolite profile were apparently
greater than those of NMN pretreatment.

-Lag 10 P-valug
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Figure 4. Volcano plots illustrate the distributions of quantified metabolites in the nicotinamide mononucleotide (NMN)-
and nicotinamide (NIM)-pretreated spikes at 7 dpi. The results of (a) NMN- and (b) NIM-pretreated spikes are shown. The
vertical-axis is the —log10 of the p-value and the horizontal-axis is log2 of fold change of NMN- or NIM-pretreated spikes
compared to the control ones. Cutoff values of fold change and p-value were 1.5 and 0.05, respectively. The dots indicate
detected metabolites containing the unidentified and redundant ones. Red squares indicate significantly accumulated

metabolites, while green squares show significantly reduced metabolites.

Next, we checked the properties of each differentially regulated metabolite by NMN
or NIM pretreatment. These metabolites were classified into three groups: (a) highly
accumulated in the NIM-treated spikes; (b) highly accumulated in the NMN-pretreated
spikes; and (c) reduced metabolites in the NMN- and NIM-pretreated spikes. Figure 5
shows the representative metabolites in each group. Antibiotics, as noted in Figure 5a,
were highly accumulated in the NIM-pretreated spikes after inoculation of F. graminearum.
Bacancosin is a plant saponin, i.e., a natural detergent which is harmful to the membranes of
microbials [27]. Both debromohymenialdisine and buchananine are classified as alkaloids,
most of which have antimicrobial activities [28]. It has been reported that buchananine
is an antifungal compound [29], although large variation was observed in its content in
NIM-pretreated spikes. Sulfamethazine has also been reported as an antimicrobial com-
pound [30]. On the other hand, cyclo-Dopa 5-O-glucoside may act as a ROS scavenger [31].
DIMBOA-glucoside is likely related to defense signaling [32]. As shown in Figure 5b,
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cystothiazole A and picolinic acid are specifically accumulated by NMN-pretreatment. It
has been reported that cystothiazole A has antifungal activity to Phytophthora capsica [33].
The fold increase of picolinic acid content by NMN-pretreatment was not large, but was
statistically significant. Picolinic acid is known as an inducer of plant defense response
against Magnaporthe oryzae [34].
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Figure 5. Representative differentially regulated metabolites by nicotinamide mononucleotide (NMN)
and nicotinamide (NIM) pretreatment in inoculated spikes at 7 dpi. (a) Metabolites significantly
accumulated by NIM pretreatment, (b) metabolites significantly accumulated by NMN pretreatment,
and (c) metabolites significantly reduced by NIM pretreatment. The peak areas of the vertical axis
show the abundance of each metabolite. (1) Buchananine was more than 1.5-fold more accumulated
without statistical significance in NIM-pretreated spikes. (2) Picolinic acid was significantly accu-
mulated in the NMN-pretreated spikes with a less than 1.5-fold change. Each bar represents one
standard deviation (n = 4-5). Student’s t-test: * p < 0.05, ** p < 0.01.

As shown in Figure 5¢, two fungal metabolites are reduced by NMN- and NIM-
pretreatment. As stated above, DON was significantly decreased in the NIM-pretreated
spikes. Correspondingly, derivatives of ergosterol, which is specifically found in the fungal
membrane, were also shown to be significantly decreased in the NIM-pretreated spikes.
These results also support the hypothesis that FHB disease and mycotoxin accumulation
can be significantly suppressed by NIM pretreatment.
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3. Discussion

Many natural products have been put forward as candidates to control FHB resistance
and mycotoxin accumulation in wheat and barley. Some antifungal compounds have been
proposed as potential FHB control agents. The plant alkaloid antofine was shown to have
antifungal activity, and significantly suppressed the development of F. graminearum at 150
ug/mL concentration in wheat spikes [35]. In this study, we also identified three alkaloids,
TRG, buchananine, and debromohymenialdisine, that were highly accumulated in the
NIM-pretreated spikes in comparison with control spikes. Since both TRG and buchanaine
are pyridine alkaloids, the application of NIM likely contributed to their accumulation.
It has been reported that high nitrogen causes TRG accumulation in tomato leaves and
enhances resistance against the fungal pathogen, Fusarium oxysporum [36]. In addition, the
application of TRG to the leaves of barley plants reduced disease symptoms due to powdery
mildew up to 56% [37]. Buchananine was shown to possess broad antibacterial activity
against eight out of the ten bacteria species examined [38]. Therefore, these metabolites
likely play roles in FHB resistance in wheat plants.

Debromohymenialdisine was reported as an effective insecticidal compounds [39]. As
stated above, bacancosin is a plant saponin which is harmful to microbial membranes [27].
Sulfamethazine also has antimicrobial activities [30]. Thus, the accumulation of these
antimicrobial compounds in NIM likely plays an important role in enhancing FHB disease
resistance in wheat spikes.

It is known that NIM has antioxidant activity relative to abiotic stress in plants [22,40].
Similarly, we previously reported that NMN pretreatment decreased the ROS accumulation
in Arabidopsis leaves inoculated with F. graminearum [17]. On the other hand, DNA
hypomethylation effects by NIM have been reported in plant cells [22]. It has also been
reported that TRG application reduces DNA methylation in barley and enhances disease
resistance to powdery mildew [37]. In general, DNA hypomethylation is related to the
activation of gene expression [41]. Furthermore, sulfamethazine, which is a pyrimidine,
suppresses epigenetic silencing through DNA methylation [42]. Thus, these metabolites,
including NIM itself, likely cause DNA hypomethylation and the activation of immune
response genes. DIMBOA-glucoside has been reported as an anti-insect compound in
plants [43]. In addition, DIMBOA-glucoside was found to be accumulated in the MPKe6-
overexpressed of Zea mays [44], suggesting that production of DIMBOA-glucoside was
regulated by the MAPK-dependent defense signaling pathway. Interestingly, it has been
reported that DIMBOA suppressed the expression of trichothecene biosynthetic genes
in F. graminearum [45]. Mycotoxin production was shown to be significantly suppressed
without disturbing fungal growth [45]. In this study, we did not detect DIMBOA in all
wheat samples (data not shown). Thus, NIM and other metabolites have antioxidant and
DNA hypomethylation activities, and these activities were likely involved in the observed
enhanced FHB resistance in wheat spikes. However, we should experimentally confirm the
occurrence of hypomethylation by NIM treatment in a future study.

As shown in Figure 5b, two metabolites were specifically accumulated in the NMN-
pretreated spikes. Cystothiazole A has antifungal activity against a broad range of mi-
croorganisms including Aspergillus fumigatus, Botritys cinerea and Phytophora capsici [33].
Cystothiazole A is a bithiazole which inhibits respiration, since it interferes with NADH
oxidation [33]. The application of picolinic acid at low concentrations stimulates antiox-
idative response, resulting in a decrease of blast symptoms in rice [34]. Therefore, these
metabolites are at least partially involved in FHB resistance due to NMN.

We also identified two fungal metabolites which were significantly decreased in the
NIM-pretreated spikes (Figure 5c). Such differences were also observed in the NMN-
pretreated spikes, but there were not significant. A significant decrease in DON accumula-
tion was confirmed in NIM-pretreated spikes by LC-MS/MS analysis (Figures 2c and 5c¢).
Ergosterol peroxide is a derivative of ergosterol that is specifically observed in the mem-
brane of fungal cells [46]. A significant reduction of ergosterol peroxide was observed
in the NIM-pretreated spikes, indicating that the amounts of fungal cells therein were
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apparently decreased (Figure 5c). This result is consistent with the quantification of fungal
gDNA (Figure 2c). Taken together, NIM pretreatment effectively suppressed the progres-
sion of fungal cells and the production of mycotoxin in inoculated spikes. Our identified
metabolites support the hypothesis that NIM is a useful candidate to control FHB disease
in wheat and other crops.

Other natural FHB control agents have been reported. For example, tannic acid
is a plant polyphenol which inhibits conidia germination and mycelium growth of F.
graminearum [47]. The application of tannic acid was found to reduce disease severity and
DON in spikes of wheat cultivar USU-Apogee [47]. Similar effects were observed in a
field test with artificial inoculation of F. graminearum [47]. Recently, it was reported that
the application of chitosan hydrochloride derived from chitin suppressed the severity of
FHB and DON accumulation in wheat spikes. In addition, chitosan treatment activated the
SAR signaling pathway and caused induction of some defense genes in wheat spikes [48].
Additionally, some natural products have been identified as inhibitors of trichothecene
biosynthesis in F. graminearum. The glutamine analogue, acivicin, suppressed the expression
of Tri4, Trib, and Tri6 genes and reduced mycotoxin production in the medium [49]. In
addition, the amino acid L-Thr also suppressed trichothecene mycotoxin production in
the medium and host plants [18]. Since these inhibitors of trichothecene biosynthesis
exhibited different effects compared to NIM and NMN, additive effects can be expected,
which may be useful for controlling FHB disease symptoms and mycotoxin accumulation
in wheat spikes. Therefore, we will perform field inoculation tests using such mixtures in
the near future.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Wheat plants (Triticum aestivum) cultivar USU-Apogee were used in this study [23].
The seeds were sown on filter paper supplied with water for two days in constant darkness
at 22 °C. The germinated seedlings were then transferred to soil and grown in a growth
chamber at 22 °C in a 16h light/8h dark illumination cycle (about 35,000 lux).

4.2. Pretreatment of Compounds and Fungal Inoculations

Fusarium graminearum strain H3 was used for the inoculation assay [17]. Fungal stocks
were cultured on a potato dextrose agar (PDA) plate and stored at 4 °C. We prepared the
conidia solution as previously described [50].

Pretreatments of chemicals were performed three days and 4 h before inoculation,
as described previously [17]. NMN (Chombi-block Inc., San Diego, USA) and NIM (TCI
Co., Ltd., Tokyo, Japan) was dissolved with sterile distilled water at a concentration of
10 mg/mL (10,000 ppm) and kept at —20 °C. The working concentration was 500 ppm with
0.01% (v/v) silwet L77. Twelve plants were used for each chemical treatment.

Spray inoculations with F. graminearum were performed using flowering wheat spikes.
The concentration of conidia solution was adjusted to 1 x 10 conidia/mL in 1x PBS with
0.001% (v/v) silwet L77, and was then applied to wheat spikes by spraying [17]. Inoculated
wheat spikes were placed in a container with water and covered using plastic wrap to
maintain high humidity. Then, inoculated spikes were incubated at 22 °C with low light
intensity. At 2 dpi, the plastic wraps were removed. The inoculated spikes were incubated
for an additional five days (total seven days after inoculation).

4.3. Evaluation of Disease Incidence Rates

The effects of NMN and NIM on FHB resistance were evaluated by the rate of disease
incidence in the inoculated wheat spikes. The rate of disease incidence showed the ratio of
the diseased florets to total florets in each spike [23]. Brown or premature bleaching in the
single floret was counted as evidence of disease [51].
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4.4. The Quantification of Fungal gDNA

Inoculated wheat spikes were crushed to obtain a fine powder using stainless beads
and shake master neo (Bio Med. Sci., Tokyo, Japan) at 1500 rpm for 2 min with liquid
nitrogen cooling. The genomic DNAs were isolated from about 70 mg fine powder using a
Maxwell RSC Purefood GMO and Authentication Kit (Promega, Madison, WI, USA) with
Maxwell RSC instrument (Promega, Madison, WI, USA). The quantities of F. graminearum
gDNA and wheat gDNA in inoculated spikes were determined by qPCR using a AriaMx
Real-Time PCR system (Agilent Tech., Santa Clara, CA, USA) with the reagent of 2x Bril-
liant III Ultrafast SYBR Green (Agilent Tech., Cedar Creek, TX, USA). For the quantification
of F. graminearum gDNA, the F. graminearum EF-1a gene was amplified [17]. To quantify
wheat gDNA, T. aestivum a-tubulin gene was amplified, as previously described [52].

4.5. Quantification of DON Accumulation

DON accumulation in wheat spikes was measured from 10 mg of fine powders using
QuickScan DON3 (Envirologix, Inc., Portland, ME, USA). Five hundred microliters of sterile
water was added to the fined powders. This were then vortexed at room temperature for
one minute. Supernatants of samples were collected by centrifugation (5000 rpm) at room
temperature for 10 min. The DON accumulation in 200 pL supernatant was measured
using Envirologix QuickScan System (Envirologix, Inc., Portland, ME, USA) following the
manufacturer’s instructions.

4.6. Extraction of Metabolites

The extraction of metabolites was conducted as previously described [53]. Briefly,
50 mg samples were measured and resuspended by vortex with 250 pL of precooled 80%
(v/v) methanol containing 0.1% (v/v) formic acid. The samples were chilled on ice for
5 min and then centrifuged at 15,000 rpm for 5 min at 4 °C. Two hundred microliters
of the supernatants was transferred to new tubes and diluted to a 53% (v/v) methanol
concentration using water. Subsequently, the samples were centrifuged at 15,000 rpm at
4 °C for 10 min. The supernatants were transferred to vials for UHPLC.

4.7. UHPLC-MS/MS Analysis

An Ultimate 3000 UHPLC system (Thermo Fisher Scientific, San Jose, CA, USA) cou-
pled with Orbitrap Q Exactive Plus (Thermo Fisher Scientific, San Jose, CA, USA) was used
to analyze the metabolites. The separation of metabolites using UHPLC conditions was as
follows: mobile phase A contained 0.1% (v/v) Formic acid and 5 mM ammonium acetate at
pH 9.0 in water, while mobile phase B comprised 99.7% methanol. The extraction solutions
were injected into the reverse phase column, Hypersil GoldColumn (100 x 2.1 mm with
1.9 um particle size). The injection volume was 10 p, the flow rate was 0.25 mL/min, and
the column temperature was 20 °C. The gradient conditions were as follows: 0 min, 98%
A and 2% B; 1.5 min, 98% A and 2% B; 12 min, 0% A and 100% B; 14 min 0% A and 100%
B; 14.1 min 98% A and 2% B; 17 min 98% A and 2% B. The Orbitrap Q Exactive Plus mass
spectrometer was operated in positive polarity mode with 3.2 kV of spray voltage. The
capillary temperature was 320 °C; the temperature of the autosampler was 10 °C; 35 arb
and 10 arb were the sheath gas flow rate and auxiliary gas flow rate, respectively [53].

4.8. Analysis of Metabolome Data

Compound discoverer v.3.1 (CD 3.1, Thermo Scientific, San Jose, CA, USA) was used for
mass spectrometry data acquisition [53]. The settings were as follows: 5 ppm mass tolerance,
30 signal of intensity tolerance, and 1,000,000 of minimum peak intensity [54]. The annotations
of metabolites were generated using ChemSpider (http://www.chemspider.com/) (accessed
date: 29 January 2021) database, which consisted of integrating data from the Aracyc,
Biocyc, KEGG pathways, mzVault, and mzCloud databases. Differentially accumulated
metabolites by chemical treatments were selected with p-value < 0.05, fold change > 1.5
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and < 0.667. Volcano plots were generated to show the distribution of differentially
accumulated metabolites.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/6/2968/s1, Figure S1: Incidence rates of FHB disease in wheat cultivar USU-Apogee from
4 to 28 dpi, Figure S2: FHB disease of wheat spikes was suppressed by NMN and NIM pretreatment
at 12 dpi, Figure S3: NIM and NMN effectively suppressed FHB disease in wheat spikes cultivar
Haruyutaka at 5 dpi, Figure S4: FHB disease was suppressed by NIM- or NMN-pretreatment in
wheat cultivar Harukirari at 10 dpi.
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