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Abstract: The relationship between protein motions (i.e., dynamics) and enzymatic function has
begun to be explored in β-lactamases as a way to advance our understanding of these proteins. In
a recent study, we analyzed the dynamic profiles of TEM-1 (a ubiquitous class A β-lactamase) and
several ancestrally reconstructed homologues. A chief finding of this work was that rigid residues
that were allosterically coupled to the active site appeared to have profound effects on enzyme
function, even when separated from the active site by many angstroms. In the present work, our aim
was to further explore the implications of protein dynamics on β-lactamase function by altering the
dynamic profile of TEM-1 using computational protein design methods. The Rosetta software suite
was used to mutate amino acids surrounding either rigid residues that are highly coupled to the
active site or to flexible residues with no apparent communication with the active site. Experimental
characterization of ten designed proteins indicated that alteration of residues surrounding rigid,
highly coupled residues, substantially affected both enzymatic activity and stability; in contrast,
native-like activities and stabilities were maintained when flexible, uncoupled residues, were targeted.
Our results provide additional insight into the structure-function relationship present in the TEM
family of β-lactamases. Furthermore, the integration of computational protein design methods
with analyses of protein dynamics represents a general approach that could be used to extend our
understanding of the relationship between dynamics and function in other enzyme classes.

Keywords: protein dynamics; allostery; molecular dynamics; protein engineering; β-lactamases

1. Introduction

Since the 1940s, β-lactam antibiotics, which target a key enzyme in bacterial cell wall
biosynthesis, have been the antimicrobial weapon of choice in the war against bacterial
infection [1]. The widespread use of β-lactams is likely a consequence of the fact that
they are inexpensive to produce and have historically been effective in treating most
infections. However, as the use of this class of antibiotics became more widespread, so
too did the prevalence of β-lactamase enzymes, which hydrolyze the β-lactam ring and
render the antibiotic nonfunctional [1]. Additionally, as new β-lactam antibiotics enter
into clinical use, the remarkable adaptivity of β-lactamases complicates efforts to develop
novel antibiotics that are resistant to degradation by this class of enzyme [2]. The TEM
family of β-lactamases has been thoroughly studied to gain insight into the manner in
which resistance is achieved [3–7]. Despite these efforts, we currently possess an incomplete
understanding of the relationship between sequence and function in this enzyme class.
A major challenge is that several mutations have been identified that have a significant
influence on function, but which are highly distal from the enzyme active site [8]. In
addition, even single point mutations (e.g., the well-characterized, M182T substitution),
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which have minimal effects on enzymatic function can drastically affect the protein’s
thermostability [9,10]. Our inability to rationalize the manner in which these thoroughly
studied mutations alter enzyme function is suggestive of an incomplete understanding of
the sequence-function relationships present in β-lactamases. This in turn limits our ability
to develop novel classes of antibiotics that are not substrates for these enzymes [11].

A possible explanation as to how mutations distal to the active site can still exert
influence at a great distance is that they serve to reshape the inherent dynamics of the
enzyme [12–20]. In a recent study, we explored this hypothesis in the TEM-1 β-lactamase
using two in silico, dynamics-based metrics: the dynamic flexibility index (dfi) [16,21],
which measures the mobility of each residue, and the dynamic coupling index (dci) [17,22],
which assesses the coupling between distant residues [15]. Using these two metrics, we
characterized TEM-1 and a set of ancestrally reconstructed TEM-1 variants that possess
vastly distinct physical properties (i.e., thermostabilities) and functions (i.e., substrate speci-
ficity) despite having almost identical conformations [15,23–25]. A major finding of our
previous study was that TEM-1 and its ancestral homologues possessed distinct dynamic
profiles and that these differences in dynamics appeared to have profound effects on en-
zyme function. Namely, rigid residues that are distal from, but highly coupled to, residues
in the active site appeared to have substantial effects on protein function [19,20,22,26].
One intriguing hypothesis that might explain these data is that rigid residues can serve as
“hubs” of dynamic communication. This notion has also been validated in the context of
disease-causing mutations in other proteins, ref. [27] in which mutations to rigid residues
that are far from the active site are functionally deleterious [19,20,28,29].

More recently, we used both dfi and dci to analyze members of the TEM family that
either arose in the clinic or were generated via directed evolution [19]. In this study, we
observed that mutations known to confer resistance to non-native substrates (1) often occur
at particularly rigid residues as judged by our dfi metric and (2) appear to allosterically
modify the flexibility of catalytic residues within the active site as suggested by our dci
metric [19]. Collectively, these studies support the hypothesis that rigid residues are of
particular importance to the overall dynamics of proteins and may have a substantial impact
on protein function if they are allosterically coupled to the active site. If our hypothesis is
correct, mutations that alter the identity of allosteric rigid residues (or those in their vicinity)
could have substantial effects on enzyme activity; however, the ability to thoroughly explore
this hypothesis is challenging. Although extensive datasets comprised of clinically derived
TEM family variants [30] and additional variants generated via directed evolution [25]
exist, the serendipitous identification of proteins with multiple mutations in the vicinity of
known rigid residues would be unlikely. One potential solution is to use computational
protein design methods to specifically target mutations to regions of interest. A major
benefit of this approach is the ability to “pre-screen” each combination of mutations in silico
to exclude variants in which protein folding is not predicted to be energetically favorable.

In this work, computational protein design methods were used to alter the environ-
ments surrounding two residues that were identified as being rigid and highly coupled
to the active site despite being separated from it by a great distance. Dynamic profiles
of each designed protein (hereafter referred to as a “design”) were then generated and
compared to that of an ancestrally reconstructed variant of TEM-1 (the “Gram-negative
common ancestor” or GNCA), which possesses increased thermostability, but reduced
activity against ampicillin relative to wild type TEM-1 [23]. Principal component analysis
(PCA) was used to identify designs with dynamic profiles that were predicted to be more
similar to GNCA than extant TEM-1, and five designs were characterized in the laboratory.
All designs exhibited reduced activity against ampicillin relative to TEM-1, but an increase
in thermostability was also observed. Reduced activity against ampicillin and increased
thermostability relative to TEM-1 are both features of GNCA. Alternatively, when identical
design protocols were applied to flexible residues that were not coupled to the active site,
native-like catalytic abilities and thermostabilities were maintained. Finally, in an effort
to further link dynamics to enzyme function, we developed a novel analytical approach
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termed the “dynamic distance analysis” (dda) that was applied retrospectively to our
experimentally characterized proteins. The dda analysis appeared to capture functional
differences between our designed proteins and could be a useful tool for dynamic profile
analysis in future studies. Collectively, our results serve to further highlight the importance
of allosteric rigid residues in regulating the dynamics of the TEM-1 β-lactamase.

2. Results and Discussion
2.1. Computational Analysis Using dfi and dci

Our efforts to better understand the relationship between protein dynamics and func-
tion began by identifying a TEM-1 variant that could serve as a basis of comparison to the
wild type protein. Recently, the putative sequences of ancestral TEM-1 were predicted using
Bayesian bioinformatics [23]. Three ancestral TEM family homologues (the Gram-negative
and Gram-positive common ancestor, PNCA; the Gram-negative common ancestor, GNCA,
and enterobacteria common ancestor, ENCA) were observed to possess distinct physical
and biochemical properties when characterized in the laboratory [23]. This is likely a conse-
quence of the fact that these proteins are thought to have existed at different times in the
evolutionary history of this enzyme [23]. We chose to focus our efforts on the ancestral
homologue GNCA because its properties differ more substantially from TEM-1 than the
other variants. Despite sharing > 50% identical residues (Figure 1A), nearly identical folds
(1.3 Å root-mean-square deviation (RMSD) over all Cαs, Figure 1B), and conserved catalytic
residues (Figure 1C), GNCA unfolds at a temperature that is ~35 ◦C higher than wild type
TEM-1. Furthermore, GNCA appears to be a “substrate generalist” in that it possesses
measurable (but reduced) activity against penam antibiotics (e.g., penicillin) relative to
TEM-1, while simultaneously possessing a far greater ability to degrade cepham antibiotics
(e.g., cefotaxime) [23].
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Figure 1. Differences in sequence and structure between TEM-1 and its ancestral variant GNCA.
(A) Sequence alignment (Ambler numbering) [31] of TEM-1 and GNCA shows a 54% sequence
identity; conserved active site residues are highlighted in red boxes. (B) The crystal structures of
TEM-1 (PDB ID: 1btl, green [32]) and GNCA (PDB ID: 4b88, cyan [33]) are superimposed and the
catalytic residues are shown as sticks within a red box. The low root-mean-square deviation (RMSD)
indicates a high conservation of structure. (C) Active site residues in TEM-1 and GNCA are shown in
green and blue sticks, respectively.
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It is difficult to rationalize the substantial differences in function and stabilities that
are observed in GNCA and TEM-1 in light of the high sequence identity and structural
similarities that exist for these proteins. Previous studies in our laboratory [15,19] suggested
that the inherent dynamics of both TEM-1 and GNCA might play a role in regulating their
functions. To further explore this, we analyzed the dynamic profiles of both proteins using
two metrics developed in our group: The Dynamic Flexibility Index (dfi) and the Dynamic
Coupling Index (dci). The dfi method [28,29,34] is based on Linear Response Theory and
Perturbation Response Scanning [35] and calculates the resilience of a given residue to
random force perturbations applied to other residues in the protein. A given amino acid’s
dfi value is therefore related to the relative conformational entropy (i.e., flexibility) of that
residue with respect to the rest of the protein. A high dfi value indicates high flexibility;
conversely, a low dfi value indicates rigidity. The dci metric [17,19] is derived from the
same theoretical origin as dfi and is used to quantify the degree to which two residues
are dynamically coupled in terms of correlated motions. A high dci value between a pair
of residues that do not interact directly indicates allosteric coupling and suggests that a
perturbation to one residue will be transmitted to the other even over long distances. A low
dci score implies a weak coupling between a residue pair, and no strong communication
channel between them is expected.

When we applied the dfi and dci analyses to extant TEM-1 and a set of reconstructed
ancestral homologues including GNCA [15,19], our analyses indicated that rigid residues
(i.e., those with low dfi scores) that are highly coupled to the active site can contribute
substantially to protein function. In this study, we hoped to further explore the importance
of rigid residues to protein function by altering the identity of amino acids in their vicinity.

We selected two residues in TEM-1 (V44 and V262) as targets for our study. Not only do
both residues have low dfi scores (%dfi value < 0.2) (Figure 2A), but they are highly coupled
to the active site (%dci > 0.7) (Figure 2B). These two residues were of particular interest
to us because they are over 10 Å away from the active site and are located on adjacent
β-strands with side chains facing opposite domains. We also identified three distal, flexible
residues in TEM-1 (K55, P226, and K256) with high dfi scores (%dfi > 0.8) (Figure 2A) and
low coupling to active site residues as evaluated by the dci metric (%dci < 0.4) (Figure 2B)
and over 10 Å away from the active site to serve as controls. Alteration of the protein
environments surrounding allosteric rigid residues would be expected to substantially
modify protein function if our hypothesis is correct. Alternatively, modification of amino
acids surrounding flexible residues with low dynamic coupling to the active site would
be expected to result in proteins with native-like functions. All of the allosteric rigid and
uncoupled flexible residues we targeted for design are over 10 Å from the nearest catalytic
residue, which suggests that mutations in their vicinities should only have an indirect
effect on the active site unless other factors (e.g., dynamic coupling) are at play.

2.2. Computational Design of TEM-1 Variants

In order to alter the amino acid compositions surrounding both the rigid and flexible
residue positions, we used the Rosetta computational protein design suite [36]. The Rosetta
software employs a Monte Carlo sampling protocol to randomize the identity and confor-
mation (rotamer) of a randomly chosen residue; the fitness of the mutated protein is then
assessed using the Rosetta energy function [37]. In the course of a single design trajectory,
the Monte Carlo sampling algorithm is applied iteratively to a set of user-defined residues
(see below).

We sought to develop a computational protocol within Rosetta that would substan-
tially alter the chemical properties of the native amino acids without negatively affecting
the protein’s ability to fold. To do this, the RosettaDesign algorithm [38] was used to
randomly mutate residues within “design spheres” that had radii from 8–12 Å surrounding
each of the target residues (Figure 3A). Slight alterations to the conformation of the peptide
backbone were allowed only for residues that fell within the design sphere. A second shell
was also defined that extended 4 Å beyond the inner design sphere. Residues in this shell
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were precluded from mutating but were energetically minimized in the context of adjacent,
mutated residues. Independent design trajectories were carried out for all rigid and flexible
residues. The two rigid (V44 and V262) and three flexible (K55, P226 and K256) residues
that served as targets for our studies were also prohibited from mutating during the design
calculations (Figure 3B). Finally, catalytic residues (S70, K73, S130, E166, K234) were also
maintained as their native identities and conformations during the design process. The
designed proteins contained between two and eleven mutations with an average of seven
mutations per protein. Ultimately, 64 unique designed proteins were generated using
this approach.
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2.3. Selection of the Designed Proteins Using Flexibility Profiles

To assess how the computationally designed mutations affected TEM-1 dynamics, we
subjected all designed proteins to a 1 µs molecular dynamics (MD) simulation followed by
analysis using the dfi metric (Figure 4A). In order to rapidly compare the dfi profiles of our
designed proteins to those of TEM-1 and GNCA, we used a 2D principal component analy-
sis (PCA). The PCAs both simplified our data and allowed for the facile visualization of
relationships between the calculated dynamic profiles of the designed proteins (Figure 4B).
PCAs generated from our rigid designs showed a diverse distribution in both the first and
second principal components (Figure 4C). On the PCA, several designed proteins were
positioned relatively closer to GNCA in both components. We chose a subset of five such
designs in which the allosteric rigid residues had been targeted (henceforth referred to as
“rigid designs”) for experimental characterization (Figure 4C). Four of the five rigid designs
(Rdg44b, Rdg44c, Rdg262a, and Rdg262b, where the number in each name corresponds to
the rigid residue that was targeted in the design calculations) clustered slightly away from
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TEM-1 and towards GNCA on both axes of the PCA; alternatively, Rdg44a, clustered near
GNCA on the first principal axis but appeared as an outlier on the second axis. We hoped
that experimental characterization of Rdg44a might help elucidate the parameters captured
in each of the two principal components. It should be mentioned that only four among the
five rigid designs that were chosen for characterization had Rosetta scores that were lower
(lower Rosetta scores imply lower energies) than TEM-1. The Rosetta score of Rdg262a was
higher than TEM-1, but we selected this design for experimental characterization due to
the fact that it clustered near GNCA in both axes of the PCA.
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given residue (V44 in this example) are considered as candidates for mutation. (B) A combination
of mutations surrounding the target residue are generated using the RosettaDesign algorithm and
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(B) indicates that this design protocol creates a diversity of mutations within the design sphere while
leaving active site residues untouched. The target rigid residue (V44) is shown as a white sphere in
both panels. Both catalytic and designed residues are shown as sticks.

To analyze the designed proteins in which flexible, uncoupled residues were targeted
(henceforth referred to as “flexible designs”), we generated a PCA in which all flexible
design candidates were compared to TEM-1, GNCA and all the rigid designs including
those that were not selected for characterization (Supplementary Figure S1). Although a
wide distribution of flexible designs was observed in this PCA, many of them clustered
near TEM-1; a smaller subset clustered near the rigid designs we previously selected for
characterization. In an effort to avoid biases that might have arisen if we chose only flexible
designs that clustered with TEM-1 for analysis, we opted to experimentally characterize
four flexible designs (Flx226a, Flx226b, Flx226c and Flx55) that clustered near the rigid
designs chosen for experimental characterization and only one (Flx256) that clustered
near TEM-1 (Supplementary Figure S1). Although clustering in similar locations in the
PCA would suggest that the two proteins should have similar properties, it is difficult
to infer what feature is represented on each axis of the PCA. We hoped that the diverse
selection of proteins chosen for characterization would therefore provide information
regarding whether rigid residues serve as hubs of dynamic control and also whether or
not the PCA is a useful metric for discriminating between proteins with different activity
and thermostabilities.

2.4. Experimental Analysis of the Designed Proteins

As GNCA and TEM-1 differ substantially with respect to thermostability (90.3 ◦C and
56.4 ◦C, respectively) and activity against penam β-lactam antibiotics (GNCA is ~2 orders
of magnitude less efficient at degrading ampicillin than TEM-1), we chose to focus our
analyses of the designed proteins on these characteristics. To do this, genes encoding each of
the selected rigid and flexible designs were first cloned into the pET29b expression plasmid.
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Sequenced confirmed plasmids were transformed into a BL21 Star (DE3) Escherichia coli
expression strain in preparation for further analyses.
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of TEM-1 (green), GNCA (orange) and variant Rgd44c (purple); Rdg44c is chosen as an example
for illustrative purposes. (B) Portions of the full dfi profile of each protein (A) are expanded to
highlight dynamic differences between the three proteins. A shift towards a GNCA-like dfi profile is
an indication of a change in dynamical characteristics of a protein. (C) Principal Component Analysis
(PCA) of the rigid designs. The first (x-axis) and second (y-axis) principal components have weights
of 3.5 and 2.7, respectively. Designs chosen for experimental characterization are highlighted using
darker colors and labeled with the design name.

We assessed the resistance of our designed proteins to penam β-lactams by establish-
ing the minimal inhibitory concentration of ampicillin (MICamp) for each of our designed
proteins using the protocol of Wiegand et al. [39]. (See Materials and Methods for detailed
protocols). Briefly, BL21 Star (DE3) cells harboring a pET29b plasmid that contained a
gene encoding one of our variants were grown in a liquid medium containing a range of
ampicillin concentrations and 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), which
induced overexpression of our TEM-1 variants. The ability of cells to grow at each ampi-
cillin concentration was determined by measuring the optical density at 600 nm (O.D.600);
the lowest antibiotic concentration that inhibited growth was recorded. All rigid designs
exhibited either minimal or no activity against ampicillin (Table 1). The two rigid designs
that showed the highest activity against ampicillin, Rdg44c and Rdg262b, had MICamp
values of 26 µg/mL, which is two orders of magnitude less efficient than wild type TEM-1
(MICamp = 1500 µg/mL), but is only half that of GNCA (MICamp = 43 µg/mL). Alterna-
tively, the MICamp values of all the flexible designs were in the range of 375–1500 µg/mL
(Table 1) which is on par with wild type TEM-1.

Two possible explanations for the lack of activity against ampicillin observed in
our rigid designs are: (1) that only poor protein expression was achieved or (2) that
they did not fold into native-like structures; neither of these possibilities are directly
examined in MIC assays. We therefore expressed and purified each of the designed proteins
and assessed their abilities to adopt native-like structures using circular dichroism (CD)
spectroscopy. All designed proteins were observed to express solubly (Supplementary
Figure S2). However, two of the rigid designs, Rdg44a and Rdg262a, had a high propensity
to aggregate during the purification process, which precluded further characterization. In
contrast, no aggregation of any of the flexible designed proteins was observed throughout
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the purification process. We subjected all purified proteins to both wavelength scans and
thermal melts using CD (see Materials and Methods), which allowed determination of the
melting temperature (Tm) of each protein (Supplementary Figure S3). The Tms of all flexible
designs fell into a range (53.2 ◦C to 58.5 ◦C) that was within ~3 ◦C of the Tm of TEM-1
(56.4 ◦C, Table 1). Alternatively, the Tms of the rigid designs varied greatly. Although the
least stable of the allosteric rigid designs (Rdg262b) exhibited a Tm that was on par with
TEM-1, two others exhibited marked increases in stability. Namely, Rdg44b and Rdg44c
were measured to have Tms of 63.1 ◦C and 66.4 ◦C, respectively, which correspond to
increases of ~6 ◦C and 10 ◦C relative to TEM-1.

Table 1. Minimal Inhibitory Concentrations (MICamp) and melting temperatures of the TEM-1 variants.

Variant
Minimal Inhibitory

Concentration of Ampicillin
MICamp (µg/mL)

Melting Temperature
Tm (◦C)

GNCA 43 90.3
TEM-1 1500 56.4
Rdg44a <2 ** NM
Rdg44b <2 63.1
Rdg44c 26 66.4

Rdg262a <2 ** NM
Rdg262b 26 56.4
Flx226a 1500 57.4
Flx226b 375 53.2
Flx226c 1500 55.6
Flx256 750 58.1
Flx55 750 58.5

Minimal Inhibitory Concentrations for ampicillin (MICamp) values were determined in lysogeny broth. Melting
temperatures (Tm) were determined using circular dichroism. NM indicates that a Tm was not established for
this protein due to aggregation during purification. ** Because these variants precipitated out of solution during
purification, it is difficult to know whether these values accurately reflect their activities in cellulo.

The residues targeted for design in this study exhibit a broad distribution of distances
from the active site. For example, the two rigid residues (V44 and V262) are closer to
the active site than any flexible residues that were targeted for design with distances
of 10.1 Å and 17.3 Å, respectively, while the distance of the flexible residues from a
catalytic residue ranged from 17.5 Å–22.1 Å. We therefore sought to assess whether or not
a correlation existed with respect to the distance from a targeted residue to the active site
and altered enzymatic function. To do this, we calculated the distances between the Cαs of
all residues mutated during the design process and the Cα of the nearest catalytic residue
for all experimentally characterized proteins (Supplementary Table S1) using the PyMOL
software (The PyMOL Molecular Graphics System, Version 4.3; Schrödinger, LLC: New
York, NY, USA).

The two designed proteins that had the shortest distances between a mutated residue
and one of the catalytic residues both targeted residue 262 (Rdg262a and b). Rdg262a
carries a mutation at position 233, which is directly adjacent in sequence space to catalytic
residue 234. Rdg262b contains the next shortest distance between a mutation and an active
site residue at 5.8 Å. Rdg262a showed no activity against ampicillin; it is possible that the
observed lack of activity is due to the protein’s instability and/or propensity to aggregate
as observed during purification. Alternatively, Rdg262b possessed an identical Tm to
TEM-1 but showed minimal activity against ampicillin despite containing a mutation that
is only ~6 Å away from a catalytic residue. On the other end of the spectrum, the nearest
mutations to any catalytic residue in two of the flexible designs, Flx226a and c, are 18.5 and
17.5 Å away, respectively. Both of these TEM-1 variants showed near native activity against
ampicillin, which is consistent with the fact that mutations that are both distant from and
uncoupled to the active site should have little effect on activity.

In the remaining designs, the distribution of distances between the nearest catalytic
residue and a designed mutation are much more similar irrespective of whether rigid or
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flexible residues were targeted. For example, Rdg44a and Flx226b both have mutations
that are 12.1 Å from a catalytic residue and Rdg44c and Flx55 have mutations that are
9.7 Å and 9.8 Å away from the catalytic residues, respectively. As these pairs of proteins
contain one rigid and one flexible design and also exhibit similar distances between the
nearest mutation and any catalytic residue, they appear to provide a direct test of the
implications of targeting mutations to flexible vs. rigid residues. Interestingly, Rdg44a was
highly unstable and aggregation prone despite only having mutations over 10 Å away from
the catalytic residues. In contrast, Rdg44c had activity against ampicillin that was three
orders of magnitude less than the wild type protein, but also showed a 10 ◦C increase in
Tm relative to TEM-1. Alternatively, both flexible designs (Flx226b and Flx55) maintained
substantial activity against ampicillin and exhibited Tms that were within 3 ◦C of wild
type TEM-1 (Table 1). These data further support the notion that rigid, highly coupled
residues play a large role in determining both the activity and physical properties of TEM-
1. Furthermore, the fact that the rigid designs that adopted a native-like fold showed
a substantial decrease in activity supports the notion that our dci metric can provide
meaningful information regarding residues that may be able to affect protein function via
allosteric dynamic coupling to the active site.

2.5. Dynamics Analysis of the Designed Proteins

Experimental characterization of our designed proteins demonstrated that the MICamp
values of the rigid designs were significantly reduced relative to both TEM-1 and the flexible
designs irrespective of the distances between the nearest mutations and the catalytic
residues. This suggests that changes in the local network of interactions surrounding rigid
residues that exhibit long-range dynamic coupling with the active site may allosterically
alter the flexibility of active site residues. In order to further analyze this possibility using
our computational metrics, we calculated the flexibility of the active site residues in both
sets of designed proteins using the dfi metric. The dfi values of each catalytic residue in our
experimentally characterized proteins were subtracted from those of TEM-1 to generate
a ∆dfi profile (Supplementary Figure S4A). A clear difference between the ∆dfi values of
the catalytic residues of the rigid and flexible designs was observed (Figure 5). Namely,
the catalytic residues in the rigid designs underwent a greater change in relative flexibility
(both increases and decreases) compared to the flexible designs. Alternatively, the relative
flexibilities of the catalytic residues in the flexible designs exhibited a narrower distribution
centered at zero (Supplementary Figure S4B). These data support the notion that the rigid
residues we chose are highly coupled to the active site (as suggested by our original dci
analysis) and also that targeting the local interaction of allosteric rigid residues can indeed
alter the flexibilities of residues, even if they are separated by substantial distances.

Our experimental results and the detailed dfi profiling of the experimentally charac-
terized designs brought to light the fact that our initial PCA analysis did not appear to
adequately discriminate between the activities of the designed proteins. Although designs
in which rigid, coupled residues were targeted often possessed vastly different properties
than those in which flexible, uncoupled residues were targeted, many of these designs
clustered in similar areas of the PCA (Supplementary Figure S1). Therefore, we sought to
develop a new metric that might have a greater discriminatory ability than the PCA alone.
We developed an iterative method that we have termed the Dynamic Distance Analysis
(dda) in which the “dynamic distance” of a designed protein to either TEM-1 or GNCA
is computed relative to those of randomly selected groups of designed proteins. As the
distance between any two proteins in a PCA (based on their three principal eigenvectors,
see Methods and Materials) depends on the component proteins used to generate that PCA,
randomly selected sets of designed proteins should yield a much better picture of the true
relationship between a given designed protein and a target protein (TEM-1 and GNCA).
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Figure 5. The change in the dynamics profiles of experimentally characterized rigid (A) and flexible
(B) designs (∆dfi values) are mapped onto the TEM-1 structure. Point mutations around the residues
targeted for design and the catalytic residues in TEM-1 are shown as spheres and labeled with their
residue indices. The distance between the mutations closest to the catalytic residues are marked with
red arrows and labeled with the corresponding distance in angstroms. The minimum distance in
most designs is larger than 10 Å (Rgd262a and b and Flx256 are exceptions), which suggests that the
changes in dynamics of catalytic residues is due to distal allosteric communication with the active
site in many instances.

To generate the dda profiles of our designed proteins, we used a bootstrapping
approach in which we first generated multiple PCAs using small, randomly chosen subsets
of designed proteins and then iteratively measured the distances between the dfi profiles
of each designed protein and both GNCA and TEM-1. (Supplementary Figure S5) When
we clustered the dda profiles of the rigid and flexible designs using a new PCA; a clear
separation between the two emerges (Figure 6), which correlates well with their biophysical
characterization. For example, flexible designs Flx55 and Flx256 cluster together in our
dda analysis and also possess similar MICamp values (750 µg/mL). Similarly, Flx226a
and Flx226c, whose MICamp values are the same as TEM-1 (1500 µg/mL), also appear in
very similar regions of the dda PCA. The two rigid designs, Rgd44a and Rgd262a, which
exhibited aggregation during purification, are both found as outliers in the dda clustering.
Notably, Rgd44c and Rgd262b, which exhibit higher thermostabilities and similar MICamp
values to TEM-1, are also clustered in the same vicinity.
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(Flx55 and Flx256), (Flx226c and Flx226a), (Rdg262b and Rdg44c) cluster in the same vicinity.

In an effort to assess whether or not the trends observed in the dda analyses of
experimentally characterized proteins were universal, we applied dda to all the designed
proteins, even those not chosen for characterization. Interestingly, the dynamic distances of
the rigid designs are biased away from TEM-1 relative to their flexible design counterparts
(Supplementary Figure S6A); conversely, the flexible designs form a narrower distribution
that is closer to TEM-1. This suggests that flexible residues that are not coupled to the
active site do not likely contribute to the collective motion of the protein as substantially as
do rigid residues. When the distances of our designed proteins to GNCA are considered,
the uncoupled flexible designs display a sharp, narrow distribution that is distant from
GNCA (Supplementary Figure S6B). Alternatively, the distribution of the rigid designs is
broad and contains proteins with dynamic profiles that are more like that of GNCA. These
data suggest that the re-design of the environment surrounding rigid residues appears to
alter the dynamics of TEM-1 more substantially than when the environment surrounding
uncoupled flexible residues is targeted.

3. Conclusions

The goal of this work was to better understand the relationship between structure and
function in the TEM family of β-lactamases. Building on previous evolutionary studies
on the β-lactamase enzyme TEM-1 [15], we explored the hypothesis that rigid residues
can serve to both establish the global dynamic profile of the enzyme and exert substan-
tial influence over physical properties (e.g., substrate specificities) so long as long-range
coupling exists between the rigid residues and the active site. To explore this, we used the
Rosetta computational protein design software to re-design the local network of interac-
tions surrounding residues that fit the aforementioned criteria. Our designed proteins were
analyzed using computational metrics that assessed both the global dynamic profile and
the allosteric coupling of each residue to the active site. Based on these metrics, a subset of
our designed proteins was selected for experimental characterization.
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Ten designed TEM-1 variants were characterized with respect to the minimal in-
hibitory concentration of ampicillin as well as thermostability. These data suggested that
targeting mutations to environments surrounding rigid residues that were highly coupled
to the active site often resulted in a substantial shift in protein stability and function; al-
ternatively, targeting flexible, uncoupled residues resulted in protein variants with more
native-like activities and thermostabilities. Namely, when mutations were targeted to the
vicinity of two rigid residues that do not directly interact with the active site, but which
are highly coupled to it, a substantial reduction in TEM-1′s ability to degrade its native
substrate was observed in all cases even though native-like folds were maintained in many
cases. Alternatively, thermostabilities and activities against TEM-1′s native substrate were
maintained in a set of designed proteins in which residues that were neither rigid nor
predicted to be coupled to the active site were targeted for mutagenesis. These results are
consistent with our computational analyses of the designed proteins’ dynamics. Namely,
it appears that altering the local interactions surrounding rigid residues that are highly
coupled to the active site can allosterically alter the flexibility profiles of active site residues
at a distance, which can in turn alter the biophysical properties of the enzyme. In an effort
to identify an analytical method that was more informative as to the activities that designed
proteins might possess, we developed a novel metric that measures the “dynamic distance”
between two proteins. Many of our designed proteins with similar functional properties
were observed to cluster together when analyzed by this algorithm. These results not only
further support the potential importance of mutations in the vicinity of rigid residues, but
also support the fact that coupling between distal residues and the active site can have
profound effects on enzyme activities.

The relationship between protein dynamics and function is highly complex and
studying it represents an exceedingly difficult challenge [8,9,24,40–42]. Our approach
represents a new method for exploring this subject in a highly directed manner. We hope
that additional application of these methods to distinct residues in TEM-1 will ultimately
provide a more complete understanding of the complex dynamic landscape present in
this class of proteins. This could not only facilitate a rapid prediction of the biochemical
properties of new clinical isolates but could also pave the way for the development of
new antibiotics that specifically target new protein conformations accessible only through
alterations of the global dynamic profile. Finally, the methods reported here could also
find use in understanding the dynamic profiles of other enzyme classes, which could have
profound implications from the perspective of understanding and treating diseases.

4. Materials and Methods
4.1. Molecular Dynamics (MD)

The AMBER software package was utilized for simulating all β-lactamases in this
study. Each system was parameterized with the ff14SB force field and the explicit water
model TIP3P [43,44]. The solvation box was assigned as 16 Å. The system was neutralized
by sodium and chloride ions and minimized for 11,000 steps using the steepest descent
algorithm. Isothermal, isobaric, and constant number of particles ensemble production
trajectories were performed at 300K and 1 bar pressure. For each production, a 1 µs
simulation was conducted. The residue covariances were calculated using a 50 ns length
window shifted by 10 ns (example: 1–50 ns, 10–60 ns, etc.) over the course of the trajectories.

4.2. Dynamic Flexibility Index (dfi)

The dfi metric [16,19,21] calculates the relative flexibility/rigidity of a residue in a
protein by incorporating the residue covariances. The protein can be modeled with the
Elastic Network Model (ENM) in which harmonic springs connect Cαs [35]. Taking the
second derivatives of the potential forms a Hessian matrix, H Equation (1). The inverse of
the Hessian matrix is proportional to the covariance matrix. The models based on ENM
cannot capture changes in the dynamics of the designed variants based on Cα positions
alone. Therefore, we substituted the inverse of the Hessian with the covariance matrices
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from MD trajectories to capture the effect of mutations on the protein conformations. The
covariance matrix, G, contains the residue covariances, obtained by the MD trajectories
Equations (2) and (3) [17,19,28,29,45].

[∆R]3Nx1 = [H]−1
3Nx3N [F]3Nx1 (1)

[∆R]3Nx1 = [G]3Nx3N [F]3Nx1 (2)

d f ii =
∑N

j=1
∣∣∆Rj

∣∣
i

∑N
i=1 ∑N

j=1
∣∣∆Rj

∣∣
i

(3)

The residue response vector (∆R) is the resultant vector containing the fluctuation
responses from multiplying the covariance matrix with the force vector, F.

∣∣∆Rj
∣∣
i denotes

the magnitude of the residue response fluctuation vector of position i, when j is exposed to
a random force vector.

4.3. Dynamic Coupling Index (dci)

The dynamic coupling index (dci) [17,19,45] measures the degree of dynamic coupling
between two residues. Namely, it captures the strength of displacement of a residue i upon
perturbation of a distinct residue j, relative to the average fluctuation response of position i
when all of the positions within a structure are perturbed. Generally, this metric is used to
establish the communication between a functionally important residue and other residues
within the protein that are many angstroms away. The dynamic coupling index of a given
residue i is calculated using the equation below Equation (4):

dcii =
∑NFunctional

j

∣∣∆Rj
∣∣
i/NFunctional

∑N
j=1
∣∣∆Rj

∣∣
i/N

(4)

where
∣∣∆Rj

∣∣
i corresponds to the magnitude of the residue response vector (∆R) for residue

i when residue j is perturbed. The dci score thus provides information on the allosteric
behavior of a location associated with active site dynamics. A high dci value implies strong
coupling between active sites, inversely, a low scoring position is regarded as weakly
coupled to the active site [17,19,45].

4.4. Dynamic Distance Calculation

Principal Component Analysis (PCA) was used to compare and cluster the flexibility
profiles of the designed TEM-1 variants with respect to TEM-1 and GNCA. However,
because the output of a PCA is dependent on the input data, the calculated distances
between any designed protein and TEM-1 or GNCA can change with the inclusion of new
or distinct data points (e.g., a different set of designed proteins). To account for this, we
employed an iterative, random sampling approach to capture the relative distance of a
designed protein from TEM-1 and from GNCA (Supplementary Figure S5).

For every designed TEM-1 variant, a dataset containing the target design, TEM-1,
GNCA and an additional seven randomly chosen designs was constructed and used to
generate a PCA. Namely, the dfi profiles of these ten proteins were merged into a matrix, X,
of dimension Equation (5):

(m × n) (5)

Here, m is the total number of datasets that are clustered together, which each have n
number of attributes (n = total number of residues). Singular value decomposition of X
was then carried out as follows Equation (6):

[X]m×n = [U]m×m[Σ]m×n[V]n×n (6)
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Here, U and V are unitary matrices with orthonormal columns and are called left
singular vectors and right singular vectors, respectively, and Σ is a diagonal matrix with
diagonal elements known as singular values of X.

The singular values of X, by convention, were arranged in a decreasing order of their
magnitude, σ = {σi} representing the variances in the corresponding left and right singular
vectors. The set of the highest singular values (representing the largest variance in the
orthonormal singular vectors) can be interpreted to show the characteristics in the data
X and the right singular vectors create orthonormal basis which spans the vector space
representing the data. The left singular vectors contain weights indicating the significance
of each attribute in the dataset as Equation (7):

wi =
r

∑
k=1

σk|uik| (7)

Using these features of the decomposed singular vectors, we created another matrix,
X* using only the highest three singular values which mimics the basic characteristics of
the original dataset. It can be represented as Equation (8):

[X∗]mxr = [V∗]mxr[Σ
∗]rxr (8)

Here, Σ* contains only the largest 3 singular values and V* contains the corresponding
right singular vectors. The data were then clustered hierarchically based on the pairwise
distance between different proteins in the reconstructed dfi data with reduced dimensions.
The distance between designed protein, j1, and TEM-1, j2, was computed in the reduced
dimension using three principal components Equation (9):

d12 =

√√√√ 3

∑
i=1

(
X∗j1

i − X∗j2
i

)2
(9)

We also calculated the distance between each designed TEM-1 variant and GNCA
to measure the similarity in their flexibility profiles. The random selection of dataset was
repeated a thousand times to create a diverse distance distribution and we called this
distance profile analysis dynamic distance analysis (dda). The distributions were fit to a
Gaussian mixture model with a Dirichlet prior to estimate the density and the mean of the
dynamic distances [46]. The distributions and the mean distances were utilized for selecting
the designed proteins that cluster close to GNCA and far from TEM-1 (Supplementary
Figure S5).

4.5. Rosetta Design Protocol

A high-resolution (1.8 Å) structure of TEM-1 (PDB ID: 1btl) was processed to remove
waters, non-proteinogenic molecules and a second copy of the protein in the asymmetric
unit. The resulting structure was subjected to an energy minimization using the Rosetta
relax protocol; detailed descriptions of all computational protocols used in this study can
be found in the supplementary information section.

The relaxed 1btl structure was used as an input to the DesignAround protocol within
Rosetta using the ref15 score function. This algorithm first identifies spheres with user-
defined radii around a defined residue. Residues within these “design spheres” were
subjected to in silico mutagenesis, conformational sampling and backbone minimization.

4.6. Protein Expression and Purification

A pET24b plasmid encoding the gene for GNCA was a generous gift from Professor
Jose Sanchez-Ruiz (Universidad de Granada). Genes encoding rigid design variants were
codon-optimized for expression in E. coli cells. The native TEM-1 N-terminal periplasmic
localization signal peptide (MSIQHFRVALIPFFAAFCLPVFA) was appended to the begin-
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ning of each gene; to facilitate purification, a C-terminal 6xHis affinity tag was added to the
end of each gene. Genes encoding each rigid design were synthesized by IDT (Coralville,
IA). The gene for wildtype TEM-1 was amplified from a pET21b vector using PCR. Genes
encoding the rigid designs and TEM-1 were subcloned into the pET29b vector using the
Gibson Assembly [47] at a site that placed them under the control of the T7lac promoter.
Genes encoding the uncoupled flexible residue variants were synthesized and cloned into
pET29b vectors by GenScript (Piscataway, NJ, USA).

The sequences of all plasmids containing TEM-1, GNCA, rigid or flexible designs
were confirmed by Sanger sequencing and were transformed via electroporation into BL21
Star (DE3) E. coli cells. Cells containing plasmids encoding GNCA were grown in lysogeny
broth (LB) at 37 ◦C with shaking at 250 rpm until an O.D.600 of ~0.8 was reached. Isopropyl
β-D-1-thiogalactopyranoside (IPTG) was then added to a final concentration of 1 mM to
induce expression; cells were grown for 3 h post induction. Cells containing plasmids
encoding TEM-1 were grown in LB media at 20 ◦C with shaking at 220 rpm until an O.D.600
of ~0.8 was reached. Induction was again carried out with 1 mM IPTG and was allowed
to proceed for 8–12 h. Cells containing plasmids encoding the rigid and flexible design
variants were grown in 2xYT media to confluence overnight and pelleted by centrifugation.
After resuspension in fresh 2xYT media, protein expression was induced with 1 mM IPTG
and cells were grown for an additional 20 h at 20 ◦C with shaking at 220 rpm.

After expression, the cells were pelleted via centrifugation at 4100× g for 15 min
and the media was discarded. The cells were resuspended in TBS (50 mM Tris pH 8.0,
500 mM NaCl) and were again centrifuged at 4100× g for 15 min; the supernatant was
discarded. The pellet was incubated at room temperature for 15 min with SET buffer
(20% sucrose, 1 mM ethylenediaminetetraacetic acid (EDTA), 30 mM Tris pH 8.0, 1 µM
phenylmethylsulfonyl fluoride (PMSF), 1 mg/mL lysozyme). After centrifugation at
4100× g for 15 min, the supernatant was decanted and saved. The cells were then shocked
to release the periplasmic contents with ice cold 100 mM MgCl2 at a 1:15 ratio of cell
pellet weight to solution volume. Cells were vigorously agitated on ice for 15–30 min
then centrifuged with the saved soluble fraction from the first stage at 4 ◦C for 60 min at
12,000× g.

The supernatant was then loaded onto a 5 mL nitrilotriacetic acid agarose (Ni-NTA)
(Millipore Sigma, Burlington, MA, USA) column, washed with 5 column volumes of a low
imidazole buffer (25 mM Tris pH 8.0, 150 mM NaCl, 15 mM imidazole), and eluted with a
high imidazole buffer (25 mM Tris pH 8.0, 150 mM NaCl, 500 mM imidazole). All proteins
were then subjected to a second purification step using anion exchange chromatography:
Proteins were concentrated to a volume of 0.5–1 mL, diluted into the loading buffer (50 mM
Tris, pH 9.0, 50 mM NaCl) and loaded directly onto the 5 mL Hi Trap Q Fast Flow column
(Millipore Sigma, Burlington, MA, USA). The column was washed with 5 column volumes
of the loading buffer and eluted with 50 mM Tris, pH 9.0 250 mM NaCl. Protein purity was
verified by SDS-PAGE (Supplementary Figure S2).

4.7. Circular Dichroism Characterization of Protein Folding and Stability

Far-ultraviolet circular dichroism (CD) measurements were performed in triplicate
on a Jasco J-815 spectrophotometer (Jasco, Inc, Easton, MD, USA) equipped with a Peltier
temperature controller. Wavelength scans were measured from 300 to 180 nm at room
temperature with 1 nm steps using a 1 nm bandwidth, 5 nm/min scan rate; reported data
represent an average of three independent scans. Thermal melts were monitored by the
absorption signal at 222 nm with a temperature slope of 5 ◦C/min. For wavelength scans
and thermal melts, the purified protein was in a TBS buffer (10mM Tris 50 mM NaCl,
pH 7.0) in a cuvette with a 1 mm pathlength. Protein concentrations were calculated in
triplicate using the absorbance at 280 nm and absorption coefficients as calculated by the
ProtParam tool in the Expasy software suite [48]. Protein concentrations ranged between
0.18–0.25 mg/mL for all scans. Thermal melt curves were fitted using nonlinear regression
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least squares fit with the Hill equation in the GraphPad Prism version 9.0.0 for Windows,
GraphPad software, San Diego, California, USA.

4.8. MIC Assays

Minimal inhibitory concentrations of ampicillin (MICamp) were performed in triplicate
on 96-well plates [39]. For each designed protein, TEM-1 and GNCA, five colonies were
picked from a fresh agar plate and used to inoculate a 5 mL culture of LB, which was grown
to confluence overnight at 37 ◦C. Overnight cultures were diluted in LB with 1 mM IPTG
to a final working concentration of 5 × 105 cfu/mL. Three stock solutions of ampicillin
were independently prepared at 6000 µg/mL in LB with 1 mM IPTG and each solution
was subsequently diluted in steps of 0.5 through the addition of LB with 1 mM IPTG to
yield a final range of concentrations of 6–3000 µg/mL. The ampicillin concentrations for
GNCA and the rigid designs were prepared at 400 µg/mL in LB with 1 mM IPTG and each
solution was diluted in steps of 0.6 for a final concentration range of 2–200 µg/mL. The
96-well plates were covered with a fitted lid and incubated at 37 ◦C for 20 h. All optical
density measurements were carried out at 600 nm using a SpectraMax M5 (Molecular
Devices, LLC, San Jose, CA, USA); the absorbance of the buffer was subtracted from each
measurement. To establish the lowest concentration of antibiotic that inhibited growth, a
buffer-subtracted value ≥ 0.1 was used as the threshold for bacterial growth in each well.
The MICamp was determined to be the lowest concentration of ampicillin that inhibited
growth of the E. coli cells.
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