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Abstract: The estrogen receptors α (ERα) are transcription factors involved in several physiological
processes belonging to the nuclear receptors (NRs) protein family. Besides the endogenous ligands,
several other chemicals are able to bind to those receptors. Among them are endocrine disrupting
chemicals (EDCs) that can trigger toxicological pathways. Many studies have focused on predicting
EDCs based on their ability to bind NRs; mainly, estrogen receptors (ER), thyroid hormones receptors
(TR), androgen receptors (AR), glucocorticoid receptors (GR), and peroxisome proliferator-activated
receptors gamma (PPARγ). In this work, we suggest a pipeline designed for the prediction of ERα
binding activity. The flagged compounds can be further explored using experimental techniques
to assess their potential to be EDCs. The pipeline is a combination of structure based (docking and
pharmacophore models) and ligand based (pharmacophore models) methods. The models have
been constructed using the Environmental Protection Agency (EPA) data encompassing a large
number of structurally diverse compounds. A validation step was then achieved using two external
databases: the NR-DBIND (Nuclear Receptors DataBase Including Negative Data) and the EADB
(Estrogenic Activity DataBase). Different combination protocols were explored. Results showed that
the combination of models performed better than each model taken individually. The consensus
protocol that reached values of 0.81 and 0.54 for sensitivity and specificity, respectively, was the
best suited for our toxicological study. Insights and recommendations were drawn to alleviate the
screening quality of other projects focusing on ERα binding predictions.

Keywords: nuclear receptors; ERα; endocrine disrupting chemicals; docking; pharmacophores;
virtual screening

1. Introduction

Estrogens are hormones involved in many physiological processes such as growth,
development, the female reproductive system, and homeostasis [1]. They can exert their
activity through binding to particular transcription factors: the estrogen receptors (ER).
As members of the nuclear receptor protein family (NRs), ER are composed of three
functional domains, the NH2-terminal domain (NTD), the DNA-binding domain (DBD),
and the COOH-terminal ligand-binding domain (LBD) [2]. Two isoforms of the receptor
exist, ERα and ERβ. Both isoforms share a high degree of sequence identity within their
LBDs and exhibit similar affinities for the main endogenous ligand, 17β-estradiol [3],
but different affinities for other compounds, given that each subtype displays a unique
role in estrogenic activity in vivo. Since its discovery [4], several therapeutic applications
have emerged for ERα ligands, in particular in breast cancer therapies [5,6]. Consequently,
a large number of small molecules were developed with the purpose of ERα activity
modulation. However, some compounds belonging to a particular category of exogenous
molecules called endocrine disrupting chemicals (EDCs) are also able to bind to ERα [7].

Int. J. Mol. Sci. 2021, 22, 2846. https://doi.org/10.3390/ijms22062846 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms22062846
https://doi.org/10.3390/ijms22062846
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22062846
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22062846?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 2846 2 of 26

EDCs have the ability to penetrate the body through ingestion, inhalation, or skin and
to mimic the endogenous hormones, leading to the disruption of the endocrine system
in both human and animal species. The first reported EDCs harmful effects were related
to estrogens [8] such as breast cancer, endometriosis, fertility problems, and learning
disability. EDCs are now considered a public health threat [9–11], as human exposure
to these compounds can increase the risk of impairment of several biological functions
such as the reproductive [12], cognitive [13], and metabolic [14] functions (for a review of
associations between EDC exposures and risk to diseases, see Table 1 in [15]). However,
the knowledge about possible adverse effects of EDCs is still incomplete and numerous
studies have focused on better understanding their mechanism of action.

EDCs have been shown to act through direct or indirect mechanisms. In the direct
mechanism, EDCs directly bind to a receptor of the NRs family (estrogen receptors ER,
thyroid hormones receptors TR, androgen receptors AR, glucocorticoid receptors GR,
and peroxisome proliferator-activated receptors gamma PPARγ) or the aryl hydrocar-
bon receptor, leading to activation or inhibition of its signaling pathway. In the indirect
mechanism, EDCs affect other transcription factors or hormone metabolism through in-
teraction with components of the hormone signaling pathway, stimulation or inhibition
of endogenous hormones biosynthesis, binding to circulating hormone-binding protein,
stimulation or inhibition of hormone-binding protein synthesis or degradation, stimu-
lation or inhibition of hormone receptor expression [16,17]. Other potential targets of
EDCs include the membrane-associated NRs and the G protein-coupled receptor GPR30/G
protein-coupled estrogen receptor [18]. Experimental campaigns are conducted to identify
potential EDCs and better understand their mechanism of action.

With the large and increasing number of compounds suspected to be EDCs, an inter-
mediate step is needed to prioritize or reduce the number of compounds to be assessed.
Several in silico methods are providing prediction and estimation of the potential endocrine
disrupting activity of chemicals [19–22]. The majority of the in silico studies dedicated
to EDCs focused on the direct mechanism. These studies are dedicated to NR binding
prediction and most studies available are related to ERα [21–25]. These studies considered
that a compound predicted to be able to bind to ERα can be a potential EDC that should be
further investigated experimentally. In silico predictions of EDCs are mostly done through
QSAR models and machine learning methods that provide a quantitative estimation of
the binding affinity or a classification of the potential hazard. Docking methods are also
used but to a lesser extent despite the advantage of providing insights on the molecular
mechanism of binding [19].

In the present work, we designed a pipeline for the prediction of compounds binding
to ERα. These flagged compounds can be further explored using experimental techniques
to assess their potential to be EDCs. This pipeline combines structure-based (SB) and
ligand-based (LB) methods, i.e., docking, SB, and LB pharmacophore models. To select
the optimal docking protocol for ERα binding (B) compounds prediction, the performance
of different docking software was evaluated and docking scores thresholds were defined.
A combination of 26 pharmacophore models was designed to guarantee a maximum
coverage of the chemical space of ERα B compounds. Individual performances of LB and
SB models to discriminate between B and non-binding (NB) compounds were evaluated.
Finally, different combination approaches were also explored to define the best protocol for
the prediction of ERα binding potential. We conclude our work with recommendations for
future ERα (and other NRs) binding prediction studies.

2. Results
2.1. Compounds and Database Preparation
2.1.1. Database Preparation

After filtering and cleaning, the Environmental Protection Agency (EPA) database is a
collection of 2442 chemical compounds experimentally tested for ERα binding comprising
2219 non-binding (NB) compounds and 223 binding (B) compounds (see Material and
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Methods section). The distribution of the physiochemical and constitutional descriptors of
B and NB compounds is represented in Figure 1.

Two external validation sets were used, i.e., the NR-DBIND (Nuclear Receptors
DataBase Including Negative Data) ERα set that comprises 732 compounds, divided into
554 B compounds and 178 NB compounds, and the EADB (Estrogenic Activity DataBase)
set comprising 131 B compounds and 101 NB compounds for a total of 232 molecules.
Distributions of the 15 constitutional, physiochemical, and molecular descriptors for each
dataset are presented in Supplementary Figures S1 and S2.

2.1.2. Databases Comparison

Pairwise similarities were calculated using the Tanimoto coefficient (Tc) between each
pair of topological fingerprints for: 1.) the EPA database and the NR-DBIND and 2.) the
EPA and the EADB (see Figure S3A). The analysis of similarity values shows that the Tc are
globally very low with a mean of 0.181 for the pairing with NR-DBIND and 0.174 for the
pairing with EADB. Only 2% and 0.6% of the total calculated Tc for EADB and NR-DBIND,
respectively (as shown in Figure S3B), are higher than 0.5. Finally, the chemical space of
the three databases was mapped using a SALI (Structure Activity Landscape Index) map
for the whole databases (Figure 2). The map illustrates that all three databases share the
same chemical space.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 28 
 

 

2. Results 
2.1. Compounds and Database Preparation 
2.1.1. Database Preparation 

After filtering and cleaning, the Environmental Protection Agency (EPA) database is 
a collection of 2442 chemical compounds experimentally tested for ERα binding compris-
ing 2219 non-binding (NB) compounds and 223 binding (B) compounds (see Material and 
Methods section). The distribution of the physiochemical and constitutional descriptors 
of B and NB compounds is represented in Figure 1. 

  

  

Figure 1. Cont.



Int. J. Mol. Sci. 2021, 22, 2846 4 of 26
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 28 
 

 

  

  

  

Figure 1. Cont.



Int. J. Mol. Sci. 2021, 22, 2846 5 of 26
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 28 
 

 

  

  

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 28 
 

 

 

 

Figure 1. Boxplots representing the distribution of physiochemical descriptors computed with Datawarrior [26] for bind-
ing compounds (B) in green and non-binding (NB) compounds in red. 

Two external validation sets were used, i.e., the NR-DBIND (Nuclear Receptors Da-
taBase Including Negative Data) ERα set that comprises 732 compounds, divided into 554 
B compounds and 178 NB compounds, and the EADB (Estrogenic Activity DataBase) set 
comprising 131 B compounds and 101 NB compounds for a total of 232 molecules. Distri-
butions of the 15 constitutional, physiochemical, and molecular descriptors for each da-
taset are presented in Supplementary Figures S1 and S2. 

2.1.2. Databases Comparison 
Pairwise similarities were calculated using the Tanimoto coefficient (Tc) between 

each pair of topological fingerprints for: 1.) the EPA database and the NR-DBIND and 2.) 
the EPA and the EADB (see Figure S3A). The analysis of similarity values shows that the 
Tc are globally very low with a mean of 0.181 for the pairing with NR-DBIND and 0.174 
for the pairing with EADB. Only 2% and 0.6% of the total calculated Tc for EADB and NR-
DBIND, respectively (as shown in Figure S3B), are higher than 0.5. Finally, the chemical 
space of the three databases was mapped using a SALI (Structure Activity Landscape In-
dex) map for the whole databases (Figure 2). The map illustrates that all three databases 
share the same chemical space. 

Figure 1. Boxplots representing the distribution of physiochemical descriptors computed with
Datawarrior [26] for binding compounds (B) in green and non-binding (NB) compounds in red.



Int. J. Mol. Sci. 2021, 22, 2846 6 of 26

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 28 
 

 

 
Figure 2. Structure Activity Landscape Index (SALI) maps for all three databases (B and NB com-
pounds): Environmental Protection Agency (EPA) (blue), Nuclear Receptors DataBase Including 
Negative Data (NR-DBIND) (yellow) and Estrogenic Activity DataBase (EADB) (orange). 

2.2. Docking 
2.2.1. Docking Outcome 

In order to determine the optimal protocol for discriminating ERα B from NB com-
pounds, 7 molecular docking tools (smina-vina, smina-vinardo, smina-dkoes_scoring, 
smina-adt4, Protein–Ligand ANT System (PLANTS), and Surflex-dock) were explored us-
ing 2 approaches: single structure docking and ensemble docking. Docking performance 
in predicting B compounds was evaluated using the area under the ROC (Receiver Oper-
ating Characteristic) curve (AUC) values (Table 1). For the single structure docking ap-
proach, mean AUC are comprised between 0.576 for Surflex-dock (with the largest stand-
ard deviation between AUCs) and 0.704 for both smina-dkoes (with the smallest standard-
deviation between AUCs) and smina-vinardo. The best performance is obtained using 
smina with the scoring function dkoes for the 1qku structure with an AUC of 0.708. For 
all the scoring functions, the structure associated with the best performance displays an 
agonist-bound conformation. 

For the ensemble docking approach, all ensemble sizes, from 2 to 7 structures, were 
tested but no amelioration in the AUC values was observed with ensembles of more than 
3 structures. Table 1 summarizes the results obtained for both single structure and ensem-
ble docking approaches for ensembles of 2 and 3 structures (results for the ensembles of 
size superior to 3 are presented in Supplementary Table S1). The best mean AUC (0.703) 
and max AUC (0.710) values are associated with the smina_dkoes scoring function for 
ensemble of 2 and 3 structures, respectively. The lowest mean AUC (0.594) and max AUC 
(0.616) were obtained for an ensemble of 2 structures using Surflex-dock. 

  

Figure 2. Structure Activity Landscape Index (SALI) maps for all three databases (B and NB compounds): Environmental
Protection Agency (EPA) (blue), Nuclear Receptors DataBase Including Negative Data (NR-DBIND) (yellow) and Estrogenic
Activity DataBase (EADB) (orange).

2.2. Docking
2.2.1. Docking Outcome

In order to determine the optimal protocol for discriminating ERα B from NB com-
pounds, 7 molecular docking tools (smina-vina, smina-vinardo, smina-dkoes_scoring,
smina-adt4, Protein–Ligand ANT System (PLANTS), and Surflex-dock) were explored
using 2 approaches: single structure docking and ensemble docking. Docking performance
in predicting B compounds was evaluated using the area under the ROC (Receiver Op-
erating Characteristic) curve (AUC) values (Table 1). For the single structure docking
approach, mean AUC are comprised between 0.576 for Surflex-dock (with the largest
standard deviation between AUCs) and 0.704 for both smina-dkoes (with the smallest
standard-deviation between AUCs) and smina-vinardo. The best performance is obtained
using smina with the scoring function dkoes for the 1qku structure with an AUC of 0.708.
For all the scoring functions, the structure associated with the best performance displays
an agonist-bound conformation.

For the ensemble docking approach, all ensemble sizes, from 2 to 7 structures, were tested
but no amelioration in the AUC values was observed with ensembles of more than 3 struc-
tures. Table 1 summarizes the results obtained for both single structure and ensemble
docking approaches for ensembles of 2 and 3 structures (results for the ensembles of size
superior to 3 are presented in Supplementary Table S1). The best mean AUC (0.703) and
max AUC (0.710) values are associated with the smina_dkoes scoring function for ensemble
of 2 and 3 structures, respectively. The lowest mean AUC (0.594) and max AUC (0.616)
were obtained for an ensemble of 2 structures using Surflex-dock.

No significant improvement was observed between single structure and ensemble
docking approaches. This is particularly true for both smina-dkoes and PLANTS, for which
the best AUC obtained using the ensemble docking approach is almost equal to those
obtained with single structure docking. It is to note that for all six scoring functions,
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the structure associated with the best AUC performance for single structure docking is
always present in the best ensemble of 2 and 3 structures.

Table 1. Docking performances (Max area under the ROC curve (AUC), min, mean, and standard deviation (SD)) calculated
for the different scoring functions and for the different docking approaches.

Software Docking Approach
Best Performances

Min AUC Mean AUC SD
AUC PDB

smina-dkoes
Single 0.708 [1qku] 0.700 0.704 0.003

Ensemble of 2 0.709 [2yja-1qku] 0.702 0.703 0.003
Ensemble of 3 0.710 [2yja-1qku-1g50] 0.704 0.702 0.003

smina-vina
Single structure 0.699 [1a52] 0.643 0.676 0.02
Ensemble of 2 0.696 [1xp9-1a52] 0.642 0.67 0.017
Ensemble of 3 0.695 [1xp9-1xp1-1a52] 0.642 0.667 0.014

smina-vinardo
Single structure 0.68 [1a52] 0.686 0.704 0.018
Ensemble of 2 0.676 [1xp9-1a52] 0.619 0.650 0.019
Ensemble of 3 0.673 [1xp9-1xp1-1a52] 0.618 0.644 0.018

smina-ad4
Single structure 0.656 [1a52] 0.613 0.639 0.0154
Ensemble of 2 0.654 [1x7e-1a52] 0.618 0.641 0.009
Ensemble of 3 0.650 [1x7e-1qku-1a52] 0.623 0.640 0.007

PLANTS
Single structure 0.659 [1x7e] 0.598 0.634 0.019
Ensemble of 2 0.660 [1x7e-1a52] 0.647 0.62 0
Ensemble of 3 0.659 [1x7e-1qku-1a52] 0.620 0.642 0.009

Surflex-dock
Single structure 0.604 [1a52] 0.547 0.576 0.027
Ensemble of 2 0.616 [1xp1-1x7e] 0.556 0.594 0.020
Ensemble of 3 0.623 [1xp1-1x7e-1a52] 0.562 0.605 0.015

2.2.2. Predictiveness Curve

Predictiveness curve (PC) was used to define docking score thresholds (TH) associated
with a high P(active), i.e., the probability of having active compounds in the screened
fraction. For each scoring function and for both docking approaches, i.e., single structure
and ensemble docking, TH associated with the highest P(active) were defined. For these
TH, sensitivity and specificity values were also deduced. The highest P(active) value
is the one of smina-dkoes (~0.3) followed closely by PLANTS (see Table S2). However,
these values of P(active)max are associated with a low hit rate. As presented in Table S3,
the highest P(active)max is associated with a TH of −10 using smina-dkoes and yields
a low hit rate (14 hits out of 2442 compound at start). The same tendency is observed
for PLANTS for which the screened subset with the highest probability of activity en-
compasses few molecules: 5 hits in total without any B among them. Thus, we chose to
explore TH associated with various sensitivity levels. Table 2 displays the performances
for various sensitivity values for both scoring functions smina_dkoes and PLANTS and
for both single structure and ensemble docking approaches. The P(active) and enrichment
factor (EF) deducted for these TH yielded better results for smina-dkoes than PLANTS.
Regardless, trends are the same for both: the higher the sensitivity, the lower are the
specificity, the P(active), and the EF. The behavior is the same for single structure and
ensemble docking.

In the light of the docking results, we decided to select for the rest of the study the
smina-dkoes scoring function and the single structure docking approach (using the 1QKU
PDB structure) and to select two potential scoring TH (−6 and −7). Table 3 presents the
performance of the selected protocols on the EPA database and the external validation sets
(EADB and NR-DBIND) in terms of specificity, sensitivity, and binders retrieval rate.
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Table 2. P(active), scoring threshold (TH), Specificity (Sp), Enrichment factor (EF), and the positive
predictive value (PPV) calculated for different values of sensitivity (Se) (0.25/0.5 and 0.75) for
all the docking approaches and for the scoring function smina-dkoes and Protein–Ligand ANT
System (PLANTS).

Docking Approach Performances Se = 0.25 Se = 0.5 Se = 0.75

sm
in

a_
dk

oe
s

Single P(active) 0.137 0.094 0.094
(1qku) TH −7 −6 −6

Sp 0.918 0.766 0.601
EF 1.9 1.65 1.65

PPV 56/237 111/631 167/1052
Ensemble de 2 P(active) 0.134 0.094 0.094

(2yja-1qku) TH −7 −6 −6
Sp 0.916 0.759 0.597
EF 1.89 1.63 1.63

PPV 56/242 111/645 167/1061
Ensemble de 3 P(active) 0.137 0.13 0.091

(2yja-1qku-1g50) TH −8 −7 −6
Sp 0.915 0.777 0.599
EF 2.37 1.9 1.59

PPV 56/244 111/605 167/1057

PL
A

N
TS

Single P(active) 0.127 0.103 0.081
(1x7e) TH −79 −72 −64

Sp 0.876 0.723 0.501
EF 1.9 1.69 1.42

PPV 55/328 110/719 165/1261
Ensemble of 2 P(active) 0.123 0.097 0.08

(1x7e-1a52) TH −82 −73 −66
Sp 0.86 0.707 0.49
EF 1.69 1.58 1.42

PPV 55/362 110/753 165/1287
Ensemble of 3 P(active) 0.122 0.096 0.079

(1x7e-1a52-1qku) TH −82 −73 −66
Sp 0.857 0.701 0.493
EF 1.65 1.6 1.41

PPV 55/369 110/767 165/1279

Table 3. Sensitivities (Se), specificities (Sp), and positive predictive value (PPV) calculated for the single docking approach
with smina_dkoes scoring function screening for both TH = −6 and TH = −7 scoring thresholds.

Scoring
Threshold (TH) Performances EPA Estrogenic Activity

DataBase (EADB)
Nuclear Receptors DataBase Including

Negative Data (NR-DBIND)

TH = −7
Se 0.79 0.48 0.93
Sp 0.55 0.58 0.03

PPV 176/2442 63/232 513/732

TH = −6
Se 0.46 0.77 0.99
Sp 0.78 0.198 0.001

PPV 103/2442 101/232 553/732

2.3. Pharmacophore Modeling
2.3.1. LB Pharmacophore Models

Since the compounds of the active training set belong to different chemical series,
their alignment to derive a single LB pharmacophore is not feasible. To overcome this
issue, all the compounds were clustered to obtain subsets of similar compounds for which
pharmacophores can be generated. Distance between each cluster was fixed to 0.4 to
ensure balanced groups and to minimize the number of singletons. In total, 14 clusters
were obtained containing a minimum of 3 and a maximum of 69 compounds per cluster.
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6 molecules could not be fitted in any cluster and were not used to generate the pharma-
cophores models. The maximum number of pharmacophores generated per cluster was set
to 10. Each pharmacophore was used to screen the training subset of the EPA database.
Based on individual hit retrieval performances, the best pharmacophore of each cluster
was optimized according to the procedure described in the methods section. In the case
where the optimization protocol failed, i.e., the optimized pharmacophore was not associ-
ated with a high rate of B/NB, the other pharmacophores generated for this cluster were
considered in the descent order of their individual performances until one pharmacophore
could be successfully optimized. If none out of the 10 generated pharmacophores or the
corresponding optimized were associated with a high rate of B/NB, no pharmacophore
was conserved for this cluster. In total, 11 unique (non-redundant) LB pharmacophores
were obtained. Their performances in terms of selectivity and sensitivity are described
in Table 4. These 11 LB pharmacophores were combined and used to screen the training
subset of the EPA database. High specificity and relatively low sensitivity values were
obtained with 30% of the total of binders retrieved against only 2.7% of the total of NB
for the training set (Figure 3). To ensure that the performance is not biased towards the
ligands of the training set, the 11 LB pharmacophore models were used to screen the test
subset of the EPA database. Specificity and sensitivity values obtained were similar to
those obtained with the training set and 27% of all B compounds were retrieved against 3%
of all NB compounds (Figure 3).

Table 4. Sensitivity (Se) and specificity (Sp) of ligand-based (LB), structure-based (SB), and combination LB and SB
pharmacophores, for the training set and the test set of the EPA database, the EADB and the NRDBIND.

EPA Database EADB NR-DBIND

Performances Train Set Test Set Validation Set Validation Set

LB pharmacophores
Se

(B/total_B)
0.305

(51/167)
0.232

(13/56)

Sp (NB/total_NB) 0.973
(45/1664)

0.960
(22/555)

SB pharmacophores
Se

(B/total_B)
0.251

(42/167)
0.232

(13/56)

Sp (NB/total_NB) 0.990
(16/1664)

0.987
(7/555)

SBLB pharmacophores
Se

(B/total_B)
0.371

(62/1664)
0.321

(18/56)
0.557

(73/131)
0.819

(458/554)

Sp (NB/total_NB) 0.968
(53/167)

0.595
(25/555)

0.871
(13/101)

0.629
(66/178)

2.3.2. SB Pharmacophore Models

In addition to LB pharmacophores, 31 SB pharmacophores were generated from
the holo structures of ERα available in the NR-DBIND. All these pharmacophores were
used to screen the training set and were optimized according to the protocol described
in the methods section. Redundant pharmacophores were removed, and 15 SB pharma-
cophores were retained. Screening of the EPA training and test subsets using the 15 SB
pharmacophores led to low sensitivity values and high specificity values (Table 4). The per-
centage of B compounds retrieved with SB pharmacophores is similar to those obtained
with the LB pharmacophores, but the percentage of NB compounds retrieved with the SB
pharmacophore is lower.

2.3.3. SBLB Pharmacophore Models

Results for both SB and LB selective pharmacophores were combined into a set of
SBLB pharmacophores for ERα binding compounds. Redundant pharmacophores were
removed to obtain a total of 26 unique SBLB pharmacophores. Performance in terms of
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sensitivity and specificity of this ensemble of pharmacophores is shown in Table 4. The set
of SBLB pharmacophores is able to retrieve almost 40% of B against only 3% of NB.
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The 26 SBLB pharmacophores were also used to screen the two external validation
sets, i.e., the EADB and the NR-DBIND ERα sets, and the results are shown in Table 4.
For EADB, similarly to the results associated with the EPA database, high specificity and
low sensitivity values were obtained. The opposite is observed with the NR-DBIND ERα
set, for which the sensitivity value is higher than the specificity.

2.4. Combination of Docking and Pharmacophore Models

Individual performances for docking (AUC, Se, and Sp) and pharmacophore models
(Se, Sp, and hits retrieval rate) remain moderate, since sensitivities are hardly higher than
50% and the specificities equal or superior to 50% are associated with a low hit rate. For this
reason, we evaluated the performance of the combination of docking and pharmacophore
models in accurately predicting the binding profile of the compounds to ERα.

Two different protocols for performing this combination were explored, i.e., the con-
sensus and the hierarchical protocols, detailed in the method section.

2.4.1. Consensus Protocol

Using the consensus protocol, each molecule predicted as active using the docking
or the pharmacophores models will be identified as an active compound in the consensus
protocol results. The remaining compounds will be predicted as inactive. Performances
obtained using this protocol for the EPA database and the validation datasets, i.e., the EADB
and the NR-DBIND ERα set are depicted in Table 5.

Two docking TH defined using the PC were studied. For TH = −7, a sensitivity
of 0.56 and a specificity of 0.76 are obtained for the EPA database. Conversely, for each
validation set, the consensus protocol yields higher sensitivity (0.832 and 0.495, respectively)
against lower specificities (0.495 and 0.029). When TH = −6 is chosen, the corresponding
sensitivities are high: 0.81, 0.937, and 1 corresponding to the EPA database, the EADB,
and the NR-DBIND, respectively. Recorded specificities are very low: 0.51, 0.158, and 0.005
for the EPA, the EADB, and the NR-DBIND. The higher positive predictive value (PPV)
for the EPA database is reached by applying the TH = −7, with a PPV value around 19%.
The same trend is observed with the EADB external validation set, whereas quite similar
PPV are obtained for both threshold using the NR-DBIND set. The PPV obtained with the
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external validation sets using both TH = −6 and TH = −7 were largely superior to those
obtained with the EPA database.

Table 5. Sensitivities (Se), specificities (Sp), and B/Total ratio calculated for the consensus and hierarchical screening method
for two different thresholds (TH) of docking scores.

TH −7 −6

Se Sp PPV Se Sp PPV

Consensus protocol
EPA database 0.56 0.76 124/652 0.81 0.54 180/1205

EADB 0.832 0.495 109/160 0.931 0.158 122/207
NR-DBIND 0.986 0.029 546/719 1.0 0.005 554/731

Hierarchical protocol
EPA database 0.25 0.99 55/84 0.32 0.98 72/117

EADB 0.206 0.960 27/31 0.370 0.911 52/61
NR-DBIND 0.756 0.635 419/484 0.814 0.635 451/516

For equal specificity values between both TH, the TH = −6 yields better sensitivities
for the EPA database as well as for the validation datasets. This is why our choice of
docking TH is set at −6 for the consensus protocol.

2.4.2. Hierarchical Protocol

We first evaluated the impact of using hierarchical screening with the pharmacophore
models prior to or after the molecular docking models on the performance in enrichment.

Since both protocols displayed similar performances in terms of sensitivity and speci-
ficity, we relied on computational times to select the protocol. We thus decide to first screen
using the pharmacophore models and then using the optimal docking protocol previously
defined. On a desktop computer with 8x Intel(R) Xeon(R) CPU L5520 @ 2.27 GHz it takes
~75 min to dock the 2442 molecules against one ERα structure versus ~5 min to screen the
same number of compounds on the 26 SBLB pharmacophore models.

Results depicted in Table 5 are those obtained using this hierarchical screening, i.e.,
the entire database is screened using the pharmacophore models and the compounds
thereby identified as hits are used as the screening database for the docking method.
The docking outcomes are then analyzed using the 2 docking scores TH previously identi-
fied and corresponding to different sensitivity values. For both TH values, the same trend
is observed, i.e., high specificities (0.99 and 0.98) and low sensitivities (0.25 and 0.32).

Table 4 also presents sensitivity, specificity, and PPV obtained using the hierarchical
protocol on the validation sets. The performance associated with the EADB is very similar
to those obtained with the EPA database whereas the hierarchical protocol applied on the
NR-DBIND ERα set lead to high values of sensitivity and specificity for both thresholds.
Based on the hierarchical protocol outcomes, in particular the sensitivity values, on both
the EPA database and the external validation sets, we selected the TH =−6 as the threshold
to be used for docking scores using the hierarchical protocol.

3. Discussion

Through this work, we aim at finding the best in silico protocol(s) to discriminate B
from NB compounds for ERα. Both SB and LB methods were evaluated, together with two
different protocol to combine them.

3.1. Compounds and Database Preparation

The comparison of the distribution of the 15 constitutional descriptors for the three
databases, i.e., EPA, EADB, and NR-DBIND, was performed in order to ensure that the dif-
ference in activity was not solely explained by the difference in physiochemical properties.

In order to assess the prediction performance of our models, we used external valida-
tion sets. Pairwise comparison of topological fingerprints between the EPA database and
each external validation sets verifies the structural dissimilarity between those sets and
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thus the possible use of the EADB and NR-DBIND ERα sets as external validation sets.
Moreover, the SALI map confirms that the three databases belong to the same chemical
space, which was recommended for pharmacophore models validation [27].

3.2. Docking

For the docking approach, both single structure and ensemble docking were ex-
plored. Three software with free academic licenses, accounting for 6 scoring functions,
were used, i.e., smina (smina-ad4, smina-dkoes, smina-vina, smina-vinardo), Surflex-dock,
and PLANTS. Although different magnitudes of AUC were obtained, most of them agreed
on the elected structure yielding the best single structure docking results: 4 out of the 6
docking methods associated the best outcomes with the 1a52 structure. However, the high-
est AUC were obtained with different structures, 1qku and 1x7e for smina-dkoes and
PLANTS, respectively. Interestingly, the 1a52 structure presents an artifactual position of
the helix that is extending away from the body of the ligand binding domain. The resulting
conformation is more similar to an antagonist-bound ERα structure than an agonist-bound
one [4]. This observation leads to discard 1a52 despite its selection by most of the software
and reinforces the choice of the 1qku structure and smina-dkoes as the optimal single
structure docking protocol. It is to note that 1qku is co-crystallized with the native lig-
and 17β-estradiol. Furthermore, it was shown that smina_dkoes was very proficient at
sampling low RMSD poses compared to Vina [28].

No major performance improvement as evaluated by the AUC values was brought
by ensemble docking over the single structure strategy. This was true using either only
agonist-bound structures ensembles or combinations of agonist and antagonist-bound
structures. When considering only agonist compounds as positives and the remaining com-
pounds (antagonists and experimental non binders) as negatives, both agonist-bound and
antagonist-bound structures were associated with similar AUC values (results not shown).
Similarly, no significant differences in docking performance were noted among agonist-
and antagonist-bound structures when only antagonists were set as positives and all the
remaining compounds as negatives. This could be explained by the fact that ERα conforma-
tions used in this study are very similar, as shown by the RMSD values obtained among all
structures (Table S4). The structures used display a limited flexibility, explaining the similar
performances obtained in terms of AUC values, regardless of the pharmacological profile of
the co-crystallized ligands or of the binding compounds. This limited flexibility sampling
can also explain the lack of significant performances improvement observed using the
ensemble docking strategy. Furthermore, previous studies also showed that ensemble
docking did not always outperform the single structure docking approach especially when
the single structure is rationally selected [29]. Finally, and although displaying several
advantages, such as accounting for the flexibility of the target, ensemble docking presents
also noteworthy drawbacks. Docking a database against more than one protein structure
requires more computational resources and/or time. Ensemble docking can also lead to
inaccurate predictions due to a favored inaccurate interaction with a particular protein
conformation included in the ensemble [30].

3.3. Predictiveness Curve

Molecular docking is a valuable method often used to elucidate a mechanism of action
or to predict the nature of interactions established between a ligand and a target protein.
It can also be used as a screening tool to filter a database according to docking scores. In a
virtual screening protocol using molecular docking, the ranked list of compounds according
to the docking scores is generated. Then, a fraction of the top scoring compounds (1%, 5%,
10% . . . ) is tested experimentally depending on the budget and experimental facilities.
For this type of protocol, defining a docking score threshold is not necessarily a priority.
In our study, we preferred to rationally select an optimal docking threshold rather than
selecting an arbitrary fraction of the top scoring compounds. Endocrine disruptome [21],
for example, is an online tool based on docking calculations that also established docking
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scores thresholds to differentiate between binding and non-binding compounds for a set
of NRs. In an ideal case where all B compounds would have better docking scores than
the NB compounds (Figure 4, left panel), the threshold would simply be defined as the
value separating the docking score values of the last ranked B compound and the first
ranked NB compound. However, in reality, some B and NB compounds present very
similar docking score values and the distribution of the profiles of scores between B and
NB compounds are often overlapping. In our study, both distribution curves for B (green)
and NB compounds (red) overlap (Figure 4, right panel), preventing a straightforward
manual definition of a perfect score threshold. To help the definition of a score threshold,
we used Screening Explorer [31], an interactive tool for the analysis of screening results,
based on the predictiveness curve (PC) metric [32].
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Although newly introduced in the virtual screening field, the PC has already been
applied in different studies [27,33–37]. This metric is usually used altogether with ROC
curves and enrichment factors to assess the ability of a given method to discriminate active
compounds from inactive ones [38]. PC have been used in the literature to define a score
threshold to discriminate agonist from antagonist compounds for androgen receptors [27].
As in [27], we assessed the predictiveness of the single structure and ensemble docking
approaches as well as each docking/scoring scheme. Using the Screening Explorer tool,
2 potential docking score thresholds were identified to differentiate ERα B from NB. We thus
chose to evaluate these 2 docking score thresholds for the combination of the docking
procedure and the pharmacophores modeling.

3.4. Pharmacophores

Several studies already focused on generating pharmacophores for NRs ligands [27,39–42].
In this work, numerous SB and LB pharmacophores targeting ERα were generated and
optimized. A large number of B were retrieved by both SB and LB pharmacophores,
but some were specifically identified by only one or the other class of pharmacophores.
Consequently, all non-redundant pharmacophores were merged in the SBLB ensemble that
contains approximately as much LB (11) as SB (15) pharmacophores. The SBLB ensemble
of pharmacophores achieve better sensitivity over a slight drop in the specificity compared
to SB pharmacophores or LB pharmacophores. Hits retrieved by the SB and LB pharma-
cophores are represented in Figure 5 together with the yield of the SBLB pharmacophores.
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Interestingly, our SBLB pharmacophores applied to the external validation data
yielded very good sensitivities and lower specificities. This is similar to the results obtained
by Réau et al. [27] with pharmacophores models generated using the NR-DBIND AR set.
This study also suggests that pharmacophores are only suited for data filtering as long as
the compounds belong to the same chemical space as the molecules used to build the model.
The SALI map of all the databases (the EPA training database and the EADB and NR-
DBIND ERα external validation sets) in Figure 2 shows that our data fit this requirement
and supports the use of pharmacophores for this study. The lower sensitivities obtained
with the EPA database compared to those obtained with the external validation sets may
be explained by the imbalance in the number of B and NB that exists in the EPA database
(223 B and 2219 NB) compared to the validation sets which present lower proportions of
inactive data. The SBLB pharmacophores present better performance in discarding true
negatives than in identifying true positives. To overcome this issue, we decided to evaluate
the ERα B prediction performances obtained when combining SBLB pharmacophores and
docking approaches.

3.5. Combination of Methods

Combining several bioinformatic methods is often used for various purposes such
as extending the knowledge about a drug–target interaction or refining screening re-
sults [43–47]. Docking methods are usually successful in poses prediction but fail at
distinguishing active from inactive compounds yielding low sensitivities. Pharmacophore
methods on the other hand, used in the appropriate applicability domain [27], succeed at
discarding molecules which structures misfit the requirements to interact with the binding
site. In accordance with these results, our study shows that the 2 types of combinations we
evaluated enhance performances towards better specificities for the hierarchical protocol
and better sensitivities for the consensus protocol (Figure 6).
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Furthermore, a review of studies dedicated to NR, and more specifically to the predic-
tion of EDCs able to bind ERα, enabled us to better assess the performances obtained with
our models. We obtained high sensitivities values, 0.81 for EPA and 0.93 and 1 for EADB
and NR-DBIND, respectively, associated with low specificities. The different studies herein
undermentioned can be divided into studies relying on docking models and others that
are mostly based on machine learning and QSAR (Quantitative structure activity relation)
models [20,23,24,48–53]. Docking methods of the studies of the former class [21,22,54–57]
present AUC values similar to those obtained with our selected scoring function and recep-
tor structure. It should be noted that these docking studies used various ERα structures,
and especially the 1a52 we chose to discard because of its artifactual position of the helix
12 [4]. Studies of the latter category are the most abundant, and present high AUC values
around 0.8 with good overall sensitivities and specificities. These good prediction perfor-
mances are not surprising since classification and QSAR models are known for their ability
to well predict structural analogs. However, these methods can suffer from overfitting
bias which can lead to lower performances if applied on a different dataset as they will
be unable to predict completely new/different molecules [58]. Moreover, outliers are
frequently discarded in this kind of study, but these compounds may introduce a category
of yet unrepresented compounds. Nevertheless, these LB methods perform better than our
LB pharmacophores and should be investigated for future integration in the protocol.

Some sources of bias that may have affected the performances should be taken into con-
sideration. Annotation errors of biological assays are possible, and compounds identified
with binding assays may bind on different ERα binding sites. Furthermore, the compounds
of the EPA database are mostly compounds suspected to be toxic and not therapeutic
compounds. Even if our models were validated with external sets dedicated to therapeutic
compounds, it is important to enrich databases with more compounds relative to both
therapeutic and toxicological explorations according to the purpose of the study [59,60].

Previous studies [27,49,55,61] suggested that the pharmacological profile of the lig-
ands should be considered to better discriminate agonist from antagonist compounds.
Endocrine disrupting chemicals act in several ways including agonism and antagonism [17]
and it is important to be able to retrieve ERα B regardless of their pharmacological profiles.
The structure identified to be optimal for the docking study is in an agonist-bound con-
formation. We thus verified that our protocol was not biased towards agonist ligands and
that we were also able to identify ERα B with different pharmacological profiles.

We compared the distribution of pharmacological profiles within the starting database,
i.e., the EPA database, as well as within the hits obtained for each screening protocol
(see Figure 7). In the EPA database, the pharmacological profile annotation was achieved us-
ing agonist and antagonist experimental assays. Among the 223 compounds, 58 are agonist
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(26%), 50 antagonist (22.4%), and 66 agonist–antagonist (29.6%) compounds. No pharma-
cological profile annotation was available for 49 molecules (22%). Interestingly, the relative
proportion of each pharmacological profile observed in the initial EPA database was main-
tained among the hits of both consensus and hierarchical protocols. This highlights the fact
that the screening protocol presented herein is able to identify ERα B, regardless of their
pharmacological profile and is thus not overfitted towards any pharmacological profile.
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AGO/ATGO: compounds with both ERα agonist and antagonist activities, B: ERα binders without
pharmacological profile annotation) in the EPA database and among the hits identified using the
hierarchical and consensus protocols.

Finally, it is important to mention that both sensitivity and specificity are valuable
for assessing the screening quality. However, and depending on the purpose of the study,
one value tends to be more meaningful than the other. Therapeutic studies favor good
specificities as they are an indicator of the ability to discard true negatives, which is more
important to reduce the number of molecules to be tested in vivo. For toxicological studies,
high sensitivities are preferred, as the goal is to identify the maximum of potentially
undesired compounds. These observations are supported by the results obtained for
validation sets. In this way, we suggest that the consensus protocol is better tailored for our
study and the hierarchical protocol could better suit drug design projects. Both protocols
provide a list of compounds that are predicted to bind ERα. These predictions must
be confirmed and the estrogenic activity modulation and potential endocrine disruption
effects should be further experimentally assessed.
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4. Materials and Methods
4.1. Compounds, Databases Preparation, and Annotation

Two types of dataset were used, i.e., a set formed by EPA compounds used to build
the different individual methods and two external data sets (the NR-DBIND, the EADB
database) used for validation.

4.1.1. EPA Dataset

Compounds and biological data used to build the training dataset were extracted
from the United States Environmental Protection Agency (EPA). Chemical compounds and
their associated biological data were downloaded from the DSSTox dashboard in February
2019. The platform has been removed since then and compounds can now be found
under the Comptox dashboard [62]. This dashboard gathers high throughput screening
data of a large and structurally diverse chemical library of compounds sus-pected to be
of risk for humankind and for the environment against a wide spectrum of biological
targets involved in toxicity pathways [63]. Compounds included in training dataset were
obtained by filtering the DSSTox/Comptox database to only keep compounds that have
undergone binding assays on ERα receptor. All compounds were available in csv files
where each molecule was identified by its SMILES and CAS number. Binding compounds
were selected to form the active subset (activity annotated 1) and the non-binding molecules
constituted the inactive subset (activity annotated 0). This data-base will be referred to
as the “EPA database”. The EPA database is available in the Sup-plementary Materials in
SMILES format.

4.1.2. Validation Sets

• NR-DBIND

The NR-DBIND (Nuclear Receptors DataBase Including Negative Data) is a non-
commercial manually curated benchmarking database that provides affinity data for small
molecules that were experimentally tested against 28 nuclear receptors [64]. For this
study, a filter was applied to extract compounds tested against ERα. All compounds were
directly downloaded from the website (http://nr-dbind.drugdesign.fr/, accessed on 20
November 2019) in SMILES format and annotated by their CAS names. Binding compounds
were selected to form the active subset and the non-binding molecules constituted the
inactive subset.

• EADB

The Estrogenic Activity Database (EADB) developed by the NCTR (National center
for toxicological research) assembles a large number of estrogenic activities data from
various sources [56,65,66]. It contains 18.114 estrogenic-activity data points collected
for 8212 chemicals tested in 1284 binding assays, reporter-gene assays, cell-proliferation
assays, and in vivo assays in 11 different species. The database has been directly down-
loaded from the website (https://www.fda.gov/science-research/bioinformatics-tools/
estrogenic-activity-database-eadb, accessed on 25 November 2019) and filtered to only
keep data relative to human ERα.

4.1.3. Molecule Curation and Preparation

The same molecule curation and preparation protocol was applied for the EPA
database, the NR-DBIND, and the EADB validation sets. SMILES were standardized
using Standardizer from the ChemAxon suite [67] and salts and fragments were removed
together with duplicates and small molecules containing less than 5 atoms. Conforma-
tions were generated using i-Con [16], the conformer generation tool of LigandScout [68],
with BEST settings except for the maximum number of conformations per molecule that
was set to 25. Compounds containing certain metal atoms (e.g., Pb or Hg) were removed
from the docking collection mainly because the software used were unable to process these
molecules. Finally, molecules were converted into the appropriate format for the different

http://nr-dbind.drugdesign.fr/
https://www.fda.gov/science-research/bioinformatics-tools/estrogenic-activity-database-eadb
https://www.fda.gov/science-research/bioinformatics-tools/estrogenic-activity-database-eadb
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software at use, i.e., pdbqt for docking with smina, mol2 for PLANTS, and Surflex_dock
and ldb for pharmacophore model generations.

In order to assess the accuracy of the data, 15 constitutional, physiochemical, and molec-
ular descriptors were computed for each molecule of the three databases, namely, molecular
weight (MW), ClogP, ClogS, number of HBond-Acceptors (H-Acc), number of HBond-
Donors (H-Don), Total Surface Area (TSA), Relative Polar Surface Area (RPSA), Shape In-
dex, Molecular flexibility (Mol_Flex), Molecular Complexity (Mol_Comp), number of
Electronegative atoms (Elect_atom), number of Stereo Centers (Stereo_cent), number of
rotatable bonds (rotat_bond), number of aromatic rings (aromatic_rings), and number of
aromatic atoms (aromatic_atom). Descriptors were computed using the DataWarrior soft-
ware [26]. Moreover, topological fingerprints were computed using the rdkit library [69]
for python and pairwise Tanimoto coefficient (Tc) were calculated between compounds of
the EPA database and the EADB on one side and EPA database and the NR-DBIND on the
other side.

4.2. Structures Preparation

ERα structures were selected according to 3 criteria: (1) human structures; (2) without
mutations nor residue’s deletion in the ligand binding domain; (3) referenced by a scien-
tific article. Accordingly, 31 holo structures were used for SB pharmacophore building.
Among these 31 structures, only 7 holo (Protein-ligand) crystal structures of human ERα
were used for docking (Table S5). The 24 remaining structures were discarded since they
presented residues deletion in the binding site that can affect docking results more than
pharmacophore building. Among these 7 structures, 2 are classified as antagonist bound
as they are co-crystallized with an antagonist molecule. The remaining 5 structures are
agonist-bound and 4 of them share the same co-crystallized ligand, the 17β-estradiol.
For the docking procedure, the structures were directly downloaded from the NR-DBIND
database [64] since they are already enumerated, annotated, and cleaned. Format conver-
sion from PDB to the appropriate docking format was done accordingly to the requirements
of the software, i.e., PDB were converted into mol2 format using the software chimera [70],
into pdbqt with the prepare_receptor4.py python script available with the MGLTool [18].
In order to generate the structure-based pharmacophores, structures were directly down-
loaded from the RCSB website [71] via the LigandScout graphical interface.

4.3. Docking
4.3.1. Protocol

Docking is a structure-based virtual screening method that aims at predicting the
pose of a ligand inside a protein [17]. All docking calculations were performed with 3
different software with free academic licenses, i.e., smina [72], PLANTS [73], and Surflex-
dock [74]. The same binding site was used with the 3 software that was delimited using
the co-crystallized ligands. For each software, 5 docking runs were performed.

Smina is a fork of AutoDock Vina [28] that is designed for scoring function devel-
opment and minimization workflows [72]. It relies on the same sampling algorithm as
vina, the latter being the succession of stochastic mutations steps, but integrates several
scoring functions. For this study, we relied on 4 scoring functions already implemented
within smina, i.e., vina [28], the Vina RaDii Optimized (vinardo) [75], dkoes [72], and ad4
scoring functions. All dockings were performed using the default options of smina and
num_modes = 20 and exhaustiveness of 8. The bounding box coordinates were determined
based on the crystal structure of 1a52 used as reference to align the remaining structures.
The box parameters were chosen based on the co-crystallized ligand position with a spacing
of 1 Angstrom. A cubic box was delimited with size_x, size_y, and size_z set to 20 and the
following coordinates center_x = 107.175, center_y = 14.983, and center_z = 96.009. PLANTS
relies on the docking algorithm carrying the same name. This Protein–Ligand ANT System
(PLANTS) algorithm is based on ant colony optimization, a class of stochastic optimization.
An artificial ant colony must find the minimum energy conformation of the ligand within
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the receptor through a trail of pheromone whenever an ideal low energy conformation
is found. This marking is iteratively changed until the lowest energy conformation is
found [73,76,77]. The binding site coordinates were the same that were used for smina.
Regarding other parameters, the binding site_radis was set to 18, the cluster_structures to
10, the cluster_RMSD to 2, and the search speed to “speed2”.

Surflex-dock is a docking methodology that combines Hammerhead’s empirical scor-
ing function with a molecular similarity method to generate putative poses of ligand frag-
ments [74]. The search approach is based on an incremental construction and a fragment
assembly method similar to the genetic algorithm. Surflex-Dock uses a pseudo-molecule,
a protomol, as a target to align fragments of the ligands. Protomols were generated starting
from the holo structures.

4.3.2. Docking Performances Analyses

• Single structure docking and ensemble docking

In the single structure docking approach, docking performance for each PDB structure
was evaluated individually by calculating the area under the ROC curve (AUC). AUC val-
ues were computed with python using the scikitlearn library [78] and the package sklearn
metrics. In the ensemble docking approach, docking performances of all the possible en-
sembles of 2, 3, 4, 5, 6, and 7 structures were computed. In this approach, each ligand was
sequentially docked into several protein structures. The results were post processed to
keep only, for each ligand, the best docking score among all structures. All ligands are
then ranked according to these new scores and the corresponding AUC are computed.
Python version 3.8.1 was used to prepare data and analyze the results.

• Predictiveness curves

Although docking scores are continuous values, they can be transformed into a bi-
nary classifier to discriminate between ERα B and NB using the predictiveness curve
(PC) [27,32]. The predictiveness curve is a metric usually used in clinical epidemiology to
evaluate the ability of a biological marker to assess the fit of risk models and to estimate
the clinical utility of a model when applied to a population [32]. Transferred to the field of
Chemoinformatics, this metric can be used to assess the predictive power of a screening
methods as well as defining a score threshold retrieving best candidates to be tested exper-
imentally. In this way, PC was used to define a docking scoring threshold for which we
can compute the probability that a compound with this given score will be a B compound
and define associated sensitivity (Se) and specificity (Sp) (cf Equations (1) and (2)). Enrich-
ment factor EFx% and positive predictive value (PPV) were also calculated following the
Equations (3) and (4) where Hitsx% is the number of active compounds in the top x% of the
ranked dataset, Hitst is the total of active compounds, Nx% is the number of compounds
contained in the x% of the dataset, and Nt is the total number of compounds in the dataset.

Sensitivty =
Nb o f True Positives

Nb o f True Positives + Nb o f False Negatives
(1)

Speci f icity =
Nb o f True Negatives

Nb o f True Negatives + Nb o f False Positives
(2)

EFx% =

Hitsx%
Nx%
Hitst

Nt

(3)

PPV =

[
Nb o f True Positives

Nb o f True Positives + Nb o f False Positives

]
× 100 (4)

The aim of the study is to select as much positive data as possible (toxic compounds).
It is then interesting to identify a TH associated with a high probability of activity P(active)
but also a high value of sensitivity (Se).
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Various TH values and their P(active), Sp, PPV, and EF were calculated for different
sensitivity values (0.25/0.5/0.75). The highest P(actives)max was calculated beforehand
for each scoring function and for the different ensemble sizes.

4.4. Pharmacophore Modeling Protocol

Structure based (SB) and ligand based (LB) pharmacophores were generated using
LigandScout software version 4.4 [68].

4.4.1. Ligand Based Approach (LB) Models Protocol

In order to generate LB-pharmacophores, active compounds from one side and inac-
tive compounds on the other were both divided into training and test sets. 75% of the active
compounds and 75% of the inactive compounds were gathered to form the training set.
The remaining 25% of active compounds and inactive compounds were used to form the
test set. The active compounds of the training set were clustered using the i-cluster [79] tool
provided with LigandScout software and pharmacophores were generated for each of the
resulting clusters. Default parameters of the I-cluster tool were used, i.e., cluster_dis = 0.4
with average method, except for the maximum number of conformations set to 3. In order
to derive a LB-pharmacophore dedicated to a particular cluster of compounds, Ligand-
Scout operates in several steps: (1) conformations of the ERα ligands included in the
cluster are generated using the ICON algorithm; (2) molecules are ranked according to their
flexibility and the best alignments; (3) for each compound, the generated conformations
are used to create intermediate pharmacophores that are ranked using several scoring func-
tions; (4) common features are aligned to all the conformations of the next molecule and
so on until all the molecules are processed [80]. Each final pharmacophore obtained with
this protocol was used to screen the train set on which global and individual performances
were assessed. In order to make sure that data separation into training and test does
not affect the performance, the whole procedure (from training and test set separation to
pharmacophores generation and evaluation) was repeated 25 times. The iteration yielding
the best global performances was kept and used during the pharmacophore optimization
set and the composition of each set.

4.4.2. Structure Based Approach (SB) Models Protocol

3D SB pharmacophores were automatically generated from the PDB structures of ERα
included in the NR-DBIND [64]. In this approach, the LigandScout algorithm tags the key
features of the ligands that are interacting with the residues of the receptor. To complete
the pharmacophore, an ensemble of exclusion volume spheres is generated to represent
the shape of the active site [42].

• Pharmacophore model optimization

In order to optimize the pharmacophore, we followed literature recommendations,
especially a screening protocol that succeeded in generating selective pharmacophores for
NR agonist ligands and selective pharmacophores for NR antagonist ligands [42]. This pro-
tocol was applied on both SB and LB pharmacophores. The generated 3D pharmacophores
were used to screen the training set and the test set. All the ligands were converted into
ldb format using the idbgen tool provided with LigandScout. For each pharmacophore,
a first screening was made with LigandScout default settings and particularly the Max.
number of omitted features set to 0. Two case scenarios were possible. If after the first
screening, the ratio PPV was high, i.e., few non binders are retrieved but a large number
of binders are matching the pharmacophore, a second screening was performed with the
same pharmacophore but setting the Max. number of omitted features to 1. This way,
non-essential features could be identified to be removed or set as optional possibly lead-
ing to the retrieval of more active compounds and less inactive molecules. After that,
a third screening was performed with Max. number of omitted features set to 0 again.
If the ratio of PPV decreased, this pharmacophore was not validated, and another round
of feature identification was performed. If the ratio increased, the pharmacophore was
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validated, and other potential non-essential features were investigated. This protocol was
applied to each pharmacophore until 3 pharmacophoric features were retained or until no
non-essential features could be identified.

4.4.3. Combination of SB and LB Pharmacophores Models

Once a collection of optimal SB and LB pharmacophores was obtained, redundant
pharmacophores were removed. Redundant pharmacophores are pharmacophores that can
be removed without decreasing the recall, i.e., pharmacophores that only retrieved ligands
that are also retrieved with other pharmacophores of the set. To remove these redundant
pharmacophores, all generated pharmacophores were ranked according to the number of
hits they retrieved. Then, each pharmacophore was removed sequentially, starting from the
pharmacophore associated with the smallest number of hits. For each removal, the impact
on the recall was evaluated. If the recall was not affected, the pharmacophore was dismissed
and, in the opposite, if the recall decreased, the pharmacophore was conserved.

The SBLB pharmacophores used in this study are available in the Supplementary
Materials in pml format.

4.5. Pipelines Construction

Two different ways of combining pharmacophore models and docking were explored,
the consensus and the hierarchical protocols. The first protocol consists in the analysis of
the union of the results belonging to each model. Each molecule predicted as active by
docking or pharmacophore will be predicted as active compound by the consensus protocol.
The remaining compounds will be predicted as inactive. The second approach used a
hierarchical protocol in which the database undergoes a sequence of screening methods.
Two possible sequences exist: [pharmacophore-docking] or [docking-pharmacophore].

5. Conclusions

In the present work, we present a pipeline designed for the prediction of potential
EDCs acting through the binding to ERα. Optimized protocols for docking studies and
SB and LB pharmacophore models’ generation were evaluated together with the best
approach to combine them. Both combination approaches that were investigated here, i.e.,
consensus protocol and the hierarchical protocol, yielded good results. However, we rec-
ommend favoring the consensus protocol for toxicological studies and the hierarchical
protocol for the identification of therapeutic compounds. Results were validated using two
external datasets. Using our pipeline, we show that combining several in silico methods can
enhance the prediction performances for compounds binding to ERα. Additional methods
should be evaluated and implemented in this pipeline such as classification models.

Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/14
22-0067/22/6/2846/s1, Figures S1 and S2: Boxplot of the distribution of the 15 physiochemical
properties computed with Datawarrior for EADB (S1) and NR-DBIND (S2), Figure S3: Boxplot repre-
senting the distribution of pairwise calculated Tanimoto coefficient between EPA database and EADB
(in blue) and NR-DBIND (green) topological fingerprints, Table S1: Docking performances for both
single and ensemble docking approach illustrated with the AUC of the best and the worst ensembles;
Table S2: Maximum values of predictiveness (P(active)) associated to each scoring function and each
docking approach; Table S3: Sensitivity (Se), specificity (Sp), scoring threshold (TH), Enrichment
factor (EF) and PPV calculated for the best scoring function (Smina-dkoes and PLANTS) and cor-
responding to P(active)max for different docking; Table S4: Pairwise RMSD computed between all
the protein structures; Table S5: PDB Structures used for structure based model building. All 31
structures were used to generate SB pharmacophores and only those colored in blue were used for
docking; EPA database in SMILES format; SBLB pharmacophores in pml format.
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AR Androgen receptors
AUC Area under the ROC curve
B Binding compounds
CAS Chemical Abstracts Service
DBD DNA-binding domain
DNA deoxyribonucleic acid
DSSTox Distributed Structure-Searchable Toxicity
EADB Estrogenic activity database
EDCs Endocrine disrupting chemicals
EF Enrichment factor
EPA United states Environmental protection agency
ER Estrogen receptors
FIX Factor IX
GR Glucocorticoid receptors
LB Ligand based
LBD Ligand binding domain
NB Non-Binding compounds
NCTR National center for toxicological research USA
NR Nuclear receptor
NR-DBIND Nuclear Receptors Database Including Negative Data
NTD NH2-terminal domain
PC Predictiveness curve
PDB Protein data bank
PPAR Peroxisome proliferator-activated receptors
PPV Positive Predictive value
PLANTS Protein-ligand ANTSystem
QSAR Quantitative structure activity relationship
RMSD Root-mean-square deviation
ROC Receiver operating curve
SB Structure based
SD Standard deviation
Se Sensitivity
SMILES Simplified molecular-input line-entry system
Sp Specificity
TH scoring Threshold
TR Thyroid hormones receptors
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