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Abstract: Migraine is a common neurological disease that affects about 11% of the adult population.
The disease is divided into two main clinical subtypes: migraine with aura and migraine without aura.
According to the neurovascular theory of migraine, the activation of the trigeminovascular system
(TGVS) and the release of numerous neuropeptides, including calcitonin gene-related peptide (CGRP)
are involved in headache pathogenesis. TGVS can be activated by cortical spreading depression
(CSD), a phenomenon responsible for the aura. The mechanism of CSD, stemming in part from
aberrant interactions between neurons and glia have been studied in models of familial hemiplegic
migraine (FHM), a rare monogenic form of migraine with aura. The present review focuses on those
interactions, especially as seen in FHM type 1, a variant of the disease caused by a mutation in
CACNA1A, which encodes the α1A subunit of the P/Q-type voltage-gated calcium channel.
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1. Review Criteria

Articles discussed in this Review were identified by PubMed searches for the years
1990 to the present, using the search terms “migraine and calcium”, “migraine and calcium
signaling”, “CACNA1A mutations”, “migraine and CaV2.1”, “migraine and glia”, “glia
and calcium in migraine” among others. The reference lists of identified papers were
searched for further relevant articles, and related citations for identified papers as listed on
the PubMed site were also evaluated.

2. Migraine

Migraine is a common primary headache disorder that affects 11% of adults world-
wide. The prevalence of disease is three times higher in women (15–18%) than in men [1].
Two peaks of incidence have been observed among migraine sufferers: the first after pu-
berty and the second in adults aged 35–40 years [2]. In 25% of cases, the migraine begins
in childhood. According to World Health Organization (WHO) data 324 million people
struggle with this disease and 3000 migraine attacks occur every day per one million
people [3]. The Global Burden of Disease study listed migraine as the third of 289 of the
most prevalent diseases worldwide [4].

The disease is divided into two main clinical subtypes: migraine with aura (MA)
and migraine without aura (MO). Aura is defined as spreading neurological disturbances
such as visual, sensory or motor symptoms that precede or accompany the headache.
The most common clinical features of aura are visual changes including flashing scotoma,
loss of vision, and visual hallucinations. More rarely, numbness, tingling, ataxia, aphasia,
confusion, ringing in the ears, and dizziness occur. MO, also called common migraine, occurs
in two-thirds of patients. The migraine pain lasts 4–72 h, is moderate or severe, unilateral,
throbbing, worsens with physical activity, and is often accompanied by photophobia,
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phonophobia, and nausea/vomiting [5–8]. Migraine is also classified according to the
frequency of attacks into chronic, lasting at least 15 days each month, and milder, episodic
forms. Chronic migraine, sometimes called transformed, affects about 2% of the population
and occurs after many years of a typical, episodic migraine. The tendency to transformation
may be increased by coexisting depression, anxiety, panic attacks, social phobia and by
other pain syndromes [4,9].

2.1. The Pathogenesis of Migraine

Migraine pathophysiology involves complex mechanisms in which the trigemino-
vascular system (TGVS) and cortical spreading depression (CSD) play an important role
(Figure 1) [10]. The TGVS is a major afferent pathway for pain from cranial vessels and dura
mater and consists of neurons whose bodies reside in the trigeminal ganglion (TG) and
upper cervical dorsal root ganglia [11]. The TG consists mainly of primary afferent neurons
and glial cells. As it is not protected by the blood–brain barrier (BBB), neuropeptides
released in the TG, such as calcitonin gene-related peptide (CGRP), substance P (SP), and
neurokinin A (NKA) thereby enter systemic circulation [12].
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Figure 1. Cortical spreading depression. Changes in central nervous system flow that may induce 
a migraine attack may be associated with the occurrence of spreading cortical spreading depres-
sion (CSD). Oligemia (reduced vascular flow) begins in the occipital and parieto-occipital areas, 
then moves through the cerebral cortex and stops at the medial and lateral sulcus. In some pa-
tients, CSD may extend to the frontal lobes. This phenomenon seems to be responsible for the aura 
formation during a migraine headache. 
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and extracellular compartments is altered in migraine. As aforementioned, increased ex-
tracellular K+ and decreased Na+ promote CSD [13]. Calcium levels are also altered in the 
course of migraine [19]. These findings have led scientists to argue that migraine is a chan-
nelopathy. It is believed that mutations in genes encoding channel subunits or proteins 
modulating channel function lead to ionic disturbances in synapses, thereby increasing 
susceptibility to CSD and migraines [20–22]. 

Dysregulated calcium currents as seen in the context of migraine derive largely from 
aberrant function of the high-voltage activated calcium channel CaV2.1 and the transient 
receptor potential ankyrin channel, encoded by the genes CACNA1A and TRPA1, respec-
tively (Figure 2) [20,21,23]. Localized presynaptically, the CaV2.1 channel plays an im-
portant role in communication between neurons by controlling the release of neurotrans-
mitters [24]. Certain mutations in the CACNA1A gene result in increased activation of 
CaV2.1, which in turn leads to increased intracellular Ca2+ [20–22,25]. TRPA1, a nonselec-
tive Ca2+-permeable ion channel, belongs to a family of transient potential receptors serv-
ing as modalities for the sensation of environmental stimuli. Expressed on Aδ and C af-
ferent fibers, TRPA1 transduces pain from a broad array of irritants, both food (e.g., allyl 
isothiocyanate in mustard) and chemical (e.g., formaldehyde) and is thought to be impli-
cated in the pathogenesis of headache [23,26]. Although the mechanisms whereby envi-
ronmental irritants cause headache remain largely unknown, activation of TRPA1 by me-
chanical or chemical stimuli causes CGRP to be released and increases cerebral blood flow 
[26,27]. 

Figure 1. Cortical spreading depression. Changes in central nervous system flow that may induce a migraine attack may be
associated with the occurrence of spreading cortical spreading depression (CSD). Oligemia (reduced vascular flow) begins
in the occipital and parieto-occipital areas, then moves through the cerebral cortex and stops at the medial and lateral sulcus.
In some patients, CSD may extend to the frontal lobes. This phenomenon seems to be responsible for the aura formation
during a migraine headache.

CSD consists of a slow wave of depolarization followed by longer-lasting suppres-
sion of neurons and glial cells. It is characterized by increased K+ and decreased Na+

extracellular levels and changes in the gradients of other ions, e.g., Mg2+, Zn2+, Cl− [13].
Although the direct triggers for spontaneous CSD, especially in migraine, are unknown,
elevated extracellular concentrations of K+ and glutamate are thought to cause dendritic
depolarization in a non-synaptic manner. Animal model studies have suggested that CSD
is the mechanism underlying visual aura in migraine [14], a conclusion corroborated by
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neuroimaging studies which have linked electrical changes in the visual cortex during aura
(geometrical shapes, scintillating scotoma) with the pattern of CSD [15].

According to the neurovascular theory of migraine, headache is a result of TGVS
activation by CSD. CSD triggers the pain pathway via activation of trigeminal afferents
which transmit information to the TG, the caudal trigeminal nucleus (TNC) and ultimately
to cortical and brainstem structures involved in pain processing (Figure 1). Activation of
the TGVS leads to local release of vasodilators such as CGRP, SP, NKA, NO, and a transient
increase in cortical blood flow followed by sustained flow decrease [16–18].

2.2. Migraine Disturbs Calcium Homeostasis

Currently, it is believed that the distribution of various ions between intracellular
and extracellular compartments is altered in migraine. As aforementioned, increased
extracellular K+ and decreased Na+ promote CSD [13]. Calcium levels are also altered in
the course of migraine [19]. These findings have led scientists to argue that migraine is a
channelopathy. It is believed that mutations in genes encoding channel subunits or proteins
modulating channel function lead to ionic disturbances in synapses, thereby increasing
susceptibility to CSD and migraines [20–22].

Dysregulated calcium currents as seen in the context of migraine derive largely from
aberrant function of the high-voltage activated calcium channel CaV2.1 and the transient re-
ceptor potential ankyrin channel, encoded by the genes CACNA1A and TRPA1, respectively
(Figure 2) [20,21,23]. Localized presynaptically, the CaV2.1 channel plays an important role
in communication between neurons by controlling the release of neurotransmitters [24].
Certain mutations in the CACNA1A gene result in increased activation of CaV2.1, which in
turn leads to increased intracellular Ca2+ [20–22,25]. TRPA1, a nonselective Ca2+-permeable
ion channel, belongs to a family of transient potential receptors serving as modalities for
the sensation of environmental stimuli. Expressed on Aδ and C afferent fibers, TRPA1
transduces pain from a broad array of irritants, both food (e.g., allyl isothiocyanate in mus-
tard) and chemical (e.g., formaldehyde) and is thought to be implicated in the pathogenesis
of headache [23,26]. Although the mechanisms whereby environmental irritants cause
headache remain largely unknown, activation of TRPA1 by mechanical or chemical stimuli
causes CGRP to be released and increases cerebral blood flow [26,27].

Beyond CaV2.1, other voltage-gated calcium channels (VGCCs) may play a role in
the pathogenesis of migraine [28]. Interestingly, while presynaptic CaV2 channels might
be expected to drive the release of CGRP associated with migraine, the high-voltage
activated and canonically postsynaptic CaV1 channels and the low-voltage activated CaV3
channels [24,29] were both also found to regulate CGRP release in the trigeminal ganglion,
as evidenced through pharmacological blockade experiments [30]. Further, by correlating
the genetic codependency of Ca2+ levels with the risk of migraine headache, Yin et al. [31]
showed that migraine can be linked to inherited hypercalcemia.

Several classes of drugs are currently used in the treatment and prevention of migraine,
including angiotensin converting enzyme inhibitors, angiotensin receptor blockers, Ca2+

channel blockers, serotonin antagonists, alpha adrenergic agonists, and NMDA receptor
antagonists [32]. Ca2+ channel blockers exert their effect by blocking Ca2+ influx into
vascular smooth muscle and cardiac muscle cells during membrane depolarization, leading
to a reduction in blood pressure. Their main application is in the treatment of arterial
hypertension and angina and while used also for migraine pain relief therapy, they may
themselves result in side effects such as headaches and dizziness. As Ca2+ channel blockers
are specific for different VGCCs and vary broadly in their pharmacologic effects, the
development of therapeutics that selectively target those channels which are centrally
expressed and implicated in migraine pathogenesis is of high research value.
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bers, as well as on smooth muscles of dura’s vasculature. CGRP receptor stimulation increases blood flow. Besides CGRP, activated 
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Figure 2. Induction of migraine attack due to sensitization of trigeminal ganglia and disturbed glutamatergic release.
TRPA1 receptors in sensory neurons in trigeminal ganglia (TG) activate under environmental irritants taken by inhalation,
ingestion or in an unknown mechanism. Activation of the TRPA1 receptor stimulates the release of calcitonin gene-related
peptide (CGRP) that may enter bloodstream during migraine attack. CGRP receptor is expressed by majority on the
neurons forming myelinated TG A-fibers, as well as on smooth muscles of dura’s vasculature. CGRP receptor stimulation
increases blood flow. Besides CGRP, activated TG neurons secrete nitric oxide (NO). These mediators stimulate further the
surrounding glial cells to produce interleukin-1β (IL-1β) that in turn leads to increased activity of cyclooxygenase (COX),
associated with production of proinflammatory prostaglandin E2 (PGE2). This phenomenon may be one of foundations of
the TG neurons sensitization. Subsequently, CGRP released by TG neurons may also promote release of tumor necrosis
factor-α (TNF-α) in the glial satellite cells. That may cause a positive feedback loop of further TG-neuronal synthesis
and secretion of CGRP. Furthermore, the released TNF-α may itself sensitize TG neurons and inflict overproduction of
various other proinflammatory cytokines. Activation of TRPA channels increase the intracellular calcium ion levels (Ca2+),
similarly to L-type of Voltage Gated Calcium Channel (CaV2.1). Mutations in CACNA1A gene lead to enhanced Ca2+

currents. The enhanced Ca2+ influx lead to excitation-inhibition imbalance and enhanced glutamate release. The interaction
between glutamate and pre- and postsynaptic glutamate NMDA receptors (NMDAr) may facilitate the cortical spreading
depression (CSD)—believed as one of the causes of migraine attack. Ca2+ channel blockers affect the CaV2.1 channels and
reduce excessive Ca2+ influx to the cells, normalizing glutamate release and thus may be also used in the treatment of
migraine headaches.

2.3. Experimental Evidence for the Role of CGRP in Migraine

Literature reports suggest that CGRP may be a principal mediator of migraine in the
TGVS [33]. The CGRP neuropeptide is expressed in nearly half of TG neurons, mostly
in those forming unmyelinated nociceptive C-fibers. Conversely, the CGRP receptor is
expressed by the majority of neurons forming the second class of TG fibers, myelinated
A-fibers, as well as in smooth muscle tissue of the dura’s vasculature [34]. There are
two isoforms of CGRP, differing by three amino acids and the tissues where they are
predominantly expressed. α-CGRP is most abundant in the CNS and peripheral nerves of
the somatosensory system, while the β-isoform is mostly present in the enteric nervous
system and motor neurons [35]. The connection between CGRP and migraine has been
documented quite well, however a clear mechanistic explanation for its role in the disease
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is lacking. It has been shown that CGRP administered intravenously induces a delay in
the onset of a migraine attack in individuals with a history of migraine, but not in healthy
controls. Notably, CGRP is not allogenic, since it does not provoke any somatic effects
beyond headache [36] or an erythemic flare in the skin [37]. Interestingly, while CGRP
infusion was shown to induce delayed headache in patients suffering from migraines, the
neuromodulator did not cause premonitory symptoms, such as aura, suggesting attacks
may be periphery-derived [38]. Moreover, CGRP is likely released into the bloodstream
during a migraine attack, especially seeing how it has been detected in samples drawn from
the jugular vein of sufferers [16,36–41]. Increased CGRP levels have also been observed
between attacks in migraine patients as compared to controls. As such, CGRP may be asso-
ciated with the chronic form of migraine, particularly given that in this disease subtype, the
level of the neuropeptide was significantly higher than in episodic migraine patients [41].
The level of CGRP was also shown to be elevated in a nitroglycerin model of migraine,
which responded to the triptan family of drugs commonly used as abortive therapy for
the disease [42]. Specifically, administration of sumatriptan significantly reduced CGRP
release from the TG, and secondarily caused significant decline of blood CGRP levels, along
with reduced headache intensity. Another study evaluating rizatriptan correlated higher
salivary CGRP levels with better response to the drug, thereby potentially providing a
way for identifying promising patient candidates for specific anti-migraine therapies [43].
Taken together, the above studies indicate a pivotal role of CGRP in TGVS regulation
of migraine attacks and indeed, CGRP is becoming a target point for emerging thera-
pies. Several clinical studies tackling the CGRP pathway for relieving migraine showed
promising results and involve CGRP antagonists as well as antibodies against the CGRP
receptor and CGRP itself. The CGRP antagonists (BI 44,370 TA, MK-3207, olcegepant,
imegepant, telcagepant, and ubrogepant) were shown to be effective as migraine abortive
therapy [44–50]. Further, various antibodies against CGRP: eptinezumab, fremanezumab
and galcanezumab proved to be effective for various forms of migraine, while retaining
a safe therapeutic profile [51–56]. Similarly promising results were noted for erenumab
(AMG 334), a monoclonal antibody against the CGRP receptor [57,58].

2.4. The Role of CGRP and Glial Cells in Migraine Pathogenesis

Since the mid-1980s, it has been postulated that CGRP integrally influences the neuron-
glial interactions associated with migraine pain propagation [33]. CGRP is likely released
from TG neurons in response to migraine triggers e.g., stress and hypoxia communicated
via afferents from the periphery [59]. Moreover, although a direct link between CGRP and
CSD has not been established, increased extracellular K+, seen as a condition for the latter,
may drive CGRP release (Figure 2) [25]. CGRP triggers NO production which in turn leads
to increased expression of CGRP and neuronal nitric oxide synthase (nNOS) [60] creating a
positive feedback loop that promotes sensitization of primary peripheral trigeminal fibers
and activity-independence of central second-order neurons [61]. These mediators further
stimulate the surrounding glial cells, termed satellite cells, to produce interleukin-1β (IL-
1β) which promotes increased cyclooxygenase activity, such that is tied to the production
of proinflammatory prostaglandin E2 (PGE2) [62–64]. Similarly, CGRP-stimulated satellite
cells release TNFα, which has also been implicated in the positive feedback driving TG
neuron sensitization, both directly and via the release of additional proinflammatory
cytokines [65,66]. Indeed, the literature suggests that the secretion of CGRP from one type
of TG neuron may induce cytokine secretion in other TG neurons as well as in adjacent
satellite glial cells [62,67,68]. It is the TG satellite cell-mediated up-regulation of specific
proalgogenic receptors combined with long-term sensitization of TG neurons that enhances
pain [61]. Further corroborating this hypothesis, a study by Cady et al. [69] demonstrated
that CGRP injection into the rat temporomandibular joint led to formation of the activated
phenotype of both microglia and astrocytes in the TNC. This phenomenon is thought
to be responsible for maintaining the central sensitization of neurons involved in pain
perception and is likely implicated in the progression from episodic to chronic migraine [61].
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Conversely, Cornelison et al. [70] showed that administering CGRP into the cisternae of
the rat brain lead to activation of astrocytes but not microglia, as the authors observed no
change in the level of the microglial marker ionized calcium-binding adapter molecule
(Iba1), but did note enhanced expression of the astrocytic markers glial fibrillary acidic
protein (GFAP) and protein kinase A (PKA).

Several inhibitors of glial cell activation including naltrexone, naloxone, minocycline
and ibudilast have been proposed as prophylactics against migraine [71]. However, clinical
trial results published by Kwok et al. [66] demonstrated similar attack frequency and inten-
sity, as well as no changes in allodynia, quality of life, medication use, or the secondary
measures of headache in chronic migraine patients who received ibudilast for eight weeks.
Still, comparable studies have not been performed in patients with episodic migraine, leav-
ing the question of whether ibdulast could prove effective in preventing the transformation
of episodic migraine into a chronic disorder unanswered.

The interactions between activated trigeminal neurons and adjacent glial cells which
are mediated by gap junctions and paracrine signaling are likely also connected to the
development of peripheral sensitization within the TG and other elements of migraine
pathogenesis [64]. It is hypothesized that elevated expression and activity of gap junctions
and pannexin (Panx) channels at the level of the sensory ganglia and TG neurons in
inflammatory and neuropathic models of pain may lead to augmented excitation of sensory
neurons. It is also worth noting, the gap junctions and Panx in glial cells may contribute
to development of migraine with aura, as they facilitate the spreading of signals between
satellite glial cells, including Ca2+ waves [72].

Ca2+ spreading among glia and the aberrant transport of other ions may be associated
in particular with a certain subtype of migraine with aura, called familial hemiplegic
migraine (FHM). Despite the fact that neuron-glia co-sensitization occurs often in the
course of migraine, in FHM the role of CGRP seems limited, as shown by the studies of
Hansen et al. [73]. This fuels the suspicion that disturbances in ion transport within the
brain arise from CGRP-independent processes [74].

2.5. Familial Hemiplegic Migraine

As the TGVS richly expresses ion channels [30], the hypothesis that migraine headache
may be a result of dysregulated nerve excitation due to one or more channelopathies is an
attractive one. Moreover, migraine shares clinical similarities with other channelopathies,
e.g., myotonia or periodic paralysis including frequency and duration of attacks, paroxys-
mal character, triggers for attack, and gender-related predilection for attack [74]. Genetic
studies of FHM have also substantiated the hypothesis that migraine, or at least aurae arise
as a result of ionopathy.

FHM, the most severe subtype of MA, is characterized by the presence of temporary
unilateral hemiparesis (numbness and/or motor weakness). Usually the symptoms of
FHM start in the first or second decade of life. They may be accompanied by cerebellar
atrophy and disturbances in cerebral blood flow. Less frequent are atypical attacks with
cerebellar signs, encephalopathy, coma, prolonged hemiplegia, epileptic seizure, confusion,
or fever, with full recovery or nystagmus and ataxia between attacks [75].

FHM is a rare, genetically heterogeneous disease, inherited in an autosomal dominant
pattern with approximately 70–90% penetrance [76]. Three causative genes for FHM have
been identified: CACNA1A (FHM type 1), ATP1A2 (FHM type 2) and SCN1A (FHM type
3) [77–79]. The CACNA1A gene encodes the α1A subunit of the P/Q-type high-voltage
activated calcium channel. The ATP1A2 gene encodes the catalytic α2 subunit of Na+/K+

ATPase, which is exclusively expressed in astrocytes where it maintains the electrochemical
gradient of Na+ and K+ ions essential for transport of Ca2+ and glutamate. The Na+/K+

ATPase also regulates the reuptake of K+ and glutamate. The elevated level of K+ due to
FHM2 mutations triggers CSD [80]. The SCN1A gene encodes the α subunit of the neuronal
voltage-gated sodium channel (Nav1.1). Nav1.1 is mainly expressed in the cerebral cortex
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and spinal cord where it is responsible for the generation and propagation of action
potentials. Mutations in FHM genes occur also in epileptic patients [81].

3. Structure and Functions of CaV2.1

Voltage-dependent Ca2+ channels are multiprotein complexes consisting of α1, α2δ,
β and γ subunits [24]. The structural and functional diversity of VGCCs results from the
multiple isoforms of each subunit, especially α1, different gating kinetics, and the many
proteins with which they interact, often via transient, low-affinity molecular interactions
(Table 1). CaV1, CaV2 and CaV3 are paralogs which have arisen through gene duplication
events unaccompanied by speciation. CaV1 channels control synaptic integration and
modulate NMDA receptor-mediated plasticity at the post-synapse, regulate enzyme activity
and gene expression, and initiate excitation-contraction coupling. CaV2 channels mediate
neurotransmission at the pre-synaptic active zone, while the CaV3 subfamily modulates
the depolarization threshold for action potential initiation in cardiomyocytes and thalamic
neurons. Both CaV1 and CaV2 are classified as high voltage-activated, while CaV3s are
low voltage-activated channels [24,29,82].

Of all of the culprits potentially implicated in migraine channelopathy, the P/Q-type
CaV2.1 channel has received the most attention. CaV2.1 channels are present in presynaptic
terminals and somatodendritic membranes in the brain and spinal cord [83]. Importantly,
they are expressed in brain regions responsible for nociception or even strongly implicated
in migraine pathogenesis e.g., TG and brainstem and control the release of vasoactive
neuropeptides in the TGVS [84].

As presented in Figure 3, the α1A subunit of CaV2.1 is formed from four homologous
domains (I–IV) consisting of six transmembrane regions (S1–S6). The S4 region constitutes
the voltage sensor, while S5, the P-loop, and S6 form the pore region, which determines ion
selectivity and conductance properties [24,29,82].
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Generally, different mutations are associated with pure FHM1 and FHM1 with cere-
bellar symptoms. For example, the R192Q mutation is responsible for a mild form of 
FHM1, whereas the S218L mutation causes a severe, often lethal phenotype [90]. Moreo-
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Table 1. Clinical presentation of CACNA1 mutation in FHM. 
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Figure 3. Locations of FHM1 mutations in the secondary structure of the calcium channel α2.1 subunit. 1—R192Q, 2—R195K,
3—S218L, 4—V581M, 5—R583Q, 6—T666M, 7—V714A, 8—D715E, 9—Y1246C, 10—K1336E, 11—R1347Q, 12—C1370Y,
13—Y1385C, 14—V1457L, 15—C1535S, 16—R1668W, 17—L1682P, 18—W1684R, 19—V1696I, 20—I1710T, 21—I1811L. I-IV-
number of extracellular loop.

CaV2.1 channels control action-potential evoked neurotransmitter release, by trig-
gering activation of the exocytotic machinery at the pre-synapse [25]. CaV2.1s are able to
interact with numerous Ca2+-binding proteins [24] and maintain short-term plasticity via
Ca2+-dependent inactivation and Ca2+-dependent facilitation. CaV2.1 channels are also in-
volved in local excitability of neurons, Ca2+ signaling, cell survival or gene expression [85].
Remarkably, CaV2.1 channels facilitate both fast neurotransmission and modulation of
neuromuscular transmission of acetylcholine mediated by muscarinic M1 and M2 receptors
and protein kinases A and C [86,87].
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3.1. Mutations in CACNA1A

The CACNA1A gene consists of 47 exons and is located on chromosome 19p13. Age
and gender-dependent alternative splice variants of exon 37 were found, which correspond
to differences in channel kinetics and confer subfunctionalities to isoforms expressed in
different brain regions [88].

Mutations in CACNA1A are associated with a few neurological diseases, including
FHM, episodic ataxia type 2 (EA2), spinocerebellar ataxia type 6 (SCA6) and nonprogres-
sive congenital ataxia (NPCA), and epilepsy [89]. Patients with FHM may present with
symptoms of ataxia. Mutations in FHM genes are not found in common forms of MA and
MO. CACNA1A mutations are responsible for about half of FHM cases. 21 FHM1 mutations
were identified, all of them missense mutations leading to substitutions of amino acids in
functional regions of the CaV2.1 channel, with the majority occurring in transmembrane
segments of the α1 subunit (Figure 3).

Generally, different mutations are associated with pure FHM1 and FHM1 with cerebel-
lar symptoms. For example, the R192Q mutation is responsible for a mild form of FHM1,
whereas the S218L mutation causes a severe, often lethal phenotype [90]. Moreover, indi-
viduals with the same mutation may differ in terms of clinical symptoms, which suggests
that epigenetic and environmental factors may be involved in determining phenotype
(Table 1) [75].

Mutations in CACNA1A may be divided into three groups: gain of function, loss
of function, or biallelic mutations. Half of FHM1 cases are caused by gain of function
mutations. 13 of FHM1 mutations (R192Q, S218L, R583Q, T666M, V714A, D715E, Y1246C,
K1336E, V1457L, W1684R, V1696I, I1710T, I1811L) were investigated in heterologous ex-
pression systems expressing recombinant CaV2.1 channels [105–117]; some of them (R192Q,
S218L, T666M, V714A, I1811L) were also studied in neurons from CaV2.1−/− mice ex-
pressing human CaV2.1 α1 subunits [108,111,118–120].

Studies on the HEK293 cell line [106] as well as on CaV2.1−/− neurons [108] evi-
denced that there is a decreased density of functional CaV2.1 in FHM1 mutant cells as
compared to WT. This, however, has been rationalized as an artifact of overexpression
post-transfection insofar as decreased numbers of functional channels were not observed
when hCaV2.1 were expressed endogenously in knock-in mice [25]. Nonetheless, other
studies on CaV2.1−/− neurons found no differences in synaptic strength [118,119]. Fur-
ther, CaV2.1−/+ mice have a reduced response to neuroinflammatory and neuropathic
pain due to having roughly half the number of CaV2.1 channels, albeit in an age-dependent
manner. This is compatible with the idea that CaV2.1 channels may be pronociceptive
in terms of inflammation and neuropathic pain and antinociceptive in response to acute
non-injurious noxious thermal stimuli.

CACNA1A mutations result in a wide spectrum of consequences including increased
channel open probability, a lower voltage of activation leading to enhanced Ca2+ influx,
reduced channel inhibition by G-protein βγ heterodimers, altered synaptic morphology,
excitation-inhibition imbalance and enhanced glutamate release. According to in vitro
models of CSD, the increased glutamate release and interaction between glutamate and pre-
and postsynaptic glutamate NMDA receptors may facilitate CSD. Importantly, CACNA1A
mutations promoting increased Ca2+ influx seem to selectively capacitate glutamate release
at pyramidal neurons, without altering fast-spiking inhibitory interneurons [117]. Further,
the excitotoxic effects of glutamate on neuronal and glial cells have been shown to alter
brain energy metabolism [117,120,121]. A study by Eikermann-Haerter et al. [115] showed
that mice expressing the R192Q CACNA1 mutation were more sensitive to CSD than those
bearing the S218L variant. Moreover, female mutant mice were more susceptible to CSD
and neurological deficits than males. The R192Q mouse model pointed not only to a de-
creased threshold for CSD but also increased CaV2.1 current density [122]. Susceptibility to
CSD can also be heightened by female hormones and allele dosage. In addition, FHM1 mice
showed greater oxygen consumption leading to tissue anoxia, which may be responsible
for prolonged aura [117].
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Table 1. Clinical presentation of CACNA1 mutation in FHM.

Mutation Location Population Phenotypic Spectrum References

R192Q
rs121908211 exon 4 Italian family No data Ophoff et al. [77]

R195K
rs121908222 exon 4 French family FHM without cerebellar signs Ducros et al. [75]

S218L
rs121908225 exon 5

British and Australian
families,

Malaysian family

Minor head trauma–triggered delayed severe
cerebral edema and coma; childhood seizures

Kors et al. [90]
Chan et al. [91]

V581M exon 13 German family FHM with cerebellar
dysfunction and late-onset cognitive decline Freilinger et al. [92]

R583Q
rs121908217 exon 13

Italian family,
Dutch patient,

Portuguese family,
Dutch patient

FHM with consciousness and fever lasting
several days, late-onset cerebellar ataxia and
cerebellar atrophy; symptoms triggered by
minor head trauma; sporadic hemiplegic

migraine without cerebellar signs, age at onset
13 years

Battistini et al. [93]
Terwindt et al. [94]
Alonso et al. [95]
de Vries et al. [96]

T666M
rs121908212 exon 16

American family,
Australian family,
French families,
Dutch patient,
Dutch families

Age at onset between 2 and 22 years; FHM with
progressive cerebellar ataxia; sporadic

hemiplegic migraine; progressive
cognitive dysfunction

Ophoff et al. [77]
Friend et al. [97]
Ducros et al. [98]

Terwindt et al. [94]
Kors et al. [99]

V714A
rs121908213 exon 17 British family Age at onset between 10 and 21 years Ophoff et al. [77]

D715E
rs121908218 exon 17 French family FHM with progressive cerebellar ataxia Ducros et al. [98]

K1336E exon 25 French family FHM without cerebellar signs Ducros et al. [75]

R1347Q
rs121908230 exon 25 Dutch families

Wide clinical spectrum ranging from (trauma
triggered) hemiplegic migraine with and
without ataxia, loss of consciousness and

epilepsy, early age at onset (usually before the
age of 3)

Stam et al. [100]

Y1385C
rs121908219 exon 26 French patients FHM with cerebellar signs, coma, hyperthermia,

meningeal signs, and partial seizure,
Vahedi et al. [101]
Ducros et al. [75]

V1457L
rs121908237 exon 27 Italian family

Mean age at onset 34 years, various degrees of
aphasia congruent with the hemispheric

dominance, without cerebellar ataxia or coma
Carrera et al. [102]

R1668W exon 32 French family FHM with or without cerebellar signs Ducros et al. [75]

W1684R exon 32 French family FHM with cerebellar signs Ducros et al. [75]

V1696I exon 33 French family FHM without cerebellar signs Ducros et al. [75]

I1710T
rs121909326 exon 33 Dutch family

FHM with childhood-onset of cerebellar ataxia
(SCA6), childhood complex partial and

generalized tonic-clonic seizures that occurred
independently of the FHM attacks

Kors et al. [103]

I1811L
rs121908214 exon 36 Dutch and American

families

Only one family displayed cerebellar atrophy
and in that family only some members

were affected
Ophoff et al. [77]

18.2-kb
deletion exons 39–47 Irish, Indian, and

Danish patients
FHM with or without ataxia, no seizures, no

family history Labrum et al. [104]
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3.2. Calcium-Related Therapeutics in Migraine

Migraine pharmacotherapy includes prophylactic agents taken every day (e.g., an-
tidepressants and antiepileptic drugs) and agents taken at headache onset (e.g., triptans).
Nonetheless, migraine patients typically migrate to analgesics, typically nonsteroidal anti-
inflammatory drugs (NSAIDs) available without prescription, despite mixed reports over
their efficacy. Unfortunately, triptans, selective 5-HT1B/1D receptor agonists, which make
up 80% of prescribed medications, proved to be effective in only 60% of migraine patients
not responding to NSAIDs [123–125].

Unfortunately, most drugs currently in use do not prevent the recurrence of migraine
attacks. Thus, migraine may be the cause of numerous absences at school, or at work. It was
calculated that the costs of absenteeism from work due to migraines are much higher than
the costs of its treatment. Important also is the fact that 3–4 times more funds are spent for
the treatment of chronic migraine in comparison with the episodic subtype. It is estimated
that in the USA the annual total costs incurred for migraine, taking into account both the
treatment, as well as losses due to absence from work add up to as much as 13 billion
USD [126]. The lack of efficacious analgesics or means to prevent migraine recurrence in
many patients has created a need for finding novel therapeutics.

Currently, there are no selective small molecule inhibitors of CaV2.1. Only two
peptide toxins are selective for CaV2.1: ω-agatoxin IVA and ω-agatoxin IVB isolated
from the venom of American funnel web spider A. aperta. Bothω-agatoxins bind on the
outside of the pore region of α1a subunit of CaV2.1 but have different kinetics: blocking
byω-agatoxin IVB is eightfold slower than IVA [127]. However, there are drugs that are
not selective for but act also at CaV2.1 and show clinical efficacy in patients with FHM1
including flunarizine and the non-dihydropyridine verapamil [128].

New targets for migraine therapy may focused on different Ca2+ channels. One class
worth noting is acid-sensing ion channels (ASICs), among which the ASIC1 predominates
in the CNS. ASIC1 channels are responsible for enhancing Ca2+ permeability and pain
signaling [129] and their overexpression has been found in chronic inflammatory and
neuropathic models [130]. How ASICs are implicated in migraine pathogenesis remains
largely unknown. Still, ASICs are activated by decreases in pH regulated in part by
serotonin (5-HT) and nerve growth factor (NGF), changes in both of which are observed in
migraine patients [131,132]. Secondly, ASIC1a is overexpressed in hypothalamic orexinergic
neurons thought to be involved in migraine pathophysiology. Finally, lower pH secondary
to ASIC activation may initiate or propagate CSD [129,132]. Corroborating this hypothesis,
a study using experimental models showed that both amiloride (a nonselective blocker of
ASICs) and tarantula toxin PcTx1 (a selective blocker of ASIC1a) inhibited CSD [133].

4. Conclusions

Migraine is a multifactorial neurological disease whose pathogenesis has not been
fully elucidated. Although numerous dysregulated processes likely converge to manifest
as migraine, disturbances in the distribution of various ions between extracellular and
intracellular compartments seem to be a common denominator in the pathophysiology of
the disease. Migraine ”ionopathy” likely derives from one or multiple channelopathies
which may be inherited e.g., mutations in CACNA1A and TRPA1, or result from the effects
of toxic environmental factors. Certain parts of the brain appear particularly impacted by
migraine-associated channelopathies. The TG, which is the major afferent pathway for pain
signals from cranial vessels and dura mater, is implicated in migraine pathogenesis largely
owing to its release of neuropeptides such as CGRP. CGRP is one of the most important
molecules involved in neuron-glial communication, whose breakdown is related to the
propagation of migraine pain and the sensitization of neurons which likely precedes the
progression from episodic to chronic migraine. How calcium channelopathies impact
CGRP pathways however, remains largely unknown. CSD, a purportedly non-synaptic
phenomenon, and gap-junctional interactions also play a role in MA by driving aberrant
neuron-neuron and neuron-glia signal propagation. As is the case with other neurologi-
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cal disorders, the complex and still poorly understood pathogenesis of migraine makes
treatment difficult. Nonetheless, the pivotal role of CGRP in the disease has made it a
prominent therapeutic target.
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