Supplementary Materials:

Supplementary Figure 1. (A) MUSCLE sequence alignment of the Zyxin family Lim domain shows the presence of conserved cysteine/Histidine residues in Lim1 (red arrow)/Lim2 (green arrow)/Lim3(blue arrow) regions (red boxes are conserved cysteine/histidine/aspartate, Yellow boxes are variable hydrophobic residues) (B) Hydrophobicity plots for Lim domains of Zyxin family proteins. The hydrophobicity analysis was performed using the ProtScale server and plotted against the amino acid position. The scoring from -2.0 to 2.5 on the y-axis reflects hydrophobicity (higher positive (+ve) score depicts more hydrophobicity). This analysis indicates that each Lim domain and Lim1/Lim2/Lim3 region has a distinct hydrophobicity score.

Supplementary Figure 2. Phylogenetic and NetNES analysis of the Zyxin family proteins. (A) phylogenetic tree created by Maxximum	8
Likelihoos Method on PhyML 3.0 server (B) NetNES analysis was done to identify the Leucine-rich motif nuclear export sequence (NES)	9
responsible for nuclear transport of protein. The NES was identified through combined analysis implemented by Neural Network (NN), Hidde	en 10
Markov Model (HMM) and NES scoring algorithm. Only the sequences giving a peak higher than threshold using all three algorithms was	11
identified as NES.	12

Supplementary Figure 3. Identification of post-translation modification (PTM) sites of Zyxin family proteins. All proteins exhibited sites for PTM. However, PTMs varied amongst all the member proteins, with the highest PTM observed for LPP, and the lowest for FBLIM1.

Supplementary Figure 4. (A) Validation of homology models by Ramachandran plot. Models generated for members of Zyxin family were validated through Ramachandran plots. All models had acceptable Ramachandran values. (B) Absolute quality estimation of all the models by QMEAN, reflecting the native character and quality, red star indicating the query model position while comparing with all available models in PDB.

# Job:	Lim_Zyx							
# Quer	y: s001A							
# No:	Chain	Z	rmsd	lali	nres	%id	PDB Descri	ption
1:	1rut-X	9.7	4.7	141	157	26	MOLECULE:	FUSION PROTEIN OF LMO4 PROTEIN AND LIM DOMAIN-BIN
2:	2dfy-X	9.5	4.6	140	158	26	MOLECULE:	FUSION PROTEIN OF LIM DOMAIN TRANSCRIPTION FACTOR
3:	2dfy-C	9.4	4.6	140	158	26	MOLECULE:	FUSION PROTEIN OF LIM DOMAIN TRANSCRIPTION FACTOR
4:	2rgt-B	9.4	7.1	135	154	28	MOLECULE:	FUSION OF LIM/HOMEOBOX PROTEIN LHX3, LINKER, INSU
5:	6cme-A	9.4	13.2	98	154	24	MOLECULE:	LIM/HOMEOBOX PROTEIN LHX4, INSULIN GENE ENHANCER P
6:	4jcj-B	9.4	4.1	86	148	23	MOLECULE:	INSULIN GENE ENHANCER PROTEIN ISL-1,LIM DOMAIN-BI
7:	3mmk-A	9.3	12.9	118	151	30	MOLECULE:	FUSION OF LIM/HOMEOBOX PROTEIN LHX4, LINKER, INSU
8:	4jcj-C	9.2	4.4	86	150	23	MOLECULE:	INSULIN GENE ENHANCER PROTEIN ISL-1,LIM DOMAIN-BI
9:	4jcj-A	9.2	3.7	81	144	25	MOLECULE:	INSULIN GENE ENHANCER PROTEIN ISL-1,LIM DOMAIN-BI
10:	3mmk-B	9.2	13.2	121	154	28	MOLECULE:	FUSION OF LIM/HOMEOBOX PROTEIN LHX4, LINKER, INSU
11:	2rgt-A	8.5	4.9	118	148	30	MOLECULE:	FUSION OF LIM/HOMEOBOX PROTEIN LHX3, LINKER, INSU
12:	1b8t-A	7.5	2.0	65	192	26	MOLECULE:	PROTEIN (CRP1);
13:	2miu-A	7.3	4.6	75	98	24	MOLECULE:	FOUR AND A HALF LIM DOMAINS PROTEIN 2;
14:	2xjz-E	7.1	6.1	115	127	25	MOLECULE:	RHOMBOTIN-2;
15:	2xjz-D	7.0	5.9	115	129	25	MOLECULE:	RHOMBOTIN-2;
16:	2xjy-A	7.0	1.9	59	131	27	MOLECULE:	RHOMBOTIN-2;
17:	2dlo-A	6.8	2.5	64	81	59	MOLECULE:	THYROID RECEPTOR-INTERACTING PROTEIN 6;
18:	2xqn-T	6.8	2.3	60	125	28	MOLECULE:	ACTIN-LIKE PROTEIN 7A;
19:	2ypa-C	6.8	1.8	56	126	27	MOLECULE:	T-CELL ACUTE LYMPHOCYTIC LEUKEMIA PROTEIN 1;
20:	2lzu-A	6.8	2.4	64	72	22	MOLECULE:	LIM DOMAIN-CONTAINING PROTEIN 2;
21:	2xjz-B	6.8	5.2	113	122	25	MOLECULE:	RHOMBOTIN-2;
22:	2iyb-H	6.7	2.8	58	63	21	MOLECULE:	PROTEIN ENABLED HOMOLOG;
23:	2iyb-G	6.7	2.9	59	64	20	MOLECULE:	PROTEIN ENABLED HOMOLOG;
24:	2iyb-F	6.7	3.0	58	63	21	MOLECULE:	PROTEIN ENABLED HOMOLOG;
25:	1x61-A	6.6	3.5	63	72	25	MOLECULE:	THYROID RECEPTOR INTERACTING PROTEIN 6;
26:	4kfz-A	6.6	8.3	109	146	25	MOLECULE:	LMO-2;
27:	2xjz-A	6.6	5.9	111	125	24	MOLECULE:	RHOMBOTIN-2;
28:	2mbv-A	6.5	3.8	72	96	26	MOLECULE:	FUSION PROTEIN OF LIM DOMAIN TRANSCRIPTION FACTOR
29:	2iyb-E	6.5	3.1	59	64	20	MOLECULE:	PROTEIN ENABLED HOMOLOG;
30:	2xjz-C	6.5	3.1	60	112	17	MOLECULE:	RHOMBOTIN-2;
31:	6cme-B	6.4	13.2	122	154	28	MOLECULE:	LIM/HOMEOBOX PROTEIN LHX4, INSULIN GENE ENHANCER P
32:	2dar-A	6.3	2.2	62	90	26	MOLECULE:	PDZ AND LIM DOMAIN PROTEIN 5;
33:	2dj7-A	6.3	7.9	72	80	28	MOLECULE:	ACTIN-BINDING LIM PROTEIN 3;

Supplementary Figure 5. Structural alignment analysis of the Zyxin Lim domain by DALI server, indicates the similarity with transcription regulators.

Supplementary Figure 6. (A) Adaptive Poisson-Boltzmann Solver (APBS) electrostatics and Yellow-Red-Blue (YRB) showing surface potential and hydrophobicity calculations, respectively; of Zyxin family Lim domains.

Supplementary Figure 7. The protein expression profiles of the Zyxin family proteins in different cancers (retrieved from Genevestigator) are presented as bar graphs. (A) Zyxin; (B) LIMD1; (C) Ajuba and (D) LPP. Evidently, the expression of Zyxin family proteins was high in almost all types of cancers.

Supplementary Figure 9. Protein-protein interaction (PPI) analysis of Zyxin. The arrow indicates the bait and prey relationship of each protein. The bait protein is shown as a green circle whereas the prey protein is shown as grey squares.

Supplementary Figure 10. Protein-protein interaction (PPI) analysis of LimD1. The arrow indicates the bait and prey relationship of each protein. The bait protein is shown as a green circle whereas the prey protein is shown as grey squares.

(B) WTIP

Supplementary Figure 12. Protein-protein interaction (PPI) analysis of (A) FBLIM and (B) WTIP. The arrow indicates the bait and prey relationship of each protein. The bait protein is shown as a green circle whereas the prey protein is shown as grey squares. The PPI analysis suggests WTIP has the least interacting partners.

Supplementary Figure 13. Protein-protein interaction (PPI) analysis of Ajuba. The arrow indicates the bait and prey relationship of each protein. The bait protein is shown as a green circle whereas the prey protein is shown as grey squares.

(A) OmniPath Analysis

(B) STITCH Analysis

(C) STRING Analysis

Supplementary Figure 15. Protein-protein interactions and pathway analysis, (A) Omnipath showing the zyxin involvement in Akt/IL7R pathway; (B) STITCH analysis; (C) STRING analysis.

Supplementary Table 1. Distribution of hydrophobic amino acids in each LIM domain of human Zyxin family proteins. The column for each LIM domain shows number of hydrophobic amino acids and the total hydrophobicity. These values were determined using Expasy ProtParam, the hydrophobicity of each domain varies from ~36 to 47 %. The number of hydrophobic amino acid varied in each domain but tryptophan was absent amongst all LIMs except LIM3 of TRIP6.

Human	Zyxin		Lim1			Lim2			Lim3	
Family										
Zyxi	n	Ile=1	Phe=3	41.8%	Ile=2	Phe=2	36.6%	Ile=2	Phe=2	39.1%
		Val=1	Trp=0		Val=4	Trp=0		Val=5	Trp=0	
		Leu=6			Leu=2			Leu=4		
		Cys=7			Cys=6			Cys=8		
		Met=0			Met=1			Met=2		
		Ala=7			Ala=5			Ala=4		
LimD	01	Ile=0	Phe=7	46.8%	Ile=4	Phe=3	47.6%	Ile=2	Phe=1	36.1%
		Val=4	Trp=0		Val=5	Trp=0		Val=4	Trp=0	
		Leu=3			Leu=6			Leu=7		
		Cys=7			Cys=7			Cys=8		
		Met=1			Met=2			Met=1		
		Ala=7			Ala=2			Ala=2		
Ajub	a	Ile=2	Phe=4	40.3%	Ile=4	Phe=3	44.3%	Ile=3	Phe=2	43.3%
		Val=3	Trp=0		Val=5	Trp=0		Val=2	Trp=0	
		Leu=4			Leu=4			Leu=6		
		Cys=9			Cys=8			Cys=1		
		Met=0			Met=1			1		
		Ala=3			Ala=2			Met=3		
								Ala=3		
LPF)	Ile=3	Phe=3	43.3%	Ile=5	Phe=4	44.3%	Ile=4	Phe=1	38.9%
		Val=5	Trp=0		Val=3	Trp=0		Val=5	Trp=0	
		Leu=2			Leu=3			Leu=5		
		Cys=8			Cys=6			Cys=8		
		Met=1			Met=2			Met=1		
		Ala=4			Ala=4			Ala=3		
WTI	Р	Ile=3	Phe=4	40.4%	Ile=3	Phe=3	46%	Ile=2	Phe=0	40.4%
		Val=2	Trp=0		Val=7	Trp=0		Val=3	Trp=0	
		Leu=4			Leu=4			Leu=8		
		Cys=7			Cys=7			Cys=9		
		Met=1			Met=2			Met=1		
		Ala=4			Ala=2			Ala=5		
FBLI	Μ	Ile=1	Phe=3	37.1%	Ile=3	Phe=5	46.6%	Ile=5	Phe=3	40%
		Val=2	Trp=0		Val=4	Trp=0		Val=3	Trp=0	
		Leu=4			Leu=3			Leu=4		
		Cys=7			Cys=7			Cys=9		

Met=1		Met=0			Met=1			
Ala=5			Ala=5			Ala=3		
Ile=0	Phe=3	47.4%	Ile=5	Phe=4	45.3%	Ile=5	Phe=1	43.2%
Val=9	Trp=0		Val=3	Trp=0		Val=3	Trp=1	
Leu=2			Leu=3			Leu=6		
Cys=7			Cys=6			Cys=9		
Met=0			Met=1			Met=1		
Ala=6,			Ala=5			Ala=4		
	Met=1 Ala=5 Ile=0 Val=9 Leu=2 Cys=7 Met=0 Ala=6,	Met=1 Ala=5 Ile=0 Phe=3 Val=9 Trp=0 Leu=2 Cys=7 Met=0 Ala=6,	Met=1 Ala=5 Ile=0 Phe=3 47.4% Val=9 Trp=0 Leu=2 Cys=7 Met=0 Ala=6,	Met=1 Met=0 Ala=5 Ala=5 Ile=0 Phe=3 47.4% Ile=5 Val=9 Trp=0 Val=3 Leu=2 Leu=3 Cys=7 Cys=6 Met=0 Met=1 Ala=6, Ala=5	Met=1 Met=0 Ala=5 Ala=5 Ile=0 Phe=3 47.4% Ile=5 Phe=4 Val=9 Trp=0 Val=3 Trp=0 Leu=2 Leu=3 Cys=6 Met=1 Met=0 Met=1 Ala=5 Ala=5	Met=1 Met=0 Ala=5 Ala=5 Ile=0 Phe=3 47.4% Ile=5 Phe=4 45.3% Val=9 Trp=0 Val=3 Trp=0 Trp=0 Leu=2 Leu=3 Cys=6 Met=1 Met=0 Met=1 Ala=5 Ala=5		

Supplementary Table 2. Ohnolog analyis of Zyxin family proteins.

Family Size	Ohnolog Family
3	AJUBA, LIMD1, WTIP
4	FBLIM1,LPP,TRIP6,ZYX

Name of Softwares/Databases	Information
Uniprot	https://www.uniprot.org/
Muscle	https://www.ebi.ac.uk/Tools/msa/muscle/
ProtParam	https://web.expasy.org/protparam/
ProtScale	https://web.expasy.org/protscale/
NetNES	www.cbs.dtu.dk/services/NetNES/
NLStradamus	http://www.moseslab.csb.utoronto.ca/NLStradamus/
MultAlin	http://www.sacs.ucsf.edu/cgi-bin/multalin.py
PhosphoSitePlus v6.5.9.1	https://www.phosphosite.org/homeAction
Swiss model workspace	http://swissmodel.expasy.org/workspace/
Procheck analysis	https://servicesn.mbi.ucla.edu/PROCHECK/
Dali server	http://ekhidna2.biocenter.helsinki.fi/dali/
Bioplex explorer	https://bioplex.hms.harvard.edu/explorer/home
Pharos interface	https://pharos.nih.gov/
OmniPath	http://omnipathdb.org/
Signor 2.0	https://signor.uniroma2.it/
Genemania	https://genemania.org/
STRING analysis	https://string-db.org
STITCH analysis	http://stitch.embl.de/cgi/
Molecular INTeraction databas	se https://mint.bio.uniroma2.it/
(MINT)	
GENEVESTIGATOR	https://genevestigator.com/
iMODS server	http://imods.chaconlab.org/
WEBLOGO	https://weblogo.berkeley.edu/logo.cgi
OHNOLOGS v2	http://ohnologs.curie.fr
PhyML 3.0	http://www.atgc-montpellier.fr/phyml/

Supplementary Table 3. List of all online servers/databases used in the study.