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Abstract: We observed substantial differences in predicted Major Histocompatibility Complex II
(MHCII) epitope presentation of SARS-CoV-2 proteins for different populations but only minor
differences in predicted MHCI epitope presentation. A comparison of this predicted epitope MHC-
coverage revealed for the early phase of infection spread (till day 15 after reaching 128 observed
infection cases) highly significant negative correlations with the case fatality rate. Specifically, this
was observed in different populations for MHC class II presentation of the viral spike protein
(p-value: 0.0733 for linear regression), the envelope protein (p-value: 0.023), and the membrane
protein (p-value: 0.00053), indicating that the high case fatality rates of COVID-19 observed in some
countries seem to be related with poor MHC class II presentation and hence weak adaptive immune
response against these viral envelope proteins. Our results highlight the general importance of
the SARS-CoV-2 structural proteins in immunological control in early infection spread looking at
a global census in various countries and taking case fatality rate into account. Other factors such
as health system and control measures become more important after the early spread. Our study
should encourage further studies on MHCII alleles as potential risk factors in COVID-19 including
assessment of local populations and specific allele distributions.

Keywords: COVID-19; population coverage; MHC II; MHC I; B-cell; T-cell; epitope mapping; lethality
rate; infection spread; SARS-CoV-2

1. Introduction

Since early 2020, SARS-CoV-2, which causes COVID-19, developed into a global
pandemic. Many potential approaches to treatment and prophylaxis have been developed
over a relatively short period. Currently, 238 vaccine candidates are in pre-clinical and
clinical development (WHO, listing as of 2 February 2021) and six are at the same time
already used worldwide (Oxford/AstraZeneca, Pfizer/BioNTech, Sinovac, Sinopharm,
Moderna, and Sputnik V). However, most of the treatment agents show disputable efficacy
or side effects [1]. Understanding immunological recognition and presentation of epitopes
is a key step in controlling and combating viral diseases. Accordingly, several experimental
and computerized models can be used to cover the areas of epidemiology, drug repurposing
and vaccine design [2]. One of the most challenging approaches is to identify T and B cell
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epitopes that are correlating with optimal CD4+ helper, CD8+ cytotoxic T cell and B cell
responses and may be associated with clinically mild COVID-19 courses or even constitute
potential vaccine candidates [3–5]. However, one of the main problems is the presence of
diverse circulating SARS-CoV-2 variants, and the diversity of Major Histocompatibility
Complex (MHC) class I and class II alleles within the human population worldwide [6].
Presentation at MHCI and MHCII is critical for a sufficient activation of cytotoxic and
helper T cell reactivity as well as for B cell stimulation and marks the potential of the
adaptive immune system to establish a strong and long-lasting immune memory relevant
to set up herd immunity and for the efficacy of future vaccine candidates.

The spread of viral diseases is influenced by several factors, such as the movements
of the human population, social behavior, virus mutations and population immunity.
Therefore, to understand the country-specific responses elicited by the MHCI and MHCII
repertoires, population data on the spread of COVID-19 infection and the calculated lethal-
ity should be correlated with predictions of the immunological repertoire in a particular
population.

To address this issue, our analysis considers: (i) infection spread and pattern of
COVID-19-patient growth curves in different countries; (ii) focus on naïve population and
natural immunity, defined for the time period from disease-free population till day 15 after
reaching 128 infected cases in the population and (iii) country-specific human host immune
response according to epitope response reaction frequencies separated for T- and B-cells
(major eliciting MHCII epitopes mapped on SARS-CoV-2 surface epitopes).

In this paper, we establish and present several correlations between pandemic spread
in different countries and the immune response to epitope-representation in immunogenic
SARS-CoV-2 proteins. Full data of a broad analysis including different parameter choices
are given (see also supplement), including negative controls. Potential limitations of this
study and other factors such as control measures, health system, strain variation and
local immunity are discussed. These immunological observations and correlations should
now be further investigated together with probing of molecular features of the COVID-
19 infection. Particularly in the early phase of the COVID-19 infection clear and strong
correlations for MHC class I and II representation and case fatality rate become apparent
while further factors change this in later time points.

2. Results
2.1. Prediction of B- and T-Cell Epitopes

Protein annotation and protein–protein interactions with the human host did provide
some hints on SARS-CoV-2 infection biology and treatment strategies. However, there are
some lacunas in the methods and in the analyses provided to date. Therefore, we decided
to take the analysis one decisive step further to in silico predictions of potential linear B-cell
epitopes. These analyses were performed with several online tools to rule out bias from
individual prediction algorithms. The number of predicted epitopes significantly varied
between the analyzed proteins.

For the analysis of B-cell epitopes, three distinct methods were used. The methods
include ABCpre, BepiPred and IEDB. These methods work on discrete principles which
help to explore various aspects of epitopes. Therefore the results are in varied combinations
which can be further processed and interpreted. For example, the ABCpred method
predicted a high number of epitopes with the default parameters. However, compared to
BepiPred, IEDB analysis revealed unique epitopes which are neither predicted by BepiPred
nor ABCpred. The BepiPred is one of the most popular tools for linear B-cell analysis. We
compared the epitopes predicted in this study with experimentally verified epitopes, and
most of them also matched (Figure S1). All the tools used in this analysis are set at their
default parameters.

The non-structural protein ORF1ab was evaluated as the most antigenic protein. How-
ever, due to its nature and length, it is controversial to consider ORF1ab as a vaccine
candidate. On the other hand, the ORF1ab encodes viral enzymes crucial for viral repli-
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cation, such as viral protease (position: 1564–3882 AA, see Table S1) that contains several
highly antigenic regions and is also a drug target. Spike protein (surface glycoprotein)
is generally considered to be highly antigenic therefore represents a significant potential
target for the vaccine [7,8]. Mapping of spike protein revealed 115 B-cell epitopes predicted
by IEDB, 28 by BepiPred-2.0 and 117 was determined by ABCpred (Table 1). The full list of
predicted B-cell epitopes is listed in Table S2.

Table 1. Comparison of the number of the predicted epitopes for each SARS-CoV-2 protein.

B Cell Epitope (No. of Epitopes) T Cell Epitope
(No. of Epitopes) * VaxiJen

v2.0 Score
Protein Name IEDB BepiPred-2.0 ABCpred TepiTool:

MHC Class I
TepiTool:

MHC Class II

Orf1ab polyprotein 228 157 677 47894789 10051 0.4624
Surface glycoprotein 115 28 117 766765 1751 0.4646

ORF3a protein 11 6 24 224 64372 0.4945
Envelope protein 1 1 5 3886 19119 0.6025

Membrane glycoprotein 6 3 20 225224 379 0.5102
ORF6 protein 1 1 6 2054 2591 0.6131

ORF7a protein 4 42 11 438989 167 0.6441
ORF8 protein 42 43 11 245757 15134134 0.6502

Nucleocapsid phosphoprotein 0 7 38 68152152 42311311 0.5059
ORF10 protein 1 0 3 214949 59 0.7185

Sum of predicted epitopess 409 288 912 6491 13434

* for T-cells, the number of unique epitope/Major Histocompatibility Complex (MHC) combinations is listed.

To compare our findings with already experimentally validated epitopes, we selected
epitope 786QILPDPLKPTKRSFIEDLLFNKVTLA811, which can induce the production of
neutralizing antibodies in SARS-CoV-2 infected patients [9]. Interestingly, this epitope was
predicted by ABCpred (as 10-mer starting at position 789) and BepiPred-2.0 (predicted as
two epitopes, as 14-mer at 786 AA, and 9-mer 806LPDPSKPSKR815). The predictions by
IEDB are overlapping 7-mers starting at 782 AA.

Several studies have recently been published on the bioinformatics prediction of B-cell
epitope prediction in SARS-CoV-2 proteins. A summary of these articles is summarized
in Noorimotlagh et al. 2020 [3]. In the work of Wang et al. (2020), a structure-based
analysis was performed to select the most promising spike protein epitope for vaccine
development [10]. Their analysis identified nine linear B-cell epitopes, which we compared
with the results of our analysis. Two epitopes were identical with epitopes found by both
BepiPred and ABCpred (epitopes at positions 441–448 and 657–664). One epitope starting at
position 696 was found also by both tools, however, only in the truncated or extended form
and five epitopes (CVNLTTRTQLPPAYTNS, VTWFHAIHVSGTNG, LGVYYHKNNKSW,
TPINLVRDLPQGF and DEVRQIAPGQTGKI) were found exclusively using BepiPred.
None of the epitopes was identical to the epitopes retrieved by IEDB analysis. On the other
hand, compared to the work of Grifoni et al. (2020), our results were clearly different [11].
Of the 29 linear B-cell epitopes described by Grifoni, only two were identical to the epitopes
predicted by BepiPred (11-mer at position 65, eight-mer at position 1157) and one epitope
each by ABCpred (280NENGTITDA288) and IEDB (1229MVTIMLCCMTS1239).

Also, we found several similarities between already validated epitopes of previous
SARS-CoV and novel SARS-CoV-2 epitopes, however, the amino acid sequences of these
viruses are not identical, and thus several differences in predicted epitopes were observed
(Figure S1). A similar observation was noted in Grifoni et al. (2020), which compared the
amino acid sequence of SARS-CoV-2 and three related coronaviruses, Bat-SL-CoV, SARS-
CoV and MERS-CoV. Their findings indicate that there are relatively high levels of similarity
between SARS-CoV, Bat-SL-CoV and SARS-CoV-2, but only low sequence similarities
regarding MERS-CoV [11]. Likewise, Ahmed et al. (2020) found high similarities of SARS-
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CoV-2 and SARS-CoV structural proteins, but MERS-CoV proteins shared less than 46%
similarities with SARS-CoV-2 [7].

Identification of T-cell epitopes was performed using the analysis resource TepiTool
(IEDB). We included the 27 most frequent alleles for the MHCI and the 26 most frequent
alleles of MHC class II. Interestingly, multiple alleles of each MHCI and MHCII bind the
same epitopes or overlap. For example, we found 16 epitopes in OFR10, of which only
two (YINVFAFPF and MGYINVFAF) bind exclusively MHCI. The number of epitopes
predicted in silico for each structural protein is given in Table 2. The full list of T-cell
epitopes with associated alleles and IC50 values is available in the supplement (Table S3).

Table 2. Epitopes of structural proteins for each Human Leukocyte Antigen (HLA) allele *.

MHC Class I MHC Class II

Allele Spike
Protein

Envelope
Protein

Membrane
Protein

Nucleo
Capsid
Protein

Allele Spike
Protein

Envelope
Protein

Membrane
Protein

Nucleo-
Capsid
Protein

HLA-A*01:01 6 1 3 1 HLA-
DPA1*01:03/DPB1*02:01 73 8 22 8

HLA-A*02:01 36 11 17 2 HLA-
DPA1*02:01/DPB1*01:01 70 5 21 10

HLA-A*02:03 75 13 19 7 HLA-
DPA1*02:01/DPB1*05:01 22 2 9 1

HLA-A*02:06 74 13 19 11 HLA-
DPA1*03:01/DPB1*04:02 46 4 14 4

HLA-A*03:01 22 2 4 5 HLA-
DQA1*01:01/DQB1*05:01 20 0 7 2

HLA-A*11:01 41 2 9 9 HLA-
DQA1*01:02/DQB1*06:02 71 5 14 15

HLA-A*23:01 25 2 11 3 HLA-
DQA1*03:01/DQB1*03:02 7 0 1 2

HLA-A*24:02 19 0 8 2 HLA-
DQA1*04:01/DQB1*04:02 9 0 2 3

HLA-A*26:01 8 1 2 2 HLA-
DQA1*05:01/DQB1*02:01 32 0 4 5

HLA-A*30:01 53 5 19 24 HLA-
DQA1*05:01/DQB1*03:01 82 2 11 31

HLA-A*30:02 25 3 8 4 HLA-DRB1*01:01 158 10 27 30

HLA-A*31:01 34 4 14 14 HLA-DRB1*03:01 37 2 8 5

HLA-A*32:01 26 4 9 6 HLA-DRB1*04:01 106 6 18 21

HLA-A*33:01 17 1 11 5 HLA-DRB1*04:05 101 6 20 20

HLA-A*68:01 49 3 13 11 HLA-DRB1*07:01 123 9 22 14

HLA-A*68:02 57 8 11 8 HLA-DRB1*08:02 68 6 18 14

HLA-B*07:02 10 0 3 5 HLA-DRB1*09:01 124 7 22 22

HLA-B*08:01 15 1 3 4 HLA-DRB1*11:01 77 5 19 15

HLA-B*15:01 48 5 11 7 HLA-DRB1*12:01 46 6 18 6

HLA-B*35:01 42 5 5 8 HLA-DRB1*13:02 103 8 20 15

HLA-B*40:01 9 1 1 0 HLA-DRB1*15:01 98 8 23 17

HLA-B*44:02 6 0 1 1 HLA-DRB3*01:01 41 2 6 4

HLA-B*44:03 6 0 1 1 HLA-DRB3*02:02 53 5 9 8

HLA-B*51:01 3 0 1 1 HLA-DRB4*01:01 93 8 24 17

HLA-B*53:01 16 0 6 4 HLA-DRB5*01:01 91 5 20 22

HLA-B*57:01 13 0 5 3

HLA-B*58:01 30 1 10 4

Sum 765 86 224 152 1751 119 379 311

* Summary numbers are given for each allele. The detailed information about the binding capacity and epitope position is listed in Table S3.

Each of the viral proteins was further analyzed by the VaxiJen server (threshold 0.4,
Table 1). Proteins have potential antigenicity ranging from 0.4624 to 0.7185 indicating high
antigenicity for each protein. The most antigenic protein is ORF10 (score 0.7158), however,
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protein does not have an exposed transmembrane domain and it is probably not folded
into protein [12,13]. The role of ORF10 is not fully understood, but it probably interacts
with cullin-2 RING E3 ligase complex, which mediates the degradation of restriction
factors [14,15]. The highest VaxiJen score of structural proteins was noted for envelope
protein (0.6025), followed by the membrane (0.5102) and nucleocapsid protein (0.5059) and
finally the surface (spike) protein with a score of 0.4646. Each of the analyzed proteins
has an antigenicity score above the threshold, so there is a high possibility that they can
interact with MHC alleles to induce the immune response.

2.2. T-Cell Epitope Distribution

The frequency of expression of Human Leukocyte Antigen (HLA) alleles is crucial
for understanding the spread of disease, and the pathogenicity of viruses, bacteria and
parasites. MHC molecules are highly polymorphic and provide information on how the
patients will respond to an antigen [16]. Allelic distribution significantly depends on the
ethnic and geographical origin of the population [17]. Population coverage analysis can
therefore help to find novel treatment targets regarding vaccine action specific for the
susceptible group of inhabitants.

The population coverage analysis was performed by testing in silico predicted epitopes
and their recognizing HLA alleles using the IEDB Population coverage analysis tool [16].
For analysis of MHCI distribution, we selected 76 epitopes for surface (spike) protein, 30
for membrane, 20 for the envelope and 18 for nucleocapsid protein. The forty-six epitopes
of surface glycoprotein (spike), 12 epitopes of envelope and membrane proteins and
eleven nucleocapsid epitopes were selected for the analysis of MHCII alleles distribution
(Table S4).

We observed significant differences in the coverage of MHC alleles by SARS-CoV-2
proteins for different populations. Figure 1 shows the distribution of epitope-recognizing
alleles in some of the most affected countries (India, France, Mexico, Peru, Brazil, Italy,
Spain, Iran and China) and countries with lower reporting rate (Finland, South Korea,
Sweden, Austria and Germany). The complete set of results for the whole world are
given in suppl. Table S5. The highest population coverage for MHCI alleles was ob-
served in European countries geographically located in the northwest; Finland—more than
99% for each nucleocapsid, membrane and spike proteins, 84.44% for envelope protein;
England—more than 99% for each nucleocapsid, membrane and spike proteins, 80.02% for
envelope protein; Ireland—more than 99% for each nucleocapsid, membrane and spike
proteins, 79.94% for envelope protein, followed by Australia, Germany, Austria and Swe-
den (Figure 1 panel A, Table S5). The lowest distribution of MHCI allele was predicted for
Latin American countries (Venezuela, Colombia, and Guatemala) and the United Arab Emi-
rates and Wales, however, these results are likely to be inaccurate due to limited population
data from the Allele Frequency database.

Similar results were observed for MHCII alleles (Figure 1, panel B, Table S5). The
highest coverage for spike-recognizing alleles was detected in Ireland (94.03% coverage),
Norway (93.75%) and England (92.88%), while Austria (84.95%), Norway (84.79%) and Eng-
land (83.74%) were found as countries with highest alleles coverage for membrane proteins.
A lower number of alleles recognized the epitopes on the surface protein. We found the
highest coverage in Austria (84.16%), followed by Norway (84%), Ireland (83.10%), England
(82.50%), and Germany (80.98%). Surprisingly, the highest coverage of in silico predicted
epitopes for nucleocapsid proteins was observed in Italy (83.10%), Ethiopia (79.44%) and
Austria (78.19%). Despite the high predicted coverage in Italy, the country was one of the
most affected during the outbreak in the spring of 2020. In this context, it is necessary to
note, that the binding affinity between the predicted epitope and recognizing allele does
not fully reflect the T-cell response of individuals. As a negative control, the scrambled
sequence of each structural protein was generated and the “population coverage” of the
scrambled sequence was performed with the same parameters as for the viral protein
(Table S7).
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viruses (Table S6) as well as results for scrambled sequences (Table S7).

An important factor in understanding the prevalence of SARS-CoV-2 is the analysis
of different ethnicities. MHC molecules are highly polymorphic and their frequencies
vary in different ethnical groups [16]. These differences are the main reason for different
susceptibility; however, several other factors have already been identified, including co-
morbidities and access to medical care [18]. According to the available data, we selected
different ethnic groups living in the United States to compare the T-cell response (Figure S2).
The lowest binding abilities in both predetermined MHC classes were observed in the
Indigenous people, Austronesians and Black Americans. It is noteworthy that these ethnic
groups suffered from high mortality (published elsewhere [19–21]).

2.3. Comparison of the SARS-CoV-2 Epidemic in Different Countries

The cumulative data from different countries were collected and sorted according
to patient cases and fatalities. All data on the pandemic were further normalized to the
population of each country. When standardized to a common threshold the curves reveal
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for most of the countries an exponential increase of cases with comparable growth rates
during the first 15 days of infection spread after the threshold time point. We used a time
point as the threshold when exactly 128 (27) COVID-19 patients were observed in each
country. An exception to this common pattern can be seen in South Korea with a much
lower slope of growth of identified cases. We speculate that this is due to better protection
from the beginning of the pandemic because wearing a protective mask is widespread
in the Korean population even before the pandemic. Countries such as Colombia, South
Africa, Italy, but also Belgium and Mexico, have much higher disease burden (Figure 2A)
and death toll (Figure 2B) than countries like South Korea, compared to their population
size. The area between 0 and 30 days are shown in Figure 2C,D.
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In pandemic outbreaks, we usually observe a declining case fatality rate (CFR) over
time due to an underestimation of cases at the beginning of an epidemic. To analyze
whether we see the same trend with COVID-19, we plotted the CFR against time (Figure 3).
Surprisingly, we did not observe a decline of CFR over time for most of the countries but
instead a steep increase. This steep increase is most prominently seen in Italy, Mexico and
Belgium. The reasons for this strong increase in CFR over time are probably related to
reaching the capacity limits of the health system in these countries due to overshooting
numbers of COVID-19 cases. In contrast, other countries such as Germany, South Korea
and Finland show a relatively stable development over time indicating a good control of
the COVID-19 infection. The difference in the case fatality rate between these countries
that have managed to control the infection probably reflects different numbers in testing.
For instance, Germany and South Korea did perform many tests, including the testing of
patients with mild symptoms.
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by the curves, specific colors indicate individual countries as labeled in the same color. (A): CFR over time for individual
countries until October 2020. The dramatic rise of most curves after the early phase indicates partly that the public health
system of a country may have reached its maximum limit of treatment capability. The dropping tendency of each curve
indicates the public health system keeps recovering from the early crisis. (B): enlarged view up to day 30 allows close
inspection of the early phase of infection spread. The figure is de novo generated using the public data from RKI/Tencent,
processed by the R/nCov2019 script [22].

2.4. Poor MHCII Coverage Correlates with High Case Fatality Rate

We correlated the overall predicted MHC-presentation of the four structural SARS-
CoV-2-proteins for different populations with the case fatality rate (CFR) observed in
different countries at day 15 since 128 patients (Figure 4; CFR data taken from Figure 2).
We chose this time point for several reasons: (a) at this time point, significant differences in
the CFR between different countries can already be observed; (b) secondary effects that
may also impact CFR, like (i) overwhelming the health system capacity as observed in
some countries due to overshooting numbers of patients, (ii) varying strain heterogeneity
(see, e.g., current SARS-CoV-2 variation at https://nextstrain.org/ncov/global, accessed
date: 5 February 2020; 4992 genomes sampled December 2019 till the end of September
2020 according to Nextstrain database [23]—accessed 15 October 2020) and (iii) different
protective measures are likely not yet compromising the SARS-CoV-2 associated CFR at this
comparatively early time point. This confirms that at later time points, a very significant
correlation by day 15 of infection spread (day 0 is the first 128 cases observed) becomes only
a trend (day 30, 100; Table S8), which disappears on later days. However, in this early phase
(to day 15), we observed a statistically significant negative correlation between the CFR

https://nextstrain.org/ncov/global
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observed in different countries and the predicted MHCII coverage for populations in these
countries for the membrane protein (Figure 4G, p-value: 0.00053) and the envelope protein
(Figure 4F, p-value: 0.023), but not for other proteins or MHCI coverage.
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Predicted MHC presentations (left: MHC I; right: MHC II) for different structural proteins of SARS-
CoV-2 were correlated with the CFR reported for each country at day 15 after the first 128 cases. The
figures include a p-value as calculated for linear regression (by ggpubr package). The shaded areas
indicate two standard deviations (confidence intervals) around the linear correlation. Predicted
MHC-presentation of different SARS-CoV-2-proteins for different populations and case fatality rate
(CFR) observed in different countries reveals a strong negative correlation for predicted MHCII-
presentation of SARS-CoV-2-epitopes and CFR for the membrane protein (p-value: 0.00053, G),
for Envelope protein (p-value: 0.023, F) and, only clear (p < 0.1) but no longer strong for the Spike
protein (p = 0.0733) (E), but not for MHCI (membrane protein: panel (C), envelope protein: (B),
spike protein: (A), nucleocapsid protein: (D) or nucleocapsid protein (H). Good MHCII presentation
is an important prerequisite for T-cell-dependent antibody production. Supplementary Figure S4
shows that these strong correlations change into just a trend at day 30 (after the first 128 cases) and
decay completely with even more time (Table S8 compares correlations for different SARS-CoV-2-
epitopes and CFR at different time points). The detected strong correlations suggest that predicted
differences in the adaptive immune response in different populations may play an important
role in the observed clear differences of case fatality rates observed in different countries for this
first phase of infection spread. A strong adaptive response directed at the spike, envelope and
particularly the membrane protein seems important to prevent further spread of SARS-CoV-2-
infection. Specific controls include results and tool validation on other viruses (Table S6) as well as
results for scrambled sequences (Table S7).

The quality of MHCII presentation by the T-cell is an important prerequisite for T-
cell-dependent antibody production. Besides the envelope protein and membrane protein,
the SARS-CoV-2 surface (spike) protein also shows a clear correlation but only below the
p-value: 0.1 level (Figure 4E, p-value: 0.0733), since it is probably the important target for
neutralizing antibodies and it is, therefore, a remarkable observation that predicted MHCII-
coverage of epitopes of this protein reveals the strongest correlation with the observed CFR
in different countries.

3. Discussion

The correlations in this study investigate differences in the adaptive immune response
to SARS-CoV-2 envelope proteins in different populations. Several observed strong corre-
lations suggest that these may play a role in the observed clear variation in fatality rates
in different countries. According to these observations, strong MHC-restricted responses
directed at the membrane protein and the envelope protein would be important to achieve
better control over SARS-CoV-2-infection and are implied to lower CFR. The correlation of
MHCII-presentation of the predicted epitopes of membrane, envelope and spike protein
with a low CFR observed in different populations supports also the importance of these
proteins as vaccine and potential therapeutic candidates.

As a major conclusion of our study, we see that overall the strong epitope binders
in T-cells are underrepresented in the Italian population as compared to the German
population. However, the current data are not strong enough to identify particular alleles
that definitely drive the differences. What we did study and deliver in our work are the
differences in adaptive immune response regarding T-cell and B-cell epitope presentation
averaging on the global population, not looking at individual populations but covering
most of the prevalent alleles in most of the world’s major geographic regions. We primarily
investigated MHC-restricted responses, which comprise both, humoral and cell-mediated
reactions.

Doubtless, many other factors may also contribute to country-specific differences: for
instance in some Asian countries such as in Japan may be connected to cultural habits
such as many people wearing a face mask even before the pandemic. Nevertheless, for
viral diseases such as H7N9 influenza A virus, analysis of T-cell immunity in human
populations applying refined immune-informatics provided also here valuable insights
such as clear ethnic differences [24,25] and a basis for suitable vaccine strategies including
even pandemic preparedness [26].
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Regarding responses in specific subpopulations, the panel and the predictive power
are not strong enough. For example, alleles associated with the DR14 and DR16 serological
families, or various DR4 splits such as DR0404 or DR0407 (which will have different
binding patterns than DR0401) that may be prevalent in the “negative” populations with
reasonably high frequency, but not in the “positive” populations, are not represented in
our prediction analysis. Associations of infectious diseases with the HLA DR4 type of the
host have been found among distinct populations, racial or ethnic groups. In Mexico, a
greater frequency of HLA-DR4 antigens was found in patients with Chagas’ disease with
an increased frequency of HLA-DR16 antigens compared to asymptomatic patients or
healthy controls [27]. Particularly HLA-DR4 and its splits DR0404 and DR0407, which are
highly prevalent types in the Mayos ethnic group of Mexico, have been associated with
susceptibility to infectious diseases and inflammatory disease. The exalted inflammatory
response in HLA-DR4 carriers may account for the high fatality rates due to COVID-
19 in the Mexican population. Moreover, only if we really sample population-specific
high abundant but otherwise rare alleles, for instance in Peru, could it not be that such
a population is better protected than we estimate? However, as soon as there would be
such protection by a certain allele combination in this “negative” population, it would be
reflected by a lower case fatality rate for that specific population even if the representation
of alleles from the selected most frequent HLA molecules has poor coverage. However, we
noticed a strong correlation exactly and only with the most prevalent alleles. At least on
the global correlation, any additional rare or population-specific alleles and their potential
protective value did not alter the strong correlation we observed.

Another important fact is the impact of COVID-19 on different races and ethnicities,
which was noticed in several studies [28–30]. A study by Rossen et al. compared the
death dates in various ethnicities during 10 months of 2020 in the USA. They observed an
increased death rate compared with previous years in each of the monitored populations.
The highest mortality was observed in the Hispanic community (53.6% above average),
followed by Asian persons (36.6%), Black persons (34.6%) and American Indian/Alaska
Native (28.9%). The lowest increase in mortality was found in the White non-Hispanic
population, which was 11% higher compared to previous years [31]. Comparably, we
focused on the HLA allele’s ability to bind the structural protein of SARS-CoV-2. In
Figure S2, we present similar results compared to the works mentioned above. For the
MHCI class, the binding abilities were fairly even, however, for the MHCII, they varied
considerably. The highest binding was detected in Caucasoid (White) population, followed
by the Asian, mixed, Polynesian, Hispanic and Black population. The lowest affinity was
observed by Native Americans and Indians (Figure S2). However, it must be emphasized
that in addition to the genetic predisposition, there are other factors such as sharing
apartments, facilities or communal areas, economic status, the prevalence of diseases
such as diabetes and cardiovascular diseases, availability of health care and types of jobs
(reviewed in [32])

There is also another important point to discuss: could it be that other factors (e.g.,
health systems, non-HLA immunological factors) have an equally high correlation or
even higher? Well, firstly we only observe a correlation, not a molecular proof. To claim
molecular proof, we would need to consider various additional factors: rare antigens,
highly represented antigens in local populations, and importantly, direct molecular assays
of the immune response. Instead, we focused here only on the correlation of MHC epitopes.
However, this correlation is surprisingly strong for the membrane protein (p-value: 0.00053)
and for the envelope protein (p-value: 0.023), and still clear for the viral spike protein
(p < 0.1; i.e., p-value: 0.0733 for linear regression). However, we cannot, of course, rule
out that a completely different factor such as health system and non-HLA immunological
factors could bear out an even higher correlation. However, for the latter, we did all
reasonable efforts to account for this by (i) purposely averaging on the world population
so that local trends do not lead to biases (but then of course in local regions things may
be different), (ii) monitoring overall immune response by looking at case fatality rate
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and (iii) by avoiding multiple other comparisons and hypothesis as then the statistical
correlation has to be corrected and is weakened by multiple testing. In addition, the
obviously higher correlation for MHCII compared to MHCI may indicate that CD4 cells
play a more crucial role in fighting against the SARS-CoV-2 infection for the human immune
system, in particular for severe COVID-19 patients. This may lead us to reconsider the
strategy and development of novel therapeutics. An exception is a nucleocapsid, though
highly expressed, this is unlikely able to offer sufficient neutralizing antibody response on
its own.

We report a correlation of MHCII stimulatory epitopes in different populations with
CFR for COVID-19 patients. It is overall strong and solid on a global level and present for
the early phase of the infection spread. Analysis of subpopulations could reveal specific
local immunity to SARS-CoV-2. Unfortunately, such effects are comparatively small on
the level of a global analysis done here as otherwise, the overall correlation with global
well-represented antigens would have been much more diluted. However, we hope that
our study will be an incentive to also hunt down and in fact, judge other factors influencing
and correlating with CFR such as health system or for instance pandemic control measures.
We think these factors should be important as we see that after some time the strong
correlation with naïve immunity and epitope representation breaks down and so other
factors clearly then take over controlling the SARS-CoV-2 spread. Moreover, such other
factors, in particular, health system status and different control measures are instrumental
to control the SARS-CoV-2 pandemic further.

4. Methods
4.1. Dataset Collection

The protein sequences of SARS-CoV-2 were obtained from the NCBI (GenBank ac-
cession number: MN908947.3; severe acute respiratory syndrome coronavirus 2 isolate
Wuhan-Hu-1). Accession numbers, annotations, PDB identifiers and the length of analyzed
proteins are given in Table 3. Protein domain mapping was performed using the Pfam
database [33] (Table S1).

Table 3. SARS-CoV-2 proteins used in the immunogenic analysis.

Accession No. Protein Annotation PDB Length (aa)

QHD43415.1 orf1ab Polyprotein orf1ab 7COM 7096
QHD43416.1 surface/Spike glycoprotein 6X79 1273
QHD43417.1 Protein ORF3a 6XDC 275
QHD43418.1 Envelope small membrane protein (E) not available 75
QHD43419.1 Membrane glycoprotein (M) not available 222
QHD43420.1 Non-structural protein 6 not available 61
QHD43421.1 Protein 7a 6W37 121
QHD43422.1 Non-structural protein 8 7JX6 121
QHD43423.2 Nucleocapsid phosphoprotein (NC) 6ZCO 419
QHI42199.1 ORF10 protein not available 38

4.2. Prediction of Linear B-Cell Epitopes

Protein sequences of SARS-CoV-2 were screened for linear continuous B-cell epitopes
using three tools:

BepiPred Linear Epitope Prediction tool (ver. 2) (http://www.cbs.dtu.dk/services/
BepiPred, accessed date: 5 February 2020 [34]) was used to find the epitopes using the
random forest algorithm to identify the epitopes annotated from antigen–antibody-protein
structures with ≥0.5 and longer than 9 amino acids.

IEDB Database [35] used the Koloskar and Tongaonkar antigenicity method with a
threshold value of 1.05 and epitope length longer than 9 [36]. Validated epitopes are listed
in the database IEDB (https://www.iedb.org, accessed date: 5 February 2020).

http://www.cbs.dtu.dk/services/BepiPred
http://www.cbs.dtu.dk/services/BepiPred
https://www.iedb.org
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The parameters for the ABCpred Tool (http://crdd.osdd.net/raghava/abcpred, ac-
cessed date: 5 February 2020) [37]) were used as follows: threshold 0.51 and epitope length
of 10 amino acids. An overlap filter was applied.

4.3. Prediction of T-Cell Epitopes

T-cell epitopes prediction was performed using TepiTool (http://tools.iedb.org/
tepitool; accessed date: 10 February 2020 [38]). To predict MHCI binders, we used the set
of 27 most frequent alleles (Table 4) and NetMHCpan method was used to assess the best
binding 9mer. The selection criterion was a cut-off of IC50 ≤ 500. The MHCII alleles were
predicted with epitope length 12–18 amino acid and IC50 ≤ 1000. The set of used alleles is
listed in Table 4. Moreover, each SARS-CoV-2 protein was analyzed by VaxiJen v2.0 antigen
prediction server using the default parameters (threshold >0.4) to analyze the antigenicity
of full-length viral proteins. [39].

Table 4. Alleles used in the TepiTool predictions.

Allele Class Alleles (Human)

MHC Class I

A*01:01, A*02:01, A*02:03, A*02:06, A*03:01, A*11:01, A*23:01,
A*24:02, A*26:01, A*30:01, A*30:02, A*31:01, A*32:01, A*33:01,
A*68:01, A*68:02, B*07:02, B*08:01, B*15:01, B*35:01, B*40:01,

B*44:02, B*44:03, B*51:01, B*53:01, B*57:01, B*58:01

MHC Class II

DRB1*01:01, DRB1*03:01, DRB1*04:01, DRB1*04:05, DRB1*07:01,
DRB1*08:02, DRB1*09:01, DRB1*11:01, DRB1*12:01, DRB1*13:02,
DRB1*15:01, DRB3*01:01, DRB3*02:02, DRB4*01:01, DRB5*01:01,

DPA1*01/DPB1*04:01, DPA1*01:03/DPB1*02:01,
DPA1*02:01/DPB1*01:01, DPA1*02:01/DPB1*05:01,
DPA1*03:01/DPB1*04:02, DQA1*01:01/DQB1*05:01,
DQA1*01:02/DQB1*06:02, DQA1*03:01/DQB1*03:02,
DQA1*04:01/DQB1*04:02, DQA1*05:01/DQB1*02:01,

DQA1*05:01/DQB1*03:01
* Summary numbers are given for each allele.

4.4. Population Coverage

The distribution of COVID-19 recognizing MHCI and MHCII alleles was assessed
using the IEDB population coverage tool [31]. Here, we focused only on structural pro-
teins (nucleocapsid phosphoprotein, surface/spike glycoprotein, membrane protein and
envelope protein). We first filtered epitopes with high binding affinity (IC < 100 nM).
Additionally, for the MHCII, we selected only epitopes recognized by two and more alleles,
except for the envelope protein, due to the low number of epitopes. Population cover-
age was calculated using default parameters separately for each group of alleles. A list
of selected epitopes and recognizing alleles is given in the supplement (Table S4). For
analysis, we included all available countries and ethnicities listed in Allele Frequency Net
Database [40].

4.5. COVID-19 Spread Analysis

The analysis was implemented in R by acquiring data from the nCov2019 library [22]
and the presentation of the data was done using the ggplot2 library [41]. Daily data of
selected countries, (Germany, Italy, Spain, India, Peru, Mexico, France, China, South Korea,
Belgium, Sweden, Iran, Austria and Brazil), were processed and compared, we further
aligned the log-transformed curves upon the time point when the cumulative patient cases
reached 128 (27) to compare the public health systems among different countries, including
both patient case curves and death case curves. The next analysis step is to investigate the
development of the epidemic according to the population of each country. For China, there
were only full data for the population of Hubei province available and hence considered.
However, particularly for the early phase of infection spread this should not cause a major
skew of the data as China has successfully limited the epidemic region mostly to this

http://crdd.osdd.net/raghava/abcpred
http://tools.iedb.org/tepitool
http://tools.iedb.org/tepitool
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province. Case fatality rate (CFR) was inferred by calculating the ratio of cumulative death
numbers divided by cumulative patient cases. The curves were also aligned to the time
point when the patient number reaches 128.

4.6. Correlation Analysis

During the outbreak, the proportion of death from COVID-19 (CFR) is observed for
different countries at 15 days since 128 cases were reported. Accordingly, antigen presenta-
tion is collected as a percentage of MHCI and MHCII epitopes. The linear correlation is
calculated using the “ggpubr” package in R, and a Pearson method is applied to run the
test. We hence assume that the population data are normally distributed.

5. Conclusions

We hypothesize that countries with poor case fatality rates are associated with poor
immune response. We predict immunity by monitoring well-represented epitopes, whether
these are already sufficient to derive a good correlation with the observed immunity, which
is given inversely correlating parameter case fatality rate. We observe that this is really
the case in the initial phase of infection. Our analysis combines multiple approaches
to investigate the pandemic of SARS-CoV-2 in different countries. There are striking
differences predicted for natural population immunity in different populations. Differences
in the severity of COVID-19 disease observed in different appear to be related to differences
in the potential of different populations to present SARS-CoV-2 epitopes on MHCII in
a naïve population (up to day 15 of infection spread; starting from 128 observed cases).
Geographical areas with a high incidence of virus and disease burden such as Italy and
Iran have a low epitope-binding MHCII-repertoire compared to countries with less severe
disease progression such as Germany, Austria, Sweden, Norway and South Korea. We
emphasize here that these are only correlations but these were confirmed using well-
established epitope prediction tools that include experimental validation data and predict
successfully also established SARS-CoV-2 and other viral epitopes. Moreover, the case
fatality rate is a direct indicator of whether the immune response in the population is
sufficient, including other epitopes or other immune factors. Our results highlight the
importance of the SARS-CoV-2 structural proteins as a target to gain MHCII restricted
control over the infection, e.g., by vaccine strategies and should encourage further studies
probing the molecular immunology of SARS-CoV-2 further and examining MHCII alleles
as potential individual risk factors in COVID-19. Future studies should focus on specific
geographic regions as well as other factors taking over after the initial phase (later than
day 15 after reaching 128 observed cases) such as health system, potential strain variation
effects and, most importantly, different control measures. The evidence presented here
suggests that epitopes predicted to provide broad coverage worldwide are also likely to
provide broad coverage in specific populations and correlated strongly and inversely with
a case fatality rate in the early phase of infection spread.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/5/2630/s1, Table S1. Domain mapping of SARS-CoV-2 proteins; Table S2. Prediction of B-cells
epitopes; Table S3. Prediction of T-cells epitopes; Table S4. List of most frequent MHC class I epitopes
(predicted in silico); Table S5. Population coverage analysis based on most frequent T-cell epitopes
(predicted in silico); Table S6. Comparison of SARS-CoV, SARS-CoV-2 and MERS epitopes; Table S7.
The dataset of randomized sequenced and generated population coverage analysis for each MHC
class I and II alleles. Table S8. The comparison of correlations for different SARS-CoV-2-epitopes and
CFR at different time points. Figure S1. Comparison of B-cell sand T-cells epitopes in the previous
SARS virus (strain TW3) and SARS-CoV-2 represented on a surface (spike) protein and membrane
protein. Experimentally validated epitopes are taken from [42].; Figure S2. Population coverage
analysis of most frequent T-cells epitopes (predicted in silico) for different ethnical groups in the
United States. Panel A—MCHI, Panel B—MHCII, Panel C—percentage representation of ethnicity
according to the Allele Frequency Net Database for US population.
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