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Abstract: Glycyrrhizin (GL), an important active ingredient of licorice root, which weakens the
proinflammatory effects of high-mobility group box 1 (HMGB1) by blocking HMGB1 signaling.
In this study, we investigated whether GL could suppress inflammation and carcinogenesis in an
azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer. ICR
mice were divided into four groups (n = 5, each)—control group, GL group, colon cancer (CC) group,
and GL-treated CC (CC + GL) group, and sacrificed after 20 weeks. Plasma levels of interleukin
(IL)-6 and tumor necrosis factor (TNF)-α were measured using an enzyme-linked immunosorbent
assay. The colonic tissue samples were immunohistochemically stained with DNA damage markers
(8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxy-guanosine), inflammatory markers (COX-2 and
HMGB1), and stem cell markers (YAP1 and SOX9). The average number of colonic tumors and
the levels of IL-6 and TNF-α in the CC + GL group were significantly lower than those in the CC
group. The levels of all inflammatory and cancer markers were significantly reduced in the CC + GL
group. These results suggest that GL inhibits the inflammatory response by binding HMGB1, thereby
inhibiting DNA damage and cancer stem cell proliferation and dedifferentiation. In conclusion,
GL significantly attenuates the pathogenesis of AOM/DSS-induced colorectal cancer by inhibiting
HMGB1-TLR4-NF-κB signaling.

Keywords: colon cancer; Glycyrrhizin; COX-2; HMGB1; 8-NitroG; 8-OxodG; YAP1; SOX9

1. Introduction

Inflammatory bowel disease (IBD) is a global healthcare problem, which is experienc-
ing a sustained increase in incidence [1]. It includes two major forms, Crohn’s disease (CD)
and ulcerative colitis (UC), which are distinct, chronic, bowel-relapsing inflammatory dis-
orders. CD causes transmural inflammation and can affect any part of the gastrointestinal
tract (most commonly, the terminal ileum or the perianal region) in a discontinuous manner.
CD is commonly associated with complications such as abscesses, fistulas, and strictures.
In contrast, UC is typified by mucosal inflammation and is limited to the colon [2,3]. More
recently, it was reported that even without preexisting IBD, inflammation occupies a key po-
sition in the development of sporadic colorectal cancer (CRC) [4]. It is well established that
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inflammatory disorders of the colon are accompanied by an increased risk of developing
cancer [5,6].

Licorice (Glycyrrhiza glabra and G. uralensis, etc.) is an important medicinal plant
and its root has been used in traditional medicine for over 2000 years [7,8]. Currently,
licorice is found in more than 60% of Japanese traditional medicine (Kampo), and is known
to function synergistically with other herbs in the formulas and enhance the efficacy of
other ingredients [9]. Pharmacological research has confirmed that licorice has several
biologically relevant activities, including anti-oxidative, anti-inflammatory, anti-cancer,
anti-viral, immune-regulatory, and hepatoprotective functions [10–13]. Glycyrrhizin (GL),
a triterpene glycoside, is one of the most important active ingredients in licorice, and many
biological effects of the plant can be attributed to this compound [7,8,13,14].

High-mobility group box 1 (HMGB1) is a nuclear protein that is released from dam-
aged and necrotic cells [15–17]. It plays an important role as a cytokine that triggers
inflammation and inflammation-related diseases, including cancer, by upregulating the
expression of other inflammatory cytokines [18,19]. GL weakens the proinflammatory ef-
fect of HMGB1 by blocking HMGB1 signaling [20,21]. HMGB1 plays important roles in the
genesis and promotion of a variety of inflammatory diseases, including different types of
cancers [22,23]. There is ample evidence suggesting that GL exhibits its anti-inflammatory
effects by inhibiting HMGB1 [24–29].

Although some researchers have studied the effect of GL on colitis [30–32], the effect
of GL on ulcerative colitis colorectal cancer caused by an azoxymethane (AOM)/dextran
sodium sulfate (DSS) model is not known. Therefore, we investigated whether GL can
suppress inflammation and carcinogenesis, using a carcinogen (AOM)/colorectal inflam-
matory agent (DSS)-induced murine model of colorectal cancer, and assessed the molecular
mechanisms involved.

2. Results
2.1. Effect of GL on Colon Cancer Induced by AOM/DSS Treatment

We administered a single intraperitoneal injection of AOM. On the seventh day after
the AOM injection, the mice received DSS in drinking water for a week in the CC and
CC + GL groups, and then GL (15 mg/kg/day) was administered orally three times a week
for 18 weeks in the GL and CC + GL groups. A total of 20 weeks after the experiment
started, the presence of colon tumors was scrutinized macroscopically. There were no
significant differences in body weight among the four groups (Figure 1a). Length of the
colon of the AOM/DSS-induced CC group was significantly shorter than that of the control
group (p < 0.01, Figure 1b,c). No tumors were observed in the control and GL groups
(Figure 1d). The mean number of tumors was 10.0 ± 1.9 in the CC group and 5.8 ± 1.3
in the CC + GL group (Figure 1e). The number of tumors in the AOM/DSS-induced CC
group was significantly higher than that in the control group (p < 0.01), while GL markedly
attenuated tumor formation in the CC + GL group compared with that in the CC group
(p < 0.05). The mean tumor diameters were 7.4± 2.3 and 4.0± 1.4 mm in the CC group and
CC + GL group, respectively (Figure 1f). GL significantly attenuated the tumor diameter in
the CC + GL group compared to that in the CC group (p < 0.01).
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Figure 1. Effect of glycyrrhizin (GL) administration on colon cancer induced by azoxymethane (AOM) and dextran sodium 
sulfate (DSS)—(a) body weight; (b) typical colon samples from each group after dissection (from the ileocecal junction to 
the anal verge); (c) length of colon and comparison between the four groups; (d) tumors (arrows) formed in the colon; (e) 
number of tumors in the colon and comparison between the four groups; and (f) tumor diameter and comparison between 
the four groups. * p < 0.05; ** p < 0.01. 

These observations showed that GL profoundly attenuated tumorigenesis in the mu-
rine model of ulcerative colitis-colorectal cancer. 

2.2. Effects of GL Administration on the Plasma Levels of IL-6 and TNF-α 
The levels of inflammatory cytokines, interleukin (IL)-6 and tumor necrosis factor 

(TNF)-α, in the AOM/DSS-induced CC group were significantly higher than those in the 
control group (p < 0.01), while GL significantly lowered the levels of IL-6 and TNF-α in 
the CC + GL group compared to those in the CC group (p < 0.05; p < 0.01, Figure 2a,b). 

 

Figure 1. Effect of glycyrrhizin (GL) administration on colon cancer induced by azoxymethane (AOM) and dextran sodium
sulfate (DSS)—(a) body weight; (b) typical colon samples from each group after dissection (from the ileocecal junction
to the anal verge); (c) length of colon and comparison between the four groups; (d) tumors (arrows) formed in the colon;
(e) number of tumors in the colon and comparison between the four groups; and (f) tumor diameter and comparison
between the four groups. * p < 0.05; ** p < 0.01.

These observations showed that GL profoundly attenuated tumorigenesis in the
murine model of ulcerative colitis-colorectal cancer.

2.2. Effects of GL Administration on the Plasma Levels of IL-6 and TNF-α

The levels of inflammatory cytokines, interleukin (IL)-6 and tumor necrosis factor
(TNF)-α, in the AOM/DSS-induced CC group were significantly higher than those in the
control group (p < 0.01), while GL significantly lowered the levels of IL-6 and TNF-α in the
CC + GL group compared to those in the CC group (p < 0.05; p < 0.01, Figure 2a,b).
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Figure 2. Effects of GL on the plasma levels of interleukin 6 (IL-6) (a) and tumour necrosis factor α
(TNF-α) (b). * p < 0.05; ** p < 0.01.

2.3. Histopathological Evaluation of the Effect of GL Administration on the Murine
Colonic Epithelia

Histological examination of hematoxylin and eosin (HE)-stained sections revealed
obvious crypt destruction, heterotypic nuclei, and irregular glandular structures in the
AOM/DSS-induced CC group (Figure 3c), as compared to the control mice group (Figure 3a)
and mice receiving GL group (Figure 3b), which did not exhibit any aberrant features.
Most tumors in the CC group exhibited extensive high-grade dysplasia or intra-mucosal
carcinoma. In contrast, treatment with GL markedly caused an improvement in crypt struc-
ture and reduced tumor formation in AOM/DSS-treated mice (Figure 3d). Most colonic
mucosa in the CC + GL group exhibited low-grade dysplasia and much less infiltration of
inflammatory cells.
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Figure 3. Microscopic examination of murine colonic tissues with hematoxylin and eosin (HE)
staining. Representative histological sections of (a) control group; (b) GL group; (c) CC group; and
(d) CC + GL group. Original magnification—100×.

These data suggested that GL could significantly ameliorate colitis-associated colorec-
tal tumorigenesis in mice.
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2.4. Effects of GL on the Expression of 8-NitroG and 8-OxodG

8-Nitroguanine (8-NitroG) and 8-oxo-7,8-dihydro-2′-deoxy-guanosine (8-OxodG), the
well-established DNA damage markers, were observed in the nuclei and cytoplasm of
the epithelial cells (brown staining) (Figure 4a,b). Immunohistochemical (IHC) staining of
8-NitroG and 8-OxodG in the control group showed little or no staining, while that in the
GL group showed weak staining. The staining in the CC group was higher than that in
the control group. On the other hand, staining in the CC + GL group was lower than that
observed in the CC group; thus, GL attenuated 8-NitroG and 8-OxodG expression in the
CC + GL group.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 4. Immunohistochemical (IHC) staining for (a) 8-NitroG and (b) 8-OxodG in the colonic tissues of the four groups 
of mice. Brown color indicates specific immunostaining. Cancer surrounding tissue represents the normal cells adjacent 
to the colon cancer tissue. Original magnification—100×. IHC score for (c) 8-NitroG and (d) 8-OxodG in the colonic tissues 
of the four groups of mice. Graphs represent the average score (bar: SD; * p < 0.05). 

The IHC score for 8-NitroG in the normal and cancer cells of the colon cancer tissue 
in the CC group was higher than that in the normal cells of the control group. The IHC 
score for 8-NitroG in the normal and cancer cells of the cancer tissue in the CC + GL group 
was lower than that in the CC group (Figure 4c). These results indicate that the AOM/DSS 
treatment induces the expression of 8-NitroG in colonic cells during carcinogenesis, and 
GL lowers the expression of 8-NitroG in the normal cells surrounding the cancer tissue. 

The IHC score for 8-OxodG in the cancer cells of the cancer tissue in the CC group 
was higher than that in the control group; however, the score in the CC + GL group was 
lower than that in the CC group (Figure 4d). These results indicate that AOM/DSS treat-
ment induces the expression of 8-OxodG in colonic cells during carcinogenesis, and GL 
prevents the expression of 8-OxodG in cancer cells. 

2.5. Effects of GL on the Expression of COX-2 and HMGB1 
Cyclooxygenase (COX)-2, an inflammatory marker, was observed in the cytoplasm 

of epithelial cells (brown staining) (Figure 5a). The IHC staining of COX-2 in the control 
and GL groups showed little or no staining. COX-2 expression in the CC group was higher 
than that in the control group; however, the expression was lower in the CC + GL group 
than in the CC group. Thus, GL treatment resulted in low COX-2 staining in the CC + GL 
group compared to that in the CC group. 

Figure 4. Immunohistochemical (IHC) staining for (a) 8-NitroG and (b) 8-OxodG in the colonic tissues of the four groups of
mice. Brown color indicates specific immunostaining. Cancer surrounding tissue represents the normal cells adjacent to the
colon cancer tissue. Original magnification—100×. IHC score for (c) 8-NitroG and (d) 8-OxodG in the colonic tissues of the
four groups of mice. Graphs represent the average score (bar: SD; * p < 0.05).

The IHC score for 8-NitroG in the normal and cancer cells of the colon cancer tissue
in the CC group was higher than that in the normal cells of the control group. The IHC
score for 8-NitroG in the normal and cancer cells of the cancer tissue in the CC + GL group
was lower than that in the CC group (Figure 4c). These results indicate that the AOM/DSS
treatment induces the expression of 8-NitroG in colonic cells during carcinogenesis, and
GL lowers the expression of 8-NitroG in the normal cells surrounding the cancer tissue.

The IHC score for 8-OxodG in the cancer cells of the cancer tissue in the CC group was
higher than that in the control group; however, the score in the CC + GL group was lower
than that in the CC group (Figure 4d). These results indicate that AOM/DSS treatment
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induces the expression of 8-OxodG in colonic cells during carcinogenesis, and GL prevents
the expression of 8-OxodG in cancer cells.

2.5. Effects of GL on the Expression of COX-2 and HMGB1

Cyclooxygenase (COX)-2, an inflammatory marker, was observed in the cytoplasm
of epithelial cells (brown staining) (Figure 5a). The IHC staining of COX-2 in the control
and GL groups showed little or no staining. COX-2 expression in the CC group was higher
than that in the control group; however, the expression was lower in the CC + GL group
than in the CC group. Thus, GL treatment resulted in low COX-2 staining in the CC + GL
group compared to that in the CC group.
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Figure 5. IHC staining of (a) cyclooxygenase (COX)-2 and (b) high-mobility group box 1 (HMGB1) in the colonic tissues
of the four groups of mice. Brown color indicates specific immunostaining. Original magnification—100×. IHC score for
(c) COX-2 and (d) HMGB1 in the colonic tissues of the four groups of mice. Graphs represent the average score (bar: SD;
* p < 0.05).

HMGB1, an inflammatory cytokine, was observed in the nuclei and cytoplasm of
epithelial cells (brown staining) (Figure 5b). IHC staining of HMGB1 in the control and
GL groups showed a weak staining pattern. The IHC staining of HMGB1 in the CC group
was higher than that in the control group, and this increase was prevented in the CC + GL
group. GL lowered the IHC staining of HMGB1 in the CC + GL group compared with that
in the CC group.

The IHC score for COX-2 in the cancer cells in the CC group was higher than that in
the control group. The score in the cancer cells in the CC + GL group was lower than that
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in the CC group (Figure 5c). These results indicate that AOM/DSS treatment induces the
expression of COX-2 in cancer cells during carcinogenesis, and GL prevents the expression
of COX-2 in cancer cells.

The IHC score for HMGB1 in the normal and cancer cells of the colon cancer tissue
in the CC group was higher than that in the control group. The IHC score for HMGB1 in
the normal and cancer cells of the cancer tissue in the CC + GL group was lower than that
in the CC group (Figure 5d). These results indicate that the AOM/DSS treatment induces
the expression of HMGB1 in colonic cells during carcinogenesis, and GL attenuates the
expression of HMGB1 in the normal surrounding the cancer tissue.

2.6. Effects of GL on the Expression of YAP1 and SOX9

Yes-associated protein (YAP)1 and sex-determining region Y (SRY)-box (SOX) 9 protein
(SOX9) are cancer stem cell markers and were observed in the nuclei of the colonic epithelial
cells (brown staining) (Figure 6a,b). IHC staining of YAP1 was showed little staining and
SOX9 showed little staining in the control and GL groups. The IHC staining of YAP1 and
SOX9 in the CC group was higher than in the control groups; however, staining in the CC
+ GL group was lower than that observed in the CC group. Thus, GL reduced the IHC
staining of YAP1 and SOX9 in the CC + GL group compared to that in the CC group.
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The IHC score for YAP1 in the cancer cells of the cancer tissue in the CC group was
higher than that in the control group; however, the score in the CC + GL group was lower
than that in the CC group (Figure 6c).

The IHC score for SOX9 in the normal and cancer cells of the colon cancer tissue in the
CC group was higher than that in the normal cells of the control group. The IHC score for
SOX9 in the normal and cancer cells of the cancer tissue in the CC + GL group was lower
than that in the CC group (Figure 6d). These results indicate that the AOM/DSS treatment
induces the expression of SOX9 in colonic cells during carcinogenesis, and GL attenuates
the expression of SOX9 in the normal surrounding the cancer tissue.

3. Discussion

GL is main component of the Chinese herbal medicine licorice, and we demonstrated
that it attenuates carcinogenesis in an AOM/DSS mouse model. Colon tumors observed af-
ter AOM/DSS treatment were in accordance with procedures from previous studies [33,34].
Compared to the AOM/DSS group, the GL-treated group showed an improvement in
length of colon and number of tumors and infiltration of inflammatory cytokines in the
colon. Histological observation revealed that GL has potent anti-inflammatory properties.
These findings together with the histological data highlight the protective effects of GL
against AOM/DSS-induced colonic damage. In addition, we found that after GL admin-
istration, the plasma levels of IL-6 and TNF-α in the CC + GL group were lower than
those in the CC group, suggesting that GL attenuates inflammation in AOM/DSS-induced
colitis. This is consistent with the observation that GL can suppress the development of
precancerous lesions by regulating hyperproliferation and inflammation in the colon of
Wistar rats [32]. This anti-inflammatory activity of GL may be explained by the fact that
GL can specifically bind HMGB1 and inhibit its cytokine activity [35,36]. HMGB1 is a
recently identified protein associated with cancer growth and metastasis, and represents
a new therapeutic target for the treatment of cancer [37]. Moreover, Tripathi et al. have
shown that HMGB1 could be used as a marker for the prognosis of tumor stages and
can be targeted for cancer therapy. Overexpression of HMGB1 plays an important role
in the migration of cells, tumor progression, and metastasis in colorectal cancer; thus, it
could be used as a predictor of disease outcome [23]. Our results show that GL inhibits the
inflammation-induced carcinogenesis by regulating HMGB1, which is consistent with the
carcinogenic theory of inflammation that we have previously advocated [38].

With respect to inflammation-induced DNA damage, we found that expression of 8-
NitroG, 8-OxodG, COX-2, and HMGB1 in the cancerous cells of the CC group significantly
increased compared to that in the normal cells of the control group, which suggests that
DNA damage and inflammatory markers are involved in the induction of cancer. However,
GL significantly decreased the expression of all these markers in the cancerous cells of
the CC + GL group. On the basis of these results and previous literature, we propose a
possible mechanism by which GL attenuates carcinogenesis by inhibiting inflammation in
an ulcerative colitis-colorectal cancer mouse model (Figure 7).

First, AOM induces DNA damage, which leads to cell death in addition to accumu-
lation of mutations as a result of the DNA damage response (DDR). HMGB1 is a nuclear
protein that is released from dead cells [39]. We have previously shown that indium
compounds induced inflammation-mediated DNA damage in lung epithelial cells via
the HMGB1 pathway [40]. In addition, by binding to toll-like receptor (TLR) 4, HMGB1
activates myeloid differentiation (MyD) 88 and NF-κB essential modulator (NEMO), and
activates inflammatory cytokines such as IL-6 and TNF-α via nuclear factor-kappa B (NF-
κB) [16–18,41–44]. HMGB1 induces cytokine release from both recruited leukocytes and
resident immune cells, including TNF-α and IL-6, which amplify and extend the inflam-
matory response [42]. TNF-α and IL-6 are proinflammatory cytokines that play important
roles in the control of inducible nitric oxide synthase (iNOS) expression via regulation of
the NF-κB and signal transducer and activator of transcription (STAT) 3 signaling pathways.
Our previous studies have demonstrated that Epstein–Barr virus infection may induce
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nuclear accumulation of EGFR and IL-6-induced STAT3, leading to iNOS and NADPH
oxidase (Nox) expression. Reactive oxygen species (ROS) and reactive nitrogen species
(RNS), generated via these enzymes, can induce the formation of mutagenic DNA lesions,
including 8-NitroG and 8-OxodG, respectively [45–48]. In addition, during inflammation,
the signaling cascade stimulates the activation of NF-κB, which induces pro-inflammatory
genes, including iNOS and COX-2. COX-2 catalyzes the conversion of arachidonic acid
(AA) to prostaglandin (PG) H2, which is converted into PGE2 by the terminal PGE synthase.
AA represents the main substrate of COX-2 for PGE2 production [49]. PGE2 transduces
signals via four G-protein coupled receptors (EP2) to activate NF-κB. Overexpression of
NF-κB promotes the expression of COX-2, leading to DNA damage, which is responsible
for the repeated release of HMGB1 [38].
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Figure 7. A possible mechanism of action of glycyrrhizin (GL) in colon cancer. GL inhibits the binding
of its target protein HMGB1 to the toll-like receptor 4 (TLR4) receptor and blocks the downstream
MyD88-NEMO pathway. Subsequently, NF-κB nuclear translocation induces the pro-inflammatory
factors IL-6 and TNF-α. GL also suppresses COX-2 expression. In addition, the inhibition of
inflammatory cytokines IL-6 and TNF-α lowers the expression of downstream DNA damage markers
including 8-NitroG and 8-OxodG. IL-6-induced cancer stem cell markers, YAP1 and SOX9, are also
inhibited by GL. Therefore, GL attenuates carcinogenesis by inhibiting inflammation in ulcerative
colitis-colorectal cancer. Note—pathways are simplified and only key elements are shown.

We have previously reported that DNA damage, including the formation of 8-NitroG
and 8-OxodG, increases mutagenesis and genomic instability, finally leading to carcinogen-
esis [38,50]. In addition, in a mouse model of IBD, we demonstrated the accumulation of
8-NitroG and 8-OxodG in colonic epithelial cells [51]. The accumulation of DNA lesions
was related to the expression of iNOS and proliferating cell nuclear antigen (PCNA). These
results suggest that iNOS-dependent DNA damage is induced in the colonic epithelial cells
of the AOM/DSS mouse model, which may lead to cell proliferation and carcinogenesis.

Knowledge of the expression pattern of cancer stem cells (CSCs) in CRC has been
increasing in recent years, revealing a heterogeneous population of cells within CRC,
ranging from pluripotent to differentiated cells, with overlapping and sometimes unique
combinations of markers [52]. In addition to stem and progenitor cells, CSCs have been
shown to arise from more differentiated cells as a consequence of constitutive NF-κB
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activation and chemically-induced inflammation in CRC [53]. We have previously reported
that increased DNA damage due to inflammation may result in the mutation of stem
cells, leading to tumor development [54]. It has been reported that NF-κB is activated by
YAP1 [55,56]. To determine whether CSCs involved in inflammation can also cause tumor
development, we examined the expression of stem cell markers YAP1 and SOX9, and found
that their expression in the cancer cells in the CC group was significantly higher than that
in the normal cells of the control group. Interestingly, GL significantly decreased the levels
of YAP1 and SOX9. In addition, SOX9 levels were significantly lower in the normal cells
surrounding the cancer tissues in the CC + GL group, which suggests that GL may affect
stemness by attenuating inflammation.

Qian et al. showed that hyperactivation of HMGB1-RAGE signaling contributes to
CSCs in CRC development [57]. HMGB1 and DSS promote the release of inflammatory
cytokines such as IL-6 and TNF-α [58], as shown in Figure 7. IL-6 promotes the survival
of intestinal epithelial cells [59]. Mucosal regeneration after a DSS challenge requires
concomitant activation of YAP1 [60]. IL-6 is released from macrophages after mucosal
injury in the intestine, and its direct effectors are Janus kinase (JAK)-STAT3 and YAP [61].
Recently, a new network was discovered between IL-6 and YAP1, which led to an increase
in colonic tumor formation [61–64]. IL-6–gp130 signaling has also been shown to acti-
vate YAP [65], which in turn, promotes IL-6-induced STAT3 phosphorylation and NF-κB
activation [66–70].

Consequently, YAP1 has gained considerable attention as a critical mediator involved
in the expansion of CSCs and inhibition of their differentiation [71,72]. YAP mediates its
function by binding TAZ (transcriptional co-activator with PDZ-binding motif). In tumors,
YAP/TAZ can reprogram cancer cells into CSCs and induce tumor initiation, progression,
and metastasis [73,74]. In the intestine, expression of endogenous YAP1 is restricted
to the progenitor/stem cell compartment, and activation of YAP1 expands multipotent
undifferentiated progenitor cells, which express specific transcription factors such as TEA-
domain (TEAD) factors [75]. YAP controls genes that stimulate cell proliferation and tissue
growth and inhibit terminal differentiation [76]. It also activates its downstream target
SOX9 via TEAD1. Wang et al. observed a positive correlation between YAP signaling and
SOX9 in esophageal squamous cell carcinoma [77]. SOX9 is a marker of stem cells and is a
regulator of YAP1 signaling [77,78]. As SOX9 is an oncogene, its upregulation is common
in colorectal adenomas and cancer and is an independent indicator of the poor prognosis of
CRC [79]. Thus, CSCs are formed not only by NF-κB and DNA damage but also via YAP1.

Thus, we conclude that GL attenuated the carcinogenesis in an AOM/DSS-induced
colorectal cancer model. The high levels of COX-2 and HMGB1 promoted inflammation
and DNA damage, marked by 8-NitroG and 8-OxodG, and the dedifferentiation of cancer
cells into YAP1- and SOX9-positive CSCs in the colonic tissue. All these markers were sig-
nificantly suppressed by GL. Based on our results, we propose a new GL-based mechanism
for the prevention of carcinogenesis in the colonic cells of mice treated with AOM/DSS.

4. Materials and Methods
4.1. Animals and Chemicals

For this study, 8-week-old female ICR mice were purchased from Japan SLC Inc.
(Hamamatsu, Japan). This study was conducted in accordance with the recommendations
of the Guide for the Care and Use of Laboratory Animals of Suzuka University (approval
number—34). All surgeries were performed under pentobarbital anesthesia and efforts
were made to minimize animal suffering. Mice were acclimated for 1 week with tap water
and a pelleted diet, ad libitum, before the start of the experiment. They were housed
under controlled conditions of humidity (50 ± 10%), light (12/12 h light/dark cycle), and
temperature (22 ± 2 ◦C).

The colonic carcinogen AOM was purchased from Sigma Chemical Co. (St. Louis, MO,
USA). DSS with a molecular weight of 36,000–50,000 was purchased from MP Biomedicals,
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Inc. (Solon, OH, USA), and GL (>98%) was purchased from Nagara Science Co., Ltd.
(Gifu, Japan).

4.2. Experimental Procedure

The experimental protocol of this study is outlined in Figure 8. The mice were quaran-
tined for the first 7 days and then randomized according to bodyweight into four groups
(n = 5, each). Group 1 (control)—the mice were intraperitoneally injected with saline and
given distilled water (DW) for 20 weeks. Group 2 (GL)—the mice were administered
DW for 2 weeks after the initial intraperitoneal saline injection, and then approximately
15 mg/kg/day of GL dissolved in phosphate-buffered saline (PBS) (pH 7.4) was admin-
istered orally three times a week for 18 weeks. Group 3 (CC)—mice were given a single
intraperitoneal injection of AOM (10 mg/kg body weight). Starting 1 week after the in-
jection, the animals received 2% DSS in their drinking water for 7 days and no further
treatment for 18 weeks in accordance with previously described procedures [33,80,81].
Group 4 (CC + GL)—the mice were administered AOM/DSS as in the CC group, and GL
(15 mg/kg/day, orally) three times per week for 18 weeks. Bodyweight was checked twice
a week after DSS treatment. All animals were sacrificed using pentobarbital at the end
of the study (week 20). For plasma preparation, blood was collected from the heart into
heparinized tubes before the autopsy. During the autopsy, the large bowel was flushed
with saline and excised. The large bowel (from the ileocecal junction to the anal verge) was
measured, dissected longitudinally along the main axis, and then washed with saline. The
tumor lesions were counted by two investigators.
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4.3. Quantification of IL-6 and TNF-α Levels

Plasma was obtained from the blood samples by centrifugation at 3000× g for 10 min
at 4 ◦C and used for analysis. Plasma levels of IL-6 and TNF-α were measured using
commercial enzyme-linked immunosorbent assay kits (BioLegend, San Diego, CA, USA),
according to the manufacturer’s instructions.

4.4. Histopathological and Immunohistochemical Studies

Colonic tissue samples were fixed in 4% formaldehyde in PBS for one day. Following
dehydration and paraffin infiltration, the tumors were embedded in paraffin blocks and
sectioned to 6 µm thickness using a Leica RM2265 Microsystems (Wetzlar, Germany) by
routine procedures. The histopathological appearance of the mouse tumors was evaluated
by staining with HE staining. Benign and malignant lesions were histopathologically
distinguished using HE-stained samples by two investigators.

For IHC analysis, paraffin-embedded mouse colon sections were deparaffinized in
xylene and hydrated in a series of alcohols. After heat-induced antigen retrieval and
blocking with 1% skim milk, the sections were incubated overnight with primary antibodies
(8-NitroG (Pinlaor et al., 2004 [31], 1:400)); 8-OxodG (JaICA, MOG-100p, 1:400); HMGB1
(Abcam, 18256, 1:400); COX2 (Santa Cruz Biotechnology, Inc., SC-1745, 1:400); YAP1
(Abcam, ab 39361, 1:400); SOX9 (Abcam, ab 185230, 1:400)), and then incubated with an
avidin–biotin complex (Vectastain ABC kit, Vector Laboratories Burlingame, CA, USA).
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The immunoreaction was visualized using a peroxidase DAB kit (Nacalai Tesque Inc.,
Kyoto, Japan). The tissues were observed and imaged under a microscope (BX51, Olympus,
Tokyo, Japan). The semiquantitative analysis of staining intensity was graded by an IHC
score between 0 and 4 by two investigators as follows—no staining (0), weak staining (1+),
moderate staining (2+), strong staining (3+), and very strong staining (4+).

4.5. Statistical Analysis

Comparison of data between groups was analyzed using the Mann–Whitney U test
using SPSS. A p-value of less than 0.05 was considered statistically significant. SPSS results
after statistical analysis were plotted using Graphpad Prism8.
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Abbreviations

8-NitroG 8-Nitroguanine
8-OxodG 8-Oxo-7,8-dihydro-2′-deoxyguanosine
AOM Azoxymethane
AA Arachidonic acid
CC Colon Cancer
COX-2 Cyclooxygenase-2
CRC Colorectal cancer
CSC Cancer stem cell
DDR DNA damage response
DSS Dextran sodium sulfate
GL Glycyrrhizin
HE Hematoxylin Eosin
HMGB1 High mobility group box 1
IBD Inflammatory bowel disease
ICR Institute of Cancer Research
IHC Immunohistochemistry
IL-6 Interleukin-6
iNOS Inducible nitric oxide synthase
MyD88 Myeloid differentiation primary response gene 88
NEMO NF-κB essential modulator
NF-κB Nuclear factor-κB
NO Nitric oxide
NOS NO synthase
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Nox NAD(P)H oxidase
PGE2 Prostaglandin E2
PCNA Proliferating cell nuclear antigen
RAGE Receptor for Advanced Glycation End Products
RNS Reactive nitrogen species
ROS Reactive oxygen species
SOX9 Sex-determining region Y (SRY)-box 9 protein
STAT Signal transducer and activator of transcription
TLR Toll-like receptor
TEAD TEA-domain
TNF-α Tumor necrosis factor alpha
YAP Yes-associated protein
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