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Abstract: 3'-5 cyclic nucleotide phosphodiesterases (PDEs) are a large family of enzymes playing
a fundamental role in the control of intracellular levels of cAMP and cGMP. Emerging evidence
suggested an important role of phosphodiesterases in heart formation, but little is known about the
expression of phosphodiesterases during cardiac development. In the present study, the pattern
of expression and enzymatic activity of phosphodiesterases was investigated at different stages of
heart formation. C57BL/6 mice were mated and embryos were collected from 14.5 to 18.5 days of
development. Data obtained by qRT-PCR and Western blot analysis showed that seven different
isoforms are expressed during heart development, and PDE1C, PDE2A, PDE4D, PDE5A and PDESA
are modulated from E14.5 to E18.5. In heart homogenates, the total cAMP and cGMP hydrolytic
activity is constant at the evaluated times, and PDE4 accounts for the majority of the cAMP hydrolyz-
ing ability and PDE2A accounts for cGMP hydrolysis. This study showed that a subset of PDEs is
expressed in developing mice heart and some of them are modulated to maintain constant nucleotide
phosphodiesterase activity in embryonic and fetal heart.

Keywords: cyclic nucleotides; heart development; phosphodiesterases

1. Introduction

Heart development is a complex process which requires an interplay of different
transcription factors, signaling pathways and morphological modifications [1]. Mouse
heart formation begins at embryonic day 7.5 (E7.5) when a group of mesodermal cells
migrates to the midline, forming the cardiac crescent [1]. At E8.5, the cardiac crescent
changes its conformation, forming the linear heart tube, cardiac looping occurs at E10.5,
atrioventricular septation and trabeculation occurs at E12.5 and a four-chambered heart is
formed at E14.5 [1]. At E15.5 and E16.5, the atrioventricular valve leaflets and the coronary
arteries are modified, achieving the definitive conformation, and at E18.5, the definitive
external prenatal heart configuration is completed [2].

The formation of the heart is tightly controlled by a set of signal transduction pathways
including the intracellular second messenger cyclic adenosine monophosphate (cAMP) and
cyclic guanosine monophosphate (cGMP) [3]. The intracellular levels of cyclic nucleotides
are regulated by the balance between their synthesis and degradation. cAMP is synthesized
by adenylyl cyclases through agonist binding to G-protein-coupled receptors. cGMP is
produced by a soluble guanylyl cyclase activated by nitric oxide and a particulate guanylyl
cyclase activated by the natriuretic peptides [4]. Both cyclic nucleotides are hydrolyzed by
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the 3'5cyclic nucleotides phosphodiesterases (PDEs) into their inactive forms 5'-AMP and
5'-GMP.

Eleven PDEs have been described and they are defined by their cellular functions,
catalytic properties, protein structure and affinity for cAMP and cGMP [5]. Seven PDEs
are expressed in the adult heart: PDE1, PDE2 and PDE3 which hydrolyze both cAMP and
c¢GMP; PDE4 and PDES8 which hydrolyze cAMP; and PDE5 and PDE9 which are cGMP
specific [6]. Despite the important role of the cAMP-cGMP /PDEs pathway in cardiac
processes like contraction/relaxation, cell differentiation, proliferation and survival [7],
very few data are available regarding PDEs’ function in cardiac development. Recently,
it was reported that there are seven PDE mRNAs expressed in the murine heart at differ-
ent stages of development [8] and, more importantly, it was demonstrated that PDE2A
plays a critical role in heart development because its genetic ablation induces congenital
defects [9]. Table 1 reports current data, obtained in transgenic animal model, on PDE
isoforms involved in cardiac functions.

Table 1. Overview of PDE isoforms involved in cardiac functions.

Phosphodiesterase Substrate/ .
(PDE) Family Gene Regulation Transgenic Model

Pdela knockout:
lowest blood pressure, increased heart
cAMP /cGMP rate, elevated ejection fraction [10].
PDE1 1A,1B,1C  Ca?*/CaM Pdelc knockout:
stimulated protected from TAC-induced cardiac
dysfunction; antagonize cardiac
myocyte hypertrophy and death [11].

cAMP/cGMP Pde2a knockout:
PDE2 2A cGMP- embryonal death, congenital heart
stimulated defect [9].
Pde3a overexpression:
cAMP/cGMP decreased heart rate and cardiac
PDE3 3A,3B cGMP- contractile function;
inhibited antiapoptotic effect in adult
cardiomyocytes [12].
Pde4a knockout:
no cardiac alteration [13];
PDE4 48, :ﬂ;’ 4G, cAMP Pde4d knockout:
age-related cardiomyopathy;
arrhythmia [14].

Pdeba overexpression:
adverse cardiac remodeling after
PDE5 5A cGMP myocardial infarction; enhanced
hypertrophy, reduced contractile
function [15].

Pde8a knockout:
PDES 8A, 8B cAMP increased Ca?* transient and current
during 3 AR stimulation [16].
PDE9 9A cGMP cardio- I;z’fjgtggc;cf}c(eiust;stained
high affinity P

pressure overload [17].

Considering these observations, the present study was carried out to further char-
acterize the pattern of PDE expression in cardiac development at mRNA, protein and
activity levels. This information will provide a useful tool to clarify the role of PDEs in the
framework of the cardiac development and their potential role in cardiac diseases.
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2. Results
2.1. PDE mRNA Expression Levels Vary between Embryonic and Fetal Cardiac Development

It was previously shown by semiquantitative reverse transcriptase polymerase chain
reaction (RT-PCR) that the mRNAs of Pdel, Pde2, Pde3, Pde4, Pde5, Pde8 and Pde9 were
present in the heart of embryonic and fetal mice [8]. In order to detect PDE expression
changes in the developing heart, the mRNA levels of selected variants of these PDEs were
measured by qRT-PCR at E14.5, E16.5 and E18.5 (Figure 1).
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Figure 1. PDE gene expression during heart formation. qRT-PCR analysis of Pdela, Pdelc, Pde2a,
Pde3a, Pde4a, Pde4d, Pde5a, Pde8a and Pde9 mRNA expression in E14.5, E16.5 and E18.5 mouse hearts.
The relative expression was normalized versus Gapdh gene. Data represent the mean + SD of five
hearts for each stage. One-way ANOVA was used for statistical analysis. * p < 0.05.
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The Pdel gene encodes for three (1a, 1b and 1c) Ca?* /calmodulin (CaM)-stimulated
phosphodiesterase activities, all able to hydrolyze both cAMP and ¢cGMP [18]. Quantitative
expression analysis showed that mRNA of Pdela is present at similar levels at all stages of
heart development. In contrast, Pdelc mRNA was expressed at very low levels at E14.5
and greatly increased expression at E16.5, reaching statistical significance at E18.5.

PDE2A is a cAMP and cGMP hydrolyzing activity stimulated by ¢cGMP. Pde2a tran-
script, required for normal heart development [9], is expressed at low levels at E14.5 and
showed a gradual increase over time with expression being significantly greater at E18.5.

PDE3A, comprising the 3A and 3B isoforms [12], is a member of the cGMP-inhibited
phosphodiesterase, hydrolyzing both cAMP and cGMP.

Pde3a mRNA was moderately expressed at E14.5, increased at E16.5 and its levels
were stabilized at the E18.5 stage.

PDE4 is a large family of enzymes (4A, 4B, 4C and 4D) encoded by four genes of which
4a, 4b and 4d are expressed in the developing mouse heart and in cardiomyocytes [8,19].
Two mRNA of PDE4 isoforms expressed in the heart were analyzed, Pde4a and Pde4d. Both
transcripts with little differences were expressed at comparable levels during all stages.

PDES5A, a cGMP-specific activity, has a major role as regulator of vascular smooth
muscle contraction [15,20]. Pde5a mRNA maintained a profile of expression similar along
all stages.

PDES8 is a cAMP specific activity comprising the 8A and 8B isoforms [16]. PdeS8a mRNA
was present at low levels between E14.5 and E16.5 and displayed, similar to Pde2a, a great
increase from E16.5 to E18.5.

PDE9 isoforms specifically hydrolyze cGMP with the highest affinity among all PDE
families, and they are expressed in cognitive-relevant regions of the brain [17,21]. Pde9
mRNA showed a constant level at all stages of heart formation.

Taken together, the mRNA expression of PDE isoforms can be grouped into mRNAs
that are present at approximately the same level at any stage of heart development (Pdela,
Pde3a, Pde4a and Pde5a), mRNAs that tend to decrease with time (Pde4d and Pde9) and
transcripts that are clearly upregulated with time (Pdelc, Pde2a and Pde8a).

2.2. Variation of PDE Expression Occurs at Protein Levels in Embryonic and Fetal Heart

Since no data are available regarding the translation of mRNA of PDE isoforms in the
prenatal heart, Western blot (WB) analyses were performed to assess the presence of PDE
isoform immunoreactivity on the same days in which mRNA expression was evaluated.

The WB analysis reported in Figure 2 showed a protein pattern profile that, with the
exception of PDE4D and PDES5SA, resembled the gene expression profile of Figure 1.

Briefly, PDE1A showed protein levels very similar at all stages of heart formation.
Although PDE2A was almost undetectable at E14.5, PDE1C and PDE2A displayed an
almost identical progressively increasing profile with the highest protein amounts at E18.5.
PDE3A and PDE4A displayed protein amounts similar at all stages evaluated. The level
of PDE4D was not modified between E14.5 and E16.5 but showed a significantly detected
reduction at E18.5. The level of PDE5A protein greatly decreased from E14.5 to E16.5,
reaching its lowest level at E18.5. PDESA protein amount mirrors the same pattern of
PDE2A with a progressive and significant increase during the stages of heart formation.
The PDE9 protein was below the limit of quantification of employed methods (data not
shown).
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Figure 2. PDE protein expression during heart formation. Representative image of Western blot analysis and relative
densitometric analysis of PDE1A, PDE1C, PDE2A, PDE3A, PDE4A, PDE4D, PDESA and PDESA proteins normalized with
respect to Tubulin protein levels in E14.5, E16.5 and E18.5 mouse hearts. Data represent the mean £ SD of at least three
hearts for each embryonic stage. One-way ANOVA was used for statistical analysis, * p < 0.05, ** p < 0.01.

2.3. Few PDEs Showed Enzymatic Activity Modulation at Embryonic and Fetal Life

In the prenatal heart, the levels of cAMP and cGMP hydrolytic activities are stable
during development (Figure 3).
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Figure 3. Total and specific PDE enzymatic activity during heart formation. Total cAAMP and cGMP hydrolyzing activity
from heart homogenates at E14.5 (white columns), E16.5 (light grey columns) and E18.5 (dark grey columns). PDE3- and
PDE4-specific activities are reported as a percentage of total cCAMP hydrolyzing activity evaluated after adding a fixed
dose of the specific inhibitor milrinone and rolipram, respectively (see Materials and Methods). PDE2, PDE5 and PDE9
specific activities as a percentage of the total cGMP hydrolyzing activity evaluated after adding a fixed dose of the specific
inhibitor BAY 60-7550, sildenafil and PF04449613, respectively (see Materials and Methods). Data represent the mean of
three independent experiments £ SD. Each experiment was performed with a pool of 5 hearts per stage. One-way ANOVA
was used for statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Since specific inhibitors for many PDE isoforms are available, it was possible to mea-
sure the enzymatic activity of PDE2, 3, 4, 5 and 9 at different stages of heart development.
cAMP-PDE activity assays were performed in cardiac homogenates in the presence of
10 uM milrinone, the specific inhibitor of PDE3, and 30 uM rolipram, the specific inhibitor
of PDE4. The results obtained showed that almost 75% of the total cAMP hydrolytic activity
in the prenatal heart is due to PDE4 and the remaining 25% to PDE3 activity (Figure 3).

PDES3 activity decreased with time, reaching statistical significance at E18.5, while
PDE4 decreased more extensively compared to PDE3, showing a 15% decrease from E14.5
to E16.5, whereas the reduction was 20% from E14.5 to E18.5.
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c¢GMP-PDE activity assays were also performed in cardiac homogenates in the pres-
ence of 0.1 pM BAY 60-7550, the specific inhibitor of PDE2; 0.1 uM sildenafil, the specific
inhibitor of PDES; or 1 uM PF04449613, the specific inhibitor of PDE9.

In the prenatal heart at E14.5, almost 80% of the total cGMP hydrolytic activity was
divided at the same extent between PDE2 and PDE5, and the remaining 10% was due to
PDE9 (Figure 3). PDE2-dependent cGMP hydrolytic activity increased from 40% of the
total activity at E14.5 to 60% at E16.5 and E18.5. In parallel, there was a significant decrease
of PDE5-specific activity from the total 40% at E14.5 to less than 17% at E18.5. PDE9 activity
was about 15% of total cGMP activity at every evaluated stage.

The PDE1 family comprises 3 genes for PDE1A, PDE1B and PDEIC activities, all
able to hydrolyze both cAMP and cGMP [18]. Its hydrolytic activity was evaluated due
to its unique property of being stimulated by Ca?*/CaM binding. The three isoforms
displayed the same affinity for cGMP hydrolysis [22]; therefore, the total amount of PDE1-
stimulated activity was first assessed giving cGMP as substrate. As shown in Figure 4,
c¢GMP hydrolyzing activity was stimulated two-fold in the presence of calcium and CaM,
showing a constant level independent of the developmental stage.
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Figure 4. PDE1 enzymatic activity during the heart formation. Total PDE1 activity evaluated with
c¢GMP as substrate in the presence of calcium and calmodulin. PDE1C activity assessed with 0.1 uM
cAMP as substrate in the presence of calcium and calmodulin. Data represent the mean of three
independent experiments + SD. Each experiment was performed with a pool of 5 hearts per stage.
Two-way ANOVA were used for statistical analysis. ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Since there are no specific inhibitors to PDE1 isoforms but PDE1C has a higher affinity
for cAMP with respect to the other two isoforms [23], its hydrolyzing activity was eval-
uated in the presence of 0.1 uM cAMP (Figure 4). The results obtained showed a similar
Ca?* /CaM stimulation in both E14.5 and E16.5 hearts and a significant stimulated increase
at the E18.5 prenatal heart stage.

3. Discussion

The present study characterized the developmental pattern expression and enzymatic
activity of PDEs at different stages of embryonic and fetal murine heart.

PDEs are evolutionary-conserved enzymes that, through the hydrolysis of cAMP
and cGMP nucleotides, regulate the intracellular transduction signal of many hormones
and growth factors involved in cardiac biology [7]. However, few data are available on
the levels of cyclic nucleotides in the developing heart. Thakkar and Sperelakis assessed
the cAMP and cGMP basal level content during chicken heart development [24]. Their
data showed that the cAMP content was highest at early stages of heart development,
decreasing with time, while the basal cGMP content was lowest early and increased at a
later stage. It has been suggested that the adverse cAMP and cGMP basal content profile
might be either due to a decrease of adenylyl and guanylyl cyclase activity or to an increase
in PDE activity [24,25]. On the contrary, in isolated mouse cardiomyocytes with increasing
age of development, it has been reported that cAMP content increased [26]. Here we report
data showing that basal levels of cAMP and cGMP hydrolyzing activity did not change in
the developing heart, ruling out the possibility that cyclic nucleotide basal level differences
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could be due to a modification of the heart cells ability to degrade them. In addition, these
data indicated the existence of an equilibrium between the two cyclic nucleotides at least
during heart developmental stages.

Previous data obtained by RT-PCR demonstrated that nine PDEs are expressed in
the mouse developing heart [8]. These results were not only confirmed and extended by
gRT-PCR, WB analyses and activity assays from this study, but we also showed that among
the evaluated PDEs families, Pde1C, Pde2A, Pde4D, Pde5A and Pde8A displayed significant
and never-described-before changes in expression in embryonic and fetal murine heart
development. In particular, PDE1C, PDE2A and PDESA activities showed a progressive
significant increase while PDE4D and PDE5A showed a progressive decrease during heart
formation. Moreover, we found that PDE2A and PDE5A accounts, with an increasing-
decreasing adverse profile, respectively, for nearly 80% of the total cGMP hydrolyzing
activities, while PDE3 and PDE4 accounts for more than 90% of the total cAMP hydrolyzing
activity (Figure 3).

These data suggested the involvement of these activities during the construction of
the main frame of the heart, while the other PDEs must have a role in specific modulated-
adjusting functions to complete the transition from the embryonic to the final fetal organ.

In detail, we will describe the single-analyzed PDEs to elucidate, according to pub-
lished data and to the results shown in this paper, the role played by each of them during
the process of heart development.

PDE1 is a Ca?*/CaM-stimulated phosphodiesterase family comprised of three genes
for PDE1A, PDE1B and PDEIC activities, all able to hydrolyze both cAMP and cGMP [18].

The activity assay with cGMP as a substrate and Ca?*/CaM, detecting together
the three PDE1 stimulated activities, revealed a constant basal level throughout heart
development. On the contrary, the Ca?*/CaM-stimulated activity specifically associated
with PDE1C at low concentration of cAMP [22] showed the same increase observed at
mRNA and protein levels with the highest amount at E18.5, indicating that PDE1C might
play a major role in the fetal heart rather than in the embryonic heart.

In fact, although PDE1C mutant mice do not present any cardiac alterations in physi-
ological conditions, the genetic ablation of this isoform, expressed exclusively in cardiac
myocytes, was associated with cardio-protection [11].

In line with the cell cycle exit of cardiomyocytes shortly after birth to terminal differen-
tiation [27], the increased expression of PDE1C observed during heart development could
be associated with PDE1C involvement in the control of cell proliferation as demonstrated
in different studies. In particular, PDE1C plays a critical role in regulating the stability
of growth factor receptors known to mediate important signaling pathways during heart
formation [28].

The PDE2A gene gives rise to three isoforms localized in different cellular compart-
ments, and they are all able to hydrolyze cAMP and cGMP at a similar rate [29]. PDE2A
expression markedly increased at mRNA and protein levels at E18.5, accounting for 60% of
the total cGMP hydrolyzing activity of fetal heart.

The importance of PDE2A in heart development is evident from its knockout at the
embryo stage, which leads to severe cardiac alterations such as incomplete intraventricu-
lar septum, ventricular enlargement and hypertrabeculation before death takes place at
E15.5 [9]. Moreover, PDE2A is the only PDE shown to be localized in mitochondria, where
it is assembled in a multiprotein signaling complex with a specific mitochondrial adenylyl
cyclase regulating the activity of the respiratory chain [30]. We cannot exclude that the
increase in PDE2A during development could also be associated with the mitochondrial
biogenic surge that occurs in cardiomyocytes at birth [31].

PDESA, which specifically degrades cGMP, showed the highest protein level and
hydrolyzing activity at E14.5 and the lowest levels at E18.5 stage.

PDES5A displays reduced levels in the adult heart under physiological conditions and
increased levels in several pathological conditions; these differences with its levels during
cardiac development suggested a correlation between its expression and hypoxic condition.
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In fact, at birth, the embryo undergoes a change from hypoxia to normoxia [31], while in
the adult heart tissue, hypoxia seems to be one of the common features in cardiovascular
disorders [32].

PDE4 is a large family of enzymes (PDE4A, 4B, 4C and 4D) of which A, B and D
are expressed in the developing mouse heart, in cardiomyocytes and in murine cardiac
tissue at comparable levels [8,13,19]. Despite the high amounts of PDE4 activity, the
pharmacological inhibition and the genetic ablation of the PDE4A isoform in mice did
not induce any cardiac alterations in animals at six months of age [33]. Conversely, the
different phenotypes induced by the genetic ablation of PDE4D is probably due to their
different subcellular localization and macromolecular complex interaction. Indeed, PDE4D
knockout mice presents a progressive cardiomyopathy with a loss of 3-adrenergic signaling
in cardiac myocytes and heart failure after myocardial infarction [14,34].

In the developing mouse heart, the Pde4d mRNA expression is not modified over time,
whereas, at the protein level, PDE4D showed a significant decreased expression at E18.5
(Figure 2). The decrease at the protein level is in agreement with the cAMP-hydrolytic
activity decrease observed at the E18.5 stage while no changes were detected in the 4A
isoform at the stages examined.

It is well known that the cardiac autonomic nervous system modulates physiologi-
cal cardiac functions such as heart rate and contraction force. The first signs of cardiac
innervation during development are found in mouse dorsal mesocardium at E10.5 [35]. It
has been reported that the heart rate of mice increases postnatally [36,37], mainly through
the action of sympathetic system. One can speculate that the decreased expression of
PDE4D in E18.5 heart could sustain sympathetic activity which in turn induce an increase
in cAMP signaling through (-adrenergic receptor activation. In fact, detailed studies
demonstrated the greatest role of PDE4D in the control of cAMP generated by [3-adrenergic
stimulation [6,38].

Another cAMP-specific PDE showing a significant alteration of expression during
cardiac development is PDESA; both mRNA and protein levels significantly increased from
E14.5 to the E18.5 stage of heart formation. Although the PDE4 family has a dominant role
on the control of cAMP produced following {3-adrenergic receptor stimulation, PDESA
is also involved in this pathway. Studies in isolated ventricular myocytes from Pde8a
knockout hearts have demonstrated that this enzyme regulates Ca** signaling during
-adrenergic stimulation, suggesting that it could protect against cardiac arrhythmias [16].
However, further studies are required to fully understand the role of PDESA in heart.

In conclusion, this study showed that there is a modulation of PDEs’ expression at dif-
ferent stages of heart formation which tends to keep constant the total hydrolyzing activity
of the heart. The expression of multiple PDE isoenzymes degrading cAMP/cGMP over
a wide range of concentrations, and whose activity is dynamic due to PDE regulation by
numerous intracellular signals, contributes to the very complex scenario in the regulation
of cyclic nucleotide pathways during cardiac development. An additional and important
property of the PDE system is its ability to operate in discrete subcellular compartments
through macromolecular complexes organized by scaffold proteins. This organization cre-
ates high concentrations of specific PDEs which regulate distinct pools of cyclic nucleotides
and, in turn, specific cellular processes [39].

Further studies will be necessary to better understand the localization and subcellular
functions of different PDEs at different stages of heart formation and to verify if dysregula-
tion of these patterns of expression could be involved in cardiac malformations during the
intrauterine life.

4. Materials and Methods
4.1. Mouse Husbandry and Embryos Collection

All the animal procedures conformed to the Directive 2010/63/EU of the European
Parliament on the protection of animals used for scientific purposes, and they were con-
ducted with the approval of the Sapienza University’s Animal Use for Research Ethic
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Committee and by the Italian Ministry of Health with protocol number DGSAF 24675-A
(2013) and 919/2020-PR. Male and female C57BL/6 wild type from eight to twelve weeks
of age were mated to generate embryos and fetus mice. The day of vaginal plug was
considered as embryonic day 0.5 (E0.5). The animals had access to food and drinking water
ad libitum and maintained in a light-dark cyclic of 12-12 h and temperature at 20-25 °C. At
14.5,16.5 and 18.5 days of heart formation, embryos and fetuses were dissected from the
yolk sac after cervical dislocation of pregnant mouse. The embryonic and fetal hearts were
collected in phosphate buffer saline and stored at —80 °C for future analysis.

4.2. gRT-PCR

Total RNA was isolated from five embryonic heart tissues using total RNA isolation
Microprep Kit-BioRad following the manufacturer’s instructions. The RNA was treated
with DNase I Zymol and, after, was reverse-transcribed to synthesize cDNA through
Maxima H minus reverse transcriptase (Thermo Fischer Scientific, Waltham, MA, USA).
For qRT-PCR, samples were amplified in the reaction mixture with PowerUp SYBR green
Master Mix (Thermo Fisher Scientific) and specific primers for phosphodiesterases in
Thermo Fisher Scientific 7500 Real-Time PCR instrument. For quantification analysis, the
comparative threshold cycle (Ct) method was used. The Ct values of each gene were
normalized to the Ct value of Gapdh in the same RNA sample. The gene expression levels
were evaluated by the fold change using the equation 2794Ct, The primers used in the
present study are listed in the Table 2.

Table 2. qRT-PCR primers.

Gene Forward Primer Reverse Primer

Pdela 5 AGGTATCATGCACTGGCTCA 3’ 5GAGCGGTCGTTGTACAGAAT 3
Pdelc 5' ATGGGGATGATGCTTAGGAG 3’ 5" CAATGCTTCGATTACAGCCG 3’
Pde2a 5" ACCGAAAGATCCTGCAACTG 3’ 5" TTCTCCCAGCACTTTGTCTC 3/
Pde3a 5" AGAATCCATGCCACCGATGT 3’ 5" CCCATGTGTCCGTGTGTAAA 3/
Pdeda 5" TGCTGCAAGAGAACTGC 3’ 5" AGGGTCATGTGCTTGGACAT 3’
Pde4d 5'GCCTCTGACTGTTATCATGCAC3' 5" GCAGCATGGATGTTGTTGTG 3/
Pdeba 5" ATCCATGGACTCATCTCTGC 3 5" GCTTCCTCCAATGTTGAACC 3’
Pde8a 5" TCAGAGTGTGCAATGGCAAC 3/ 5'GTCCATCGAATGTTTCCTCC 3
Pde9 5" CTACGAGGAGCTGAAGCAGC 3’ 5" AGTTTGGAGGAGAATGGCCT 3’
Gapdh 5" GTGAAGGTCGGTGTGAACG 3’ 5" ATTTGATGTTAGTGGGGTCTCG3'

4.3. Western Blot

To evaluate the protein expression of PDEs during cardiac development, a Western
blotting analysis was performed. Protein samples were extracted from embryonic heart
and lysed in RIPA lysis buffer 1x (Merck Millipore Darmstadt, Germany) supplemented
with protease and phosphatase inhibitors. The protein concentration was measured by
Bradford method. An amount of 30 pg of protein was electrophoresed in 8-10% SDS-page
gels and transferred onto nitrocellulose membrane. The membrane was immersed in 5%
v/v blocking milk (TBST + 5% non-fat milk) for 1 h at room temperature and incubated
in primary antibodies (1:500 v/v in TBST + 5% w/v BSA (bovine serum albumin) buffer)
for phosphodiesterase detection (PDE1A FabGennix #PDE1A-101AP; PDE1C FabGennix
#PD1C301AP; PDE2A Abcam #ab140650; PDE3A Santa Cruz #sc-20792; PDE4A Proteintech
#16226-1-AP; PDE4D Invitrogen #PA5-79795; PDE5SA Santa Cruz #32884; PDESA Sigma
Aldrich #HPA007722) overnight at 4 °C. After, the membranes were washed in TBST and
incubated in appropriated horseradish peroxidase (HRP)-conjugated secondary antibodies
(1:10,000 v/v in TBST) for 1 h at room temperature. Chemiluminescent images of immun-
odetected bands were recorded with the Syngene G-box system (Syngene Bioimaging,



Int. J. Mol. Sci. 2021, 22, 2593

10 of 12

India) and immunoblot intensities were quantitatively analyzed using Image] Software
(NIH, Bethesda, MD, USA).

4.4. PDEs Activity Assay

Embryonic hearts were homogenized using a glass homogenizer (15 strokes, 4 °C) in
20 mM Tris-HCl buffer pH 7.2 containing 0.2 mM EGTA, 5 mM (3-mercaptoethanol, 2% v/v
antiprotease cocktail (Sigma-Aldrich, St. Louis, MO, USA), 1mM PMSEF, 5mM MgCl2, 0.2%
v/v Triton X-100. The homogenates were centrifuged at 14,000 x g for 30 min at 4 °C.

PDE activity was measured on the supernatant with the method described by Thomp-
son and Appleman [40] in 60 mM Hepes pH 7.2, 0.1 mM EGTA, 5 mM MgCl2, 0.5 mg/mL
bovine serum albumin (BSA) and 30 mg/mL soybean trypsin inhibitor in a final volume
of 0.15 mL. Ca?*-calmodulin stimulation was determined in the presence of 1 mM CaCl,
and 3 ug/mL calmodulin. The reaction was started by adding tritiated substrates at a
final concentration of 1 uM [*H] cAMP or [*H] cGMP, and 0.1 uM [*H] cAMP for PDE1C
detection. The reaction was stopped by adding 50 uL of 0.1 N HCI and then neutralized
with 50 pL of 0.1 N NaOH in 0.1 M Tris—-HCI pH 8.0. Subsequently, 25 puL of 2 mg/mL of
5'-nucleotidase (snake venom from Crotalus atrox; Sigma-Aldrich) in 0.1M Tris-HCl pH
8.0 were added. Samples were gently mixed and incubated at 30 °C for 30 min to allow
complete conversion of 5'-nucleotide to its corresponding nucleoside. Unhydrolyzed cyclic
nucleotide and the corresponding nucleoside were separated by DEAE-Sephadex A-25
columns. The eluate was mixed with ULTIMA GOLD scintillation liquid (PerkinElmer) and
counted on a Tri-Carb 2100TR Liquid Scintillation Counter (2000CA; Packard Instruments,
Meriden, CT, USA).

To evaluate the enzymatic specific activity of each PDEs, the specific inhibitors were
added to the reaction mix at the following concentration: 10 pM milrinone (PDE3 inhibitor),
0.1 uM BAY 60-7550 (PDE2 inhibitor), 30 uM rolipram (PDE4 inhibitor), 0.1 uM sildenafil
(PDES inhibitor) and 1 uM PF04449613 (PDE9 inhibitor). The percentage of each PDE
was calculated comparing the difference between the total PDE activity and the residual
PDE activity assayed in the presence of the specific inhibitor with respect to the total PDE
activity fixed as 100%.

4.5. Statistics Analysis

The data obtained were statistically analyzed using the GraphPad Prism 5.0 (GraphPad
software, San Diego, CA, USA). Comparison among groups was performed with the one-
way ANOVA or two-way ANOVA and multiple comparisons by Tukey test. A p value of
<0.05 was considered statistically significant; all data were presented as mean =+ SD.
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Abbreviations

E. Embryonic day

cAMP  Cyclic adenosine monophosphate
¢GMP  Cyclic guanosine monophosphate
AC Adenylyl cyclase

NO Nitric oxide

PDE Phosphodiesterase

Ca®*  Calcium

CaM Calmodulin

TAC Transverse aortic constriction
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