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Abstract: Obesity has become a global public health and economic problem. Obesity is a major risk 
factor for a number of complications, such as type 2 diabetes, cardiovascular disease, fatty liver 
disease, and cancer. Serotonin (5-hydroxytryptamine [5-HT]) is a biogenic monoamine that plays 
various roles in metabolic homeostasis. It is well known that central 5-HT regulates appetite and 
mood. Several 5-HT receptor agonists and selective serotonin receptor uptake inhibitors (SSRIs) 
have shown beneficial effects on appetite and mood control in clinics. Although several genetic pol-
ymorphisms related to 5-HT synthesis and its receptors are strongly associated with obesity, there 
is little evidence of the role of peripheral 5-HT in human metabolism. In this study, we performed 
a systemic analysis of transcriptome data from the Genotype-Tissue Expression (GTEX) database. 
We investigated the expression of 5-HT and tryptophan hydroxylase (TPH), the rate-limiting en-
zyme of 5-HT biosynthesis, in the human brain and peripheral tissues. We also performed differen-
tial gene expression analysis and predicted changes in metabolites by comparing gene expressions 
of tissues with high TPH expression to the gene expressions of tissues with low TPH expression. 
Our analyses provide strong evidence that serotonin plays an important role in the regulation of 
metabolic homeostasis in humans. 
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1. Introduction 
Obesity is defined as excessive accumulation of body fat, which presents several risks 

[1]. It is the major risk factor for a number of complications such as type 2 diabetes, cardi-
ovascular disease, fatty liver disease, and cancer [2]. The prevalence of obesity has in-
creased dramatically and has become a global public health problem [2]. For this reason, 
the American Medical Association (AMA) recognized obesity as a complex, chronic dis-
ease [3]. For the prevention and treatment of this disease, scientists have tried to under-
stand the mechanisms of regulating energy homeostasis and find a way to maintain a 
balance between energy intake and energy expenditure [4,5]. 

Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine that is highly con-
served between nematodes and vertebrates [6]. 5-HT is synthesized from tryptophan cat-
alyzed by the rate-limiting enzyme, tryptophan hydroxylase (TPH) [7]. TPH exists in two 
isoforms, TPH1 and TPH2. TPH1 is mainly expressed in peripheral tissues and pineal 
gland [8]. TPH2 is abundant in the serotonergic neurons in the brain and myenteric plexus 
[9]. Recent studies have revealed various roles of serotonin in the regulation of energy 
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homeostasis [7,10,11]. In the brain, serotonin controls anxiety and appetite-related behav-
iors as a neurotransmitter [10]. Several serotonin receptor agonists and selective serotonin 
receptor uptake inhibitors (SSRIs) targeting central serotonin have been widely used in 
the clinical field and have revealed strong associations with body weight changes [10]. For 
example, serotonin receptor (HTR) 2C is a G protein-coupled receptor that plays a role in 
appetite, eating behavior, and energy metabolism [7,12]. HTR2C polymorphisms have 
also shown strong associations with obesity and metabolic disorders [13,14], and the 
HTR2C agonist has shown a significant weight-loss effect in clinical studies [15]. 

Peripheral serotonin also has shown integral roles in various physiological and 
pathological regulation [7,10,11]. More than 90% of peripheral serotonin is synthesized 
and secreted from enterochromaffin cells in the gut and stored in platelets [7]. Platelets 
uptake 5-HT from the plasma and release 5-HT in response to specific conditions such as 
tissue injury and acute inflammation [16,17]. Furthermore, gut-derived serotonin (GDS) 
promotes gluconeogenesis and lipolysis in hepatocytes under fasting conditions [18]. GDS 
also plays an important role in lipid accumulation in the liver. Inhibition of GDS synthesis 
or HTR2A signaling prevents high-fat diet (HFD) induced hepatic steatosis in mice mod-
els [19]. Serotonin derived from other peripheral tissues has shown various effects on me-
tabolism [20–23]. Pancreatic beta cell-derived serotonin regulates beta cell proliferation 
and insulin secretion during pregnancy [20,21]. Adipocyte-derived serotonin (ADS) reg-
ulates lipogenesis in white adipose tissue (WAT) and thermogenesis in brown adipose 
tissue (BAT) [22,23]. Recent studies have reported that the gut microbiome controls GDS 
synthesis and serotonin level changes due to gut microbiota dysbiosis results in obesity 
and its related metabolic dysfunctions [24,25]. 

Genetic studies have suggested statistical evidence for the role of serotonin in meta-
bolic disorders in humans [26–29]. Recent monozygotic study reported that serotonin 
transporter gene (SCL6A4) promoter hypermethylation has strong association with body 
weight and body mass index (BMI) [26]. Genetic polymorphisms and DNA hypermethyl-
ation of the HTR2A gene have been associated with obesity and metabolic syndrome [27]. 
Single-nucleotide polymorphisms (SNPs) in HTR2A and HTR2C have significant associ-
ations with obesity and type 2 diabetes [28]. SNPs in TPH1 and HTR2B displayed signifi-
cant associations with weight gain during pregnancy [29]. 

Animal studies and human genomic studies have demonstrated that serotonin regu-
lates glucose, lipid metabolism, and energy expenditure [7,11]. Although some human 
studies reported that plasma 5-HT had associations with obesity [30,31], more evidence is 
needed to support the role and potential mechanisms of 5-HT in human peripheral tis-
sues. In this study, we aimed to analyze the gene expressions of the human brain and 
peripheral tissues according to TPH expression. To accomplish this, we used the Geno-
type-Tissue Expression (GTEX) database [32]. 

2. Results 
2.1. TPH Expression in Human Tissue 

TPH is the rate-limiting enzyme in the biosynthesis of serotonin. In the brain, seroto-
nin levels are directly related to TPH activity [33]. In peripheral tissues, serotonin levels 
are related to circulating serotonin levels from the gut (circulating serotonin) and TPH 
activity of the peripheral tissues (local serotonin) [34]. To assess the roles of serotonin in 
energy metabolism, we analyzed TPH mRNA expression in the human tissues from the 
GTEx dataset. First, we checked TPH1 and TPH2 expression in the brain and peripheral 
tissues (Figure 1 and Supplementary Figures S1 and S2). TPH2 was mostly expressed in 
central nervous system (Figure 1A). Gastrointestinal tracks expressed TPH1, and several 
peripheral tissues, such as adipose tissues, expressed TPH1 (Figure 1B). These expressions 
support previous reports about the existence and autocrine/paracrine role of ADS as well 
as GDS [19,22]. 
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Figure 1. TPH expression in human tissues of the GTEx data. (A) TPH1 expression in human tissues. (B) TPH2 expression 
in human tissues. TPH: tryptophan hydroxylase. 

Previous postmortem analysis of brain tissues reported that TPH2 mRNA expression 
is abundant in the dorsal raphe nucleus, median raphe nucleus, and raphe nuclei-contain-
ing regions such as pons and medullar, not the pituitary gland [35,36]. Although TPH1 is 
mainly expressed in peripheral tissues, some papers have already reported the existence 
of TPH1 in the brain, especially in the pituitary gland [37–39]. Our results showed that the 
pituitary gland expressed TPH1 as well as TPH2, and the expression levels were higher 
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than those in other tissues (Figure 1). This suggests that serotonin might play a more im-
portant role in the pituitary gland and hypothalamus–pituitary axis regulation than we 
already thought. 

2.2. Transcriptome Analysis in Brain According to TPH2 Expression 
To investigate the role of serotonin in the brain, we selected 10 brain tissues with 

highly expressed TPH2 mRNA and 10 brain tissues with lowly expressed TPH2 mRNA 
in the brain transcriptome of GTEx dataset. Differentially expressed gene (DEG) analysis 
between these two groups revealed that high TPH2 groups showed downregulation of 
lipid metabolism related genes (Figure 2A,B). For example, adipogenesis marker genes 
(FAB4 and ADIPOQ) and driver gene (PPARG) are decreased in high TPH2 group [40]. 
Fatty acid oxidation (FAO) related genes (CIDEA, UCP2, ANGPTL4) are also decreased 
in high TPH2 group [41]. Gene Set Enrichment assay (GSEA) revealed that central seroto-
nin has a negative association with fatty acid metabolism, adipogenesis, and glycolysis 
(Figure 2C,D). Lipid in the brain is a key component of neuronal structure and brain de-
velopment [42]. Thus, our results imply that serotonin has a significant role in lipid pro-
cessing in the brain, which regulates systemic metabolism [42]. Gene Ontology (GO) anal-
ysis supported this implication. GO analysis revealed that several biological functions as-
sociated with sensory perception and neuronal development changed according to TPH2 
expression in brain (Figure 2E). 
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Figure 2. Gene expression changes in brain according to TPH2 expression (n = 10 per group). (A) Volcano plot of the 
significantly differentially expressed genes (DEGs). (B) Heatmap of DEGs. (C–E) DEGs were analyzed by Gene set enrich-
ment analysis. (C) The enrichment plot for fatty acid metabolism and adipogenesis. (D) Bar plot depicting the normalized 
enrichment scores (NES). (E) Dot plot for enriched gene ontology pathways from GSEA results. 

2.3. Transcriptome Analysis in Intestine and Adipose Tissue According to TPH1 Expression 
The major source of peripheral serotonin is enterochromaffin cells in the gut [7]. This 

GDS directly regulates intestinal motility and inflammation [43]. As a circulating hor-
mone, GDS inhibits bone formation [44] and regulates lipid metabolism in the adipose 
tissue and liver [18,19]. To evaluate the role of serotonin in the gut, we selected 10 samples 
with highly expressed Tph1 mRNA and 10 samples with lowly expressed Tph1 mRNA 
from the small intestine and colon transcriptome data from the GTEx database. Figure 3 
and Supplementary Figure S3 show highly differentially expressed genes from the small 
intestine and colon dataset. Intriguingly, most highly expressed genes in the high TPH1 
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group have important roles in pancreatic endocrine cell development (PDX1, PAX4, NEU-
ROD1, NEUROG3) and hormonal secretion (CHGA, SST, DPP4) (Figure 3A,B). GSEA also 
showed that TPH1 expression was positively correlated with pancreatic beta cell related 
genes (Figure 3C,D). Previously, our group reported that pancreatic beta cell-derived ser-
otonin regulates beta cell proliferation and insulin secretion [20,45]. However, the role of 
GDS in pancreatic beta cell has not yet been discovered. Further studies are needed to 
investigate the role of GDS in pancreatic beta cell. Conversely, these patterns suggest the 
importance of GDS in gut functions as an endocrine organ. Actually, gut is the largest 
endocrine organ in the human body [46], and many genes related to pancreatic beta cell 
also play an important role in gut endocrine functions. For example, Pdx1 deletion in the 
gut resulted in a significant reduction of mRNA abundance of gastric inhibitory peptide 
and somatostatin and decreased intestinal alkaline phosphate activity in the mouse gut 
[47]. Ngn3 deleted mice showed impaired endocrine progenitor cells, gastrin-secreting 
cells (G cells), and somatostatin-secreting cells (D cells) in the gut [48]. 
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Figure 3. Gene expression changes in colon according to TPH1 expression (n = 10 per group). (A) Volcano plot of the 
significantly differentially expressed genes (DEGs). (B) Heatmap of DEGs. (C–E) DEGs were analyzed by Gene set enrich-
ment analysis. (C) The enrichment plot for fatty acid metabolism and K-RAS signaling. (D) Bar plot depicting the normal-
ized enrichment scores (NES). (E) Dot plot for enriched gene ontology pathways from GSEA results.  

GSEA analysis also showed a positive correlation with fatty acid metabolism and the 
K-RAS signaling pathway (Figure 3C,D). KRAS signaling plays various roles in cell pro-
liferation, apoptosis, and angiogenesis [49]. This gene is a well-known oncogene [50]. Mu-
tations in this gene and activated KRAS signaling are one of the most common causes of 
colon cancer development [50,51]. This suggests that high serotonin levels in the gut may 
act as a cancer driver. Some studies have reported the role of serotonin in colon cancer 
[52–54]. Tutton et al. reported that serotonin supplementation promoted the proliferation 
of colon cancer cells [53]. GO analysis showed several pathways related to nutrient me-
tabolism, organ development, and inflammation (Figure 3E). 

2.4. Transcriptome Analysis in White Adipose Tissue According to TPH1 Expression 
ADS regulates adipocyte differentiation and metabolism via autocrine/paracrine sig-

naling [55]. Previously, we reported that serotonin regulates de novo lipogenesis in white 
adipose tissue and thermogenesis in brown adipose tissue in mice [22,23]. To evaluate the 
role of ADS in human adipose tissue, we selected 10 samples with highly expressed Tph1 
mRNA and 10 samples with lowly expressed Tph1 mRNA from white adipose tissues 
(omentum and subcutaneous tissue beneath the leg’s skin) transcriptome data from the 
GTEx database. Figure 4 shows the results of DEG, GSEA, and GO analysis. The high 
TPH1 expression group showed significant metabolism-associated gene expression 
changes compared to the low TPH1 expression group (Figure 4A,B). RNASE13 is a ribo-
nuclease, and this gene, which has the highest fold changes in GSEA, has shown signifi-
cant associations with diabetes [56]. The transcription factor SIM1 plays a role in appetite 
control, and genetic variations in the SIM1 genes have shown significant associations with 
pediatric obesity [57]. GSEA analysis revealed that TPH1 expression in adipose tissue was 
positively correlated with pancreatic beta cell specific genes, fatty acid metabolism, and 
KRAS signaling (Figure 4C,D). Previously, we reported that pancreatic beta cell-derived 
serotonin regulates beta cell proliferation and insulin secretion [20,45,58]. However, there 
are no reports about the role of ADS in pancreatic beta cell. High TPH1 adipose tissues 
showed decreased KIRREL2 mRNA expression. KIRREL2, a novel immunoglobulin su-
perfamily gene, is primarily expressed in pancreatic beta cells and regulates insulin secre-
tion [59,60]. Further studies are needed to explore the role of GDS in pancreatic beta cell 
based on these changes in gene set analysis. GO analysis (Figure 4E) revealed the immune 
systems and organ development. Interestingly, developmental categories in other periph-
eral tissues such as lung, kidney, and pancreas have significant associations with TPH1 
expression in adipose tissue. This suggests an important endocrine role of adipose tissue 
in the human body. 
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Figure 4. Gene expression changes in adipose tissue according to TPH1 expression (n = 10 per group). (A) Volcano plot of 
the significantly differentially expressed genes (DEGs). (B) Heatmap of DEGs. (C–E) DEGs were analyzed by gene set 
enrichment analysis. (C) The enrichment plot for fatty acid metabolism and pancreas beta cells. (D) Bar plot depicting the 
normalized enrichment scores (NES). (E) Dot plot for enriched gene ontology pathways from GSEA results. 

2.5. The Role of Serotonin in Mitochondria 
Animal studies have revealed that serotonin is an important regulator of mitochon-

drial function [61–63]. Serotonin increases mitochondrial biogenesis through HTR2A in 
cortical neurons and regulates mitochondrial transport in hippocampal neurons through 
HTR1A [61]. HTR3 and HTR4 localize to the mitochondrial membrane and regulate mito-
chondrial functions by Ca2+ signaling and mitochondrial permeability transition pore 
(mPTP) opening [63]. Serotonin also acts as an antioxidant in brain and peripheral tissues, 
such as pancreatic beta cell and kidney [58,64,65]. Caenorhabditis elegans studies reported 
that serotonin is required for neuroendocrine communication against mitochondrial pro-
teotoxic stress [66,67]. 

To investigate the role of serotonin in human mitochondria, we analyzed the expres-
sions of genes related to mitochondrial biogenesis and quality control in human tissue 
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transcriptome from the GTEx dataset. Figure 5 shows a heatmap plot of the DEG analysis. 
In the brain, TPH2 expression showed negative associations with most genes related to 
mitochondrial biogenesis, ATP biosynthesis, and mitochondrial quality control. 

 
Figure 5. The heat map of DEGs related to mitochondrial biogenesis, energy metabolism, and mitochondrial quality con-
trol according to TPH2 expression in brain (n = 10 per group). 

2.6. Metabolite Changes According to TPH Expression 
Serotonin is the main tryptophan metabolite by TPH and is metabolized to 5-hdry-

oxyindole acetaldehyde by monoamine oxidase [8]. Numerous studies have shown that 
gut microbes can metabolize tryptophan in the gut and affect host metabolism by chang-
ing host tryptophan metabolites [25,68]. Yano et al. reported that indigenous spore-form-
ing bacteria increase serotonin synthesis from colon enterochromaffin cells (ECs) [68]. Co-
lons of germ-free mice showed decreased Tph1 expression compared to Tph1 expression 
in specific pathogen-free mice colon [68]. Serotonin also directly regulates gut microbiota 
composition [69]. 

In order to estimate metabolite changes, based on enzyme gene expression, in the gut 
according to serotonin levels, we performed reporter metabolite analysis, together with 
metabolic pathway analysis, using R-package piano [70]. The predicted metabolic changes 
are shown in Supplementary Data 1. Väremo L. et al. developed this gene set analysis 
method for the interpretation of metabolic and biological functions and pathways from 
microarray and RNA sequencing data [70]. Figure 6 shows the predicted metabolic 
changes according to TPH expression in human tissues. TPH1 expression was positively 
associated with several pathways related to hormone metabolism, xenobiotic metabolism, 
and nutritional signaling (Figure 6). 

In addition, we also analyzed metabolic profiles in adipose tissue and brain (Figure 
6). In the adipose tissues, TPH1 expression shows positive associations with hormonal 
metabolism and negative associations with mitochondrial FAO pathways. Mitochondrial 
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FAO is the main metabolic pathway against lipid overload in adipose tissue [71]. Enhanc-
ing mitochondrial FAO is an emerging therapeutic strategy for obesity treatment [72,73]. 
ADS increases lipid accumulation in white adipose tissue. Negative correlation between 
TPH1 and mitochondrial FAO in human adipose tissues bears out that inhibiting seroto-
nin synthesis in adipose tissue can be a new therapeutic candidate for obesity therapy [22]. 

GSA results in the brain displayed that TPH2 has significant associations with mito-
chondrial FAO pathways, amino acid metabolism, and nucleotide metabolism (Figure 6). 
These metabolic profiles suggest that serotonin plays an important role in brain develop-
ment and energy metabolism [74,75]. Clinical studies have already reported the role of 
serotonin in brain development [76]. Serotonin is involved in neural crest stem cell regu-
lation and is a critical factor in cell survival, growth, differentiation, and synaptogenesis 
[76]. Alterations in serotonin signaling at an early age resulted in behavior and metal 
health problems throughout the life span [77]. 
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Figure 6. Predicted metabolic pathways according to TPH1 (adipose tissue, colon, and small intestine) and TPH2 (brain). 
Figure is the heatmap with the significant changes in metabolic pathway when the high TPH groups were compared with 
low TPH groups (n = 10 per each group). Up: upregulated pathways in high TPH tissue. Down: downregulated pathways 
in high TPH tissue. 

3. Discussion 
In this study, we aimed to elucidate the role of serotonin in metabolic changes in 

human tissues. Here, we used transcriptomic data from the GTEx project [32]. Central 
serotonin in the human brain regulates fatty acid metabolism and mitochondrial biogen-
esis and quality control. In addition, central serotonin has a significant association with 
nucleotide metabolism, which is an important component of neuronal development. 
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Several studies have reported the protective role of 5-HT in mitochondrial dysfunc-
tion. 5-HT increased mitochondrial biogenesis in rodent cortical neurons [61] and medi-
ates mitochondrial stress response in the neurons of C. elegans model [66]. Intriguingly, 
our data showed that high TPH2 group show lower expression of genes related to mito-
chondrial functions compared to low TPH2 group (Figure 5). This result implies TPH2 
increase in brain could be the result of protective response against mitochondrial dysfunc-
tion. Further studies are needed to clarify this association between TPH2 and mitochon-
drial function. 

TPH1 expressions in small intestine and colon have significant associations with hor-
mone and nutrition regulation. This implies that GDS might be the major regulator of 
endocrine function and metabolic homeostasis in the gut. TPH1 expression in white adi-
pose tissue shows significant associations with mitochondrial FAO and development 
pathways of other tissues such as the lung and kidney. These results indicate that ADS is 
a critical factor for endocrine function in white adipose tissue. 

Our study has several limitations. First, we did not obtain serotonin levels in human 
tissues. Thus, we assumed that mRNA expression of TPH might reflect the level of sero-
tonin. If we can directly measure serotonin levels in human tissue, it might be the best 
way to understand the role of serotonin. Unfortunately, serotonin measurement is very 
difficult. Serotonin levels in blood and tissue are very low and are rapidly metabolized by 
monoamine oxidase in living organs [78–80]. Second, we used predicted metabolic pro-
files by using the GSA method for the evaluation of metabolic pathway changes related 
to serotonin. Further studies are needed to confirm this result by direct measurement of 
metabolites in human tissues. Third, we used both omental adipose tissues and subcuta-
neous adipose tissues when we analyzed white adipose tissue transcriptome. This heter-
ogeneity may act as a confounding factor [81]. 

In conclusion, our study provides strong evidence that serotonin plays significant 
roles in critical pathways such as mitochondrial homeostasis, energy metabolism, and or-
gan development. 

4. Material and Methods 
4.1. Data Collection 

Human brain and peripheral tissue transcriptome data reported in the GTEx Analy-
sis release V8 (dbGap Study Accession: phs000424.v8.p2) were downloaded from the 
GTEx portal (www.gtexportal.org, downloaded as of December 2020) [82]. This dataset 
includes raw count values that were normalized using the DESeq package in R software. 

We also obtained transcripts per million (TPM) values of the GTEx dataset from a 
public repository, the Human Protein Atlas (http://www.proteinatals.org/about/down-
load). We then estimated the TPH1 and TPH2 expression levels of each human tissue tran-
scriptome. 

4.2. Data Analysis 
We selected the 10 highest and the 10 lowest TPH expression groups from brain, 

small intestine, colon, and adipose tissue. We then compared gene expression and path-
ways of interest between the high and low TPH groups. DEGs were identified using the 
DESeq package in R software. Supplementary data 2 lists the DEGs of our analysis. Vol-
cano plots and heatmaps were obtained using the R ggplot and gplots package. 

The gene set–gene annotation database v7.2 was obtained from the GSEA Molecular 
Signature Database (https://www.gsea-msigdb.org/gsea/msigdb). Then, gene set enrich-
ment analysis (GSEA) was performed for gene set association analysis by using the GSEA 
software [83]. Gene ontology (GO) mining and pathway analysis were performed by the 
DAIVD gene functional classification tool [84]. Reporter metabolite analysis was per-
formed using the Piano package [70]. The criteria for FDR-adjusted p values <0.05 were 
considered significant gene sets. 
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