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Abstract: The World Health Organization estimates that only approximately 25% of diversity in
longevity is explained by genetic factors, while the other 75% is largely determined by interactions
with the physical and social environments. Indeed, aging is a multifactorial process that is influenced
by a range of environmental, sociodemographic, and biopsychosocial factors, all of which might act in
concert to determine the process of aging. The global average life expectancy increased fundamentally
over the past century, toward an aging population, correlating with the development and onset of age-
related diseases, mainly from cardiovascular and neurological nature. Therefore, the identification of
determinants of healthy and unhealthy aging is a major goal to lower the burden and socioeconomic
costs of age-related diseases. The role of environmental factors (such as air pollution and noise
exposure) as crucial determinants of the aging process are being increasingly recognized. Here, we
critically review recent findings concerning the pathomechanisms underlying the aging process
and their correlates in cardiovascular and neurological disease, centered on oxidative stress and
inflammation, as well as the influence of prominent environmental pollutants, namely air pollution
and traffic noise exposure, which is suggested to accelerate the aging process. Insight into these types
of relationships and appropriate preventive strategies are urgently needed to promote healthy aging.

Keywords: aging; air pollution; traffic noise exposure; oxidative stress; inflammation; cardiovascular
disease; neurological disease

1. Introduction

The dramatic improvement in life expectancy over the past century led to an unprece-
dented demographic shift toward an aging population; the proportion of the population
over 65 is higher than ever before. As the population boom of the 20th century ages,
age-related diseases have come to the forefront as emergent health concerns [1]. In contrast
to maternal, infectious diseases that were widely prevalent and a primary health concern
of the early 20th century, age-related diseases are often chronic and require continual
treatment over an extended period of time, thus correlating increased lifespan with chronic
disease onset and elevated expense burden. Aging is a multifactorial dynamic process that
is influenced by a variety of external and internal variables, including environmental, de-
mographic, and biopsychosocial factors, to determine the development and progression of
age-related diseases, rather than being a solely static intrinsic process of cellular alterations
(Figure 1).

The aging population is particularly susceptible to cardiovascular disease (CVD),
demonstrating the leading cause of death in populations aged over 65 years (Figure 2), and
creating an urgent need for research in the field. Compounding the rise in CVD prevalence,
as age advances, there is also a rise in complications and comorbidities of CVD [4–6]. This
phenomenon is partly due to the “silent” nature of CVD pathophysiological development,
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but also due to vascular aging, which represents all changes in the vessels over time that
exacerbate disease development [7]. Specifically, aged vessels have an impaired endothe-
lium and other constitutional changes, which make them more prone to atherosclerotic
lesions, vascular injury, and calcification, alongside blunted angiogenesis [8]. With age, the
endothelium displays decreased responsiveness that manifests endothelial dysfunction
in elderly people [9,10] and corresponds well with the demographic data that associates
age, CVD incidence, and CVD comorbidities [11]. Endothelial impairment leading to
endothelial dysfunction is also accompanied by smooth muscle changes, since arterial
stiffening is also observed in aged vessels. Both mechanistic aspects correlate with future
cardiovascular events in humans [12].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 23 
 

 

 43 

Figure 1. The exposome concept. (A) The exposome comprises the totality of a person’s external 44 
and internal exposures, from birth to death. (B) The external exposures and their internal expo-45 
sure-related biochemical changes accumulate steadily over the aging process and lead to altered 46 
health risks. Adapted from Vrijheid et al. [2] (upper part, Copyright © 2021, BMJ Publishing Group 47 
Ltd. and the British Thoracic Society) and Misra [3] (lower part, under the terms of the Creative 48 
Commons Attribution License (CC BY), Copyright © 2021 Misra) with permission. 49 

The aging population is particularly susceptible to cardiovascular disease (CVD), 50 
demonstrating the leading cause of death in populations aged over 65 years (Figure 2), 51 
and creating an urgent need for research in the field. Compounding the rise in CVD 52 
prevalence, as age advances, there is also a rise in complications and comorbidities of 53 
CVD [4–6]. This phenomenon is partly due to the “silent” nature of CVD pathophysio-54 
logical development, but also due to vascular aging, which represents all changes in the 55 
vessels over time that exacerbate disease development [7]. Specifically, aged vessels have 56 
an impaired endothelium and other constitutional changes, which make them more 57 
prone to atherosclerotic lesions, vascular injury, and calcification, alongside blunted an-58 
giogenesis [8]. With age, the endothelium displays decreased responsiveness that mani-59 
fests endothelial dysfunction in elderly people [9,10] and corresponds well with the de-60 
mographic data that associates age, CVD incidence, and CVD comorbidities [11]. Endo-61 
thelial impairment leading to endothelial dysfunction is also accompanied by smooth 62 
muscle changes, since arterial stiffening is also observed in aged vessels. Both mechanis-63 
tic aspects correlate with future cardiovascular events in humans [12]. 64 
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Figure 2. (A) Age-specific crude incidence of confirmed major cardiovascular disease by type of first event (non-fatal
myocardial infarction, non-fatal stroke, and death from cardiovascular disease). Reused from [13] with permission under
the terms of the Creative Commons Attribution Non-commercial License, Copyright © Driver et al. 2008. (B) Risk of
common neurological diseases for 45-year-old men and women. In this analysis, follow-up ended at time of first occurrence
of dementia, stroke, or parkinsonism. For instance, for individuals who first suffered a stroke and subsequently developed
dementia, only the stroke event is considered. Reused from [14] with permission, Copyright © 2021, BMJ Publishing
Group Ltd. All rights reserved. (C) Predicted values of relative risk for cardiovascular mortality by chronic exposure
to increasing particulate matter concentrations for high ozone levels (37.60 ppb, solid blue line) and low ozone levels
(20.26 ppb, solid red line) with uncertainty intervals (dashed lines). Reused from [15] with permission under the terms
of the Creative Commons CC BY license, Copyright © 2021, The Author(s). (D) Exposure-response relationships for the
associations between transportation noise and cardiovascular health outcomes. Road—road traffic noise, Air—aircraft noise,
Hyp—hypertension, CHD—coronary heart disease, and Lden—day-evening-night level, i.e., the average sound pressure
level measured over a 24-h period. Reused from [16] with permission, Copyright © 2021, Oxford University Press.

The same holds true for the aging brain (Figure 2). The incidence of stroke shows a dra-
matic increase in the elderly [17], and cognitive impairment clearly progresses with age and
represents an accepted early diagnostic parameter for later dementia and neurodegenera-
tion [18]. When looking at the risk factors of dementia in detail, it becomes clear that there
is a large overlap with cardiovascular risk factors [19]. Mounting evidence indicates that
the aging process is fundamentally driven by environmental exposures, and interestingly,
age-related pathomechanisms were also observed in the context of predominant environ-
mental pollutants, such as air pollution [20,21] and (traffic) noise exposure [22,23], with
growing evidence suggesting that these pollutants might cause or accelerate age-related
diseases. In this review, we discuss the pathomechanisms underlying the aging process
and their correlates in CVD and neurological disease development, with a main focus on
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oxidative stress pathways and inflammation. Furthermore, we critically review emerging
findings concerning environmental factors, namely air pollution and noise exposure, which
affect and accelerate the aging process.

2. Impact of Aging on Inflammation, Adverse Redox Signaling, Endothelial
Dysfunction, and CVD

Endothelial dysfunction is an important indicator of subclinical CVD and serves as
an early predictor of developing atherosclerosis, hypertension, and future cardiovascular
events. There are two critical mechanisms through which endothelial dysfunction influ-
ences pathogenesis within the context of vascular aging. First, it promotes vasoconstriction,
thrombocyte activation, leukocyte infiltration, and smooth muscle cell proliferation in the
vessel wall; all of which precede cardiovascular events. The second is due to impaired
endothelial signaling in all vessels; age-dependent endothelial dysfunction is found in both
macrovessels and resistance vessels (for review see [24]), and thereby can impact a wide
variety of disease states.

Three interdependent players are known to trigger endothelial dysfunction—inflamm-
ation, oxidative stress, and impaired nitric oxide (•NO) signaling [25]. Endothelial oxidative
stress, an important trigger of endothelial dysfunction, is associated with age-related
diseases other than CVD, including erectile dysfunction, renal dysfunction, Alzheimer’s
disease, or retinopathy [26–29]. The studies of Mayhan et al. highlight these findings,
demonstrating that cerebral arterioles show diminished eNOS-dependent reactivity, which
positively correlated with increased oxidative stress in aged rats [30]. These findings were
echoed in studies in other vessels and conditions, showing that endothelial dysfunction
and oxidative stress are present in aging retinal vessels [31], and are a contributing factor
in Alzheimer’s and Parkinson’s diseases, through several mechanisms [32,33]. Lastly,
oxidative stress in combination with vascular inflammation and impaired •NO signaling
were identified as key players in age-related endothelial dysfunction by our group and
many others (for review see [34,35]). As aged vessels show strong associations with
oxidative imbalances, inflammatory increases, and negative effects on •NO signaling,
aging is implicated as an independent risk factor for CVD [36,37].

In many ways, a reciprocal and interdependent relationship exists between oxida-
tive stress deriving from mitochondrial or enzymatic sources, endothelial dysfunction,
and hypertension, diabetes, and atherosclerosis. It is unsurprising then, that oxidative
stress [38,39], endothelial dysfunction [36], and the aforementioned CVDs [40,41] all see
an increased incidence with advancing age, as they often occur in parallel, exert some
influence on each other, and also have associations with low-level inflammation. Accord-
ingly, age-dependent changes in the composition and function of high-density lipoproteins
(HDL) were reported [42], which further underlined the contributing mechanisms of the
risk factors previously discussed, since HDL inhibit inflammation, have antioxidant prop-
erties [43], and inversely correlate with coronary disease risk [43]. The degradation of HDL
quality over time negatively impacts endothelial function, a critical factor in the initiation
and development of atherosclerosis, potentially indicating HDL as a target for therapeutic
intervention of age-related CVD [44].

Hypertension, the predominant risk factor for atherosclerosis and other CVD, potenti-
ates the causative elements behind endothelial dysfunction, making effective treatment of
hypertension an important route for the prevention of age-related CVD. To this end, preg-
nant spontaneously hypertensive rats were treated with nitrovasodilator pentaerythrityl
tetranitrate, which demonstrated blood pressure lowering effects that were inherited by
offspring. It was found that enhanced histone 3 lysine 27 acetylation and histone 3 lysine 4
trimethylation (epigenetic markers usually associated with transcriptional activation) pro-
moted the transcriptional activation of cardioprotective genes like eNOS, SOD2, GPx-1, and
HO-1, which explained the observed heritable effects [45]. Drugs with epigenetic effects,
like pentaerithrityl tetranitrate, could conceivably be used to extend the number of healthy
years, and perhaps stave off the effects of cardiovascular aging. A third possible therapeutic
strategy would utilize mitochondria-targeted antioxidants to mitigate the “side effects”
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of the aging process. Treatment with dietary vitamins equating to unspecific antioxidant
treatment was not found to be effective in preventing vascular aging. However, specifically
targeting mitochondrial ROS could represent a possible strategy to alleviate, at least in part,
age-related endothelial dysfunction. Along this line, age-related endothelial dysfunction
was alleviated by administration of mito-quinone in mice [46]. Some risk factors for CVD
could be changed by lifestyle alterations, such as smoking and diet [47], but aging is a
factor that is not preventable, and so must be tackled in a bottom-up approach.

As previously mentioned, low-level inflammation is commonly found in aged indi-
viduals. One study found that plasma levels of important inflammatory markers, includ-
ing soluble vascular adhesion molecule 1(sVCAM-1), interleukin 6 (IL-6), and monocyte
chemoattractant protein 1 (MCP-1) positively correlated with age, even where there was no
underlying CVD or risk factors present [48]. Another study found positive correlations be-
tween age and levels of circulating IL-6, IL-1 receptor antagonist (IL-1ra), IL-18, C-reactive
protein (CRP), and fibrinogen, in both men and women, most persisting after correction for
other risk factors. Increases of soluble IL-6 receptor (sIL-6r) occurred with greater age, but
this effect was only noted in men [49]. A meta-analysis spanning 32 cross-sectional studies
and over 23,000 subjects revealed associations between serum CRP and IL-6 levels and the
onset or presence of frailty and pre-frailty, a phenotype that encompassed unintentional
weight loss, exhaustion, weakness, slow walking speed, or low physical capability [50].
The hazard ratio for serum CRP levels and incidence of frailty was 1.06 (95% confidence
interval [CI] 0.78–1.44), alongside a hazard ratio of 1.19 (95% CI 0.87–1.62) for IL-6, after
adjustment for 9 potential confounders [50], illustrating a correlation between the presence
of inflammation and age-related ailments.

Air and noise pollution are novel cardiovascular risk factors whose mechanisms are
still being investigated, but have so far shown similar molecular signatures [51–53] to
one another, as well as to classical risk factors like hypertension, hypercholesterolemia, or
hyperglycemia [54–56]. Foremost amongst these signatures appears to be oxidative stress
and inflammation, which both mediate the detrimental effects following exposure to noise
and air pollution [57]. Despite some clarity as to the mechanisms, it is not fully understood
how crosstalk between stress response pathways, redox signaling, and the immune system
coordinate to cause cardiovascular damage in response to these novel risk factors.

3. Impact of Aging on Inflammation, Adverse Redox Signaling, Neuronal
Degeneration, and Neurological Disease

Since CVDs and neurological diseases have a substantial overlap in risk factors and
pathophysiological pathways, it is important to highlight the aforementioned mechanisms
of action in the context of aging and neurological disease. In general, functional and struc-
tural deterioration of the aging brain is a cumulative process that starts with subclinical
alterations at the molecular level. These changes include accumulation of mutations, telom-
ere attrition, and epigenetic alterations, resulting in genomic instability and thus priming
for neuronal damage and loss, reduced neurotransmitter levels, enhanced neuroinflamma-
tion, increased susceptibility to cerebral ROS, and decreased cerebral vascular compliance.
All of these adverse processes are associated with increased risk of age-related neurological
diseases, such as stroke, epilepsy, Parkinson’s disease, and dementia/cognitive decline [58].
Immunosenescence and inflammaging, as the most recognized effects of aging [59], might
promote neuroinflammatory processes along with cerebral oxidative stress, via altered
microglia activation (immune cells of the brain), which are central to neurotoxicity through
the release of neurotoxic cytokines, such as TNFα, IL-1β, and INF-γ, as well as different
ROS such as ONOO− and O2

•− [60,61]. Microglial dysregulation represents a hallmark
of various neurological complications, and adverse redox regulation of and by microglia
plays a crucial role in these processes [62–64]. Neuroinflammation and cerebral oxidative
stress might act together to increase neuronal damage/loss and amyloid deposition, as
well as to decrease cerebral •NO bioavailability via NOX-2 activation and uncoupling
of neuronal •NO synthase (nNOS), leading to cerebral vascular endothelial dysfunction
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and ultimately contributing to increased risk of stroke, epilepsy, Parkinson’s disease, and
dementia/cognitive decline in the elderly [21].

From an epidemiological point of view, the accelerated aging of the population and the
correspondent increase in the elderly would affect the number of patients with neurological
diseases, as recently demonstrated by results of the Dijon Stroke Registry. In this study,
an increase of 55% in the total annual number of stroke cases by 2030 was calculated,
largely driven by increased prevalence in the group of elderly people (65% in people ≥ 75
years vs. 25% in people < 75 years) [65]. Importantly, data from the Framingham study
demonstrated older age at stroke onset, but not gender or stroke type, to be associated
with increased disability [66]. Further epidemiological studies revealed a strong age-
dependency for the incidence of epilepsy [67], Parkinson’s disease [68], and dementia [69],
with a continuous and strong growth in numbers in the elderly. Thus, the coincidence of
CVDs and neurological diseases in the elderly is not surprising, due to shared risk factors,
which themselves express a high age-dependency, such as hypertension, diabetes, vascular
dysfunction, and atherosclerosis, accompanied by altered molecular mechanisms centered
on inflammation and adverse redox signaling.

4. The Oxidative Stress Concept of Aging

In 1954, Harman first described the “free radical theory of aging” [70]. He reasoned
that since aging is a universal phenomenon, the underlying causation must also be univer-
sally present in all organisms. To this end, the focus shifted toward the hydroxyl radical
and molecular oxygen being important mediators of the aging process [71]. Mitochondria
are prolific producers of ROS within the cell, so they were natural targets for investigation
within this theory. Since this high concentration of mitochondrial ROS (mtROS) is likely
partly responsible for the high mutation rate of mtDNA, it is therefore necessary that two
spatially separated genomes (nuclear and mitochondrial) co-exist, and both are required
for the assembly of the respiratory chain components [72]. Further, as the mitochondrial
genome malfunctions, irregularities in physiology and ATP synthesis are also seen, which
are accompanied by amplified ROS generation and increased apoptosis [73]. Within the
context of aging, the focus shifted away specifically from the hydroxyl radical and onto
another free radical species, •NO, which is now known to be an important vasodilator, to
play a role in vascular smooth muscle cell proliferation, and to inhibit platelet aggregation,
amongst other important regulatory roles. The age-dependent impairment of vascular
redox balance is strongly linked to the bioavailability of the •NO radical [74], which could
be reduced through consumption by superoxide, and consequently lead to impaired va-
sorelaxation [36,75]. •NO could thereby potentially serve as a biomarker for age-dependent
endothelial dysfunction.

The free radical theory of aging was amended in 1972 by Harman to delineate the
specific role of mitochondria [76], which were then moved to the forefront of the field.
Harmon proposed that the mitochondrion was the primary origin of oxidative stress as
well as the target—mitochondria produce a significant amount of cellular energy but
are also damaged by ROS, which can attack both mitochondrial and nuclear DNA and
can cause significant damage. With age, the damage accrued can result in defective
mitochondria, which produce more and more ROS and in turn cause more oxidant-induced
mutations and deletions, and culminate in a loss of cellular function, apoptosis, and
necrosis. To this end, oxidant-induced damage in mtDNA was reported in the form of 8-oxo-
deoxyguanosine (8-oxo-dG) [77,78], a mutagenic lesion whose accumulation was linked to
pathological processes [79], and inversely correlated with lifespan of short-lived animals
in the nuclear DNA and mtDNA of cardiac tissue. In brain tissue of long-lived animals,
however, 8-oxo-dG content was higher in nuclear DNA (data not shown) [80]. These
insights could be partially explained by higher metabolic rate, lower antioxidant clearance
and defense, and possibly less efficient DNA repair. In this manner, genomic instability and
cellular senescence occur as a result of age-related oxidative stress-induced DNA damages
associated with shortened telomeres, increased DNA methylation, and decreased DNA
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content, all of which contribute to numerous degenerative and aging-related diseases [81].
In two mouse knockout models (ALDH-2−/−, MnSOD−/−), we found that mitochondrial
ROS, mitochondrial DNA (mtDNA), and vascular dysfunction positively correlated with
age [82]. Further, our data showed a correlation between endothelial dysfunction and
mitochondrial ROS, which itself was mostly dependent on age, but secondarily dependent
on the level of antioxidant enzymes present. Our data also showed a correlation between
mtROS and mtDNA strand breaks, which led to a reasoning that mtDNA strand breaks
arise from mtROS through direct interaction and oxidative DNA lesions, and given enough
time and stress, could result in mitochondrial uncoupling and a secondary increase in ROS
generation (through impaired de novo synthesis of functional respiratory complexes, due
to mtDNA degradation or mutation). The ultimate message of the free radical hypothesis
of aging is that ROS cause substantive alterations in biological macromolecules over the
organism’s lifespan, which accumulate to detrimental effect [83]. The conclusion can be
made that accumulation of DNA damage in sum cannot be a “one size fits all” predictor
of total life years, but that the kinetics of formation and repair of DNA damage will vary,
depending on species and tissue.

However, ROS generation is not the sole factor in the slow degradation of vascular
function. Antioxidant defense and clearance are also impacted by age. For example,
cytosolic superoxide dismutase 1 (SOD1) [75,84], mitochondrial superoxide dismutase 2
(SOD2) [85], extracellular SOD (ecSOD), and thioredoxin-1 (Trx) [86] showed both age- and
expression-related reductions in clearance efficacy, as reflected by studies of endothelial
function in young and old mice. If superoxide is the major contributor to vascular aging,
the question arises—why are these antioxidant systems seemingly unable to defend against
increasing levels of oxidative stress? To that point, in aging vessels, SOD2 was found to
be heavily nitrated, and its activity thereby impaired. These findings were accompanied
by increased 3-nitrotyrosine staining, which implies a role for peroxynitrite, a product of
superoxide and •NO as the nitrating agent [87]. It is obvious then that oxidative burden
can cause inhibition of this protective enzyme, which then perpetuates a vicious cycle
leaving the enzyme unable to perform effectively. Though it would be intuitive to expect
that the overexpression of antioxidant enzymes would result in expansion of lifespan,
this was not shown (SOD2+/− or SOD2tg, GPx-1−/−, GPx-4−/− or MsrA−/−, SOD1tg,
catalasetg) [88], though overexpression of Trx1 was shown to increase lifespan and stress
resistance [89]. Conversely, only SOD1−/− mice and mice with double gene ablation
combinations reduced life expectancy [88,90], and SOD2 knockouts do not survive past
a few weeks from birth [91,92]. Taken in conjunction, these data suggest that antioxidant
systems are critically important to life, but also that there is a “cap” to their beneficial
effects. This further implies that it is not the absolute amount of oxidative stress that
impacts lifespan, but rather, a balance that must be maintained. While oxidative stress
might not be the direct determinant in aging, as previously hypothesized [88,90,93], the
contribution of oxidative stress in aging seems to be a factor that prevents healthy aging by
impacting organ function [94–97].

The length of time an organism remains healthy is another factor through which
antioxidant enzymes could have a significant effect and a notable clinical importance. This
“healthspan” could be indicated by the lack or decreased progression of age-related cardio-
vascular complications and the resistance to stress conditions during normal aging [89]. In
studies utilizing genetic deletion of aldehyde dehydrogenase-2 (ALDH-2) and manganese
superoxide dismutase (MnSOD), two important mitochondrial antioxidant proteins, we
found that mitochondrial oxidative stress and vascular dysfunction arose as a function of
aging [82], which supports the idea that mtROS is especially important in the degree of
health in aging [94–97].

Aside from mitochondrial ROS, there are other cellular sources of ROS that have
an impact on the healthspan. The state of eNOS plays an important role in whether it
produces a vascular hero, •NO, or a villain, O2

•− [98]. In the coupled state, eNOS consists
of a protein dimer and two BH4 cofactors that facilitate electron transfer needed for L-
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arginine oxidation and production of •NO [54–56]. When BH4 is either oxidized to BH2 or
absent, or electron flow from the reductase to the oxygenase domain is impaired by either
eNOS S-glutathionylation or adverse phosphorylation, the eNOS dimer is uncoupled and
produces ROS in the form of O2

•− (which is why NOS enzymes are also called Janus-faced
enzymes). The overproduction of O2

•− further oxidizes BH4 and inhibits •NO synthesis.
The result of eNOS uncoupling is then a reduction in •NO bioavailability [99] and can
contribute to the pathogenesis of endothelial dysfunction in aged vessels [9,36]. It was
reported from several sources that eNOS expression levels rise with age, which could
possibly be to counteract the effect of eNOS uncoupling and reduced •NO bioavailability.
There are also groups who report unchanged eNOS expression in aged vessels, but instead
report decreases in Akt-dependent phosphorylation of eNOSSer1177. Either reports could
be consistent with the findings of endothelial dysfunction in aged vessels and elderly
individuals [100]. We additionally reported both S-glutathionylation by PKC and adverse
phosphorylation of eNOS at Thr495 and Tyr657 by PYK-2, as important redox-sensitive
mechanisms in the process of aging-induced vascular dysfunction [101].

5. Oxidative Stress and Inflammation by Air Pollution

The modern world functions on the movement of people and goods, both of which
require the consumption of fuel. The byproducts of this consumption, diesel exhaust,
particulate matter (PM), and ultrafine particles, were demonstrated to be a contributing
factor in the pathogenesis and progression of CVD (Figure 2) [15,102]. Early studies in the
field implicated these particles in the development of endothelial dysfunction in rat aortas
exposed to diesel exhaust particulate, effects that were mitigated by pre-treatment with
superoxide dismutase [103]. Exposure studies in animals revealed that in the setting of
atherosclerosis, plaque development was accelerated [104,105]. Body scans by positron
emission tomography in men revealed that particulate matter induces coronary inflam-
mation, which was associated with higher cardiovascular risk [106]. In further human
studies, platelet hyperreactivity and thrombus formation were observed [107,108]. The
prevailing hypothesis for how inhaled PM causes cardiovascular effects is through im-
mune cell activation in the lung. Activated immune cells release cytokines into circulation,
causing an inflammatory cascade generating ROS through NADPH oxidase in activated
immune cells and the vascular wall, consequently decreasing •NO bioavailability. Diesel
exhaust particles also possess active surfaces that are capable of directly stimulating the
formation of superoxide, representing a second possible manner through which ROS could
be produced (as demonstrated by TEMPO spin trapping) [103]. It is also possible that
inhaled particles mechanically stimulate the alveolar sensory receptors, leading to effects
on the cardiovascular system via the autonomic nervous system. These two mechanisms
could possibly work in a synergistic way to impart the effects. An overview focusing on
the cardiovascular oxidative stress pathways through which PM might interact is provided
by Rao et al. [109].

Investigations on PM health effects seeking mechanistic insight takes place in both
animals and humans. Mechanistic studies in animals show clear endothelial dysfunction,
leukocyte activation, and progression of atherosclerotic plaques [105]. These results point
toward oxidative stress carrying an important role in the onset of these effects, as they are
shared by other more “traditional” risk factors, such as diabetes, hypertension, and smok-
ing [110]. Underlining this point, studies in mice with a p47phox global knockout were
largely protected from the metabolic effects of PM exposure (insulin resistance) and showed
improved vascular function and visceral inflammation [111]. Additionally, microvessels
from mice treated with metal-rich PM2.5 showed normalized endothelial function upon ex
vivo incubation with apocynin or VAS2870, both NADPH oxidase inhibitors [112]. Addi-
tionally, eNOS uncoupling was prevented by apocynin in cultured endothelial cells upon
incubation with ultrafine particles [113]. Though PM exposure leads to mitochondrial dys-
function and mtROS formation, research into the impact of these factors on the phenotype
arising from PM exposure is still needed. However, not all experimental data support this
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concept. In a small cohort trial, 18 healthy subjects were exposed for 3 h to diesel exhaust
at 276 g/m3 from a passenger car or filtered air, with co-exposure to traffic noise at 48 or
75 dB(A) [114]. Exposure to diesel exhaust had no effects on genotoxicity, oxidative stress
(DNA single strand breaks and 8-oxo-dG lesions measured by formamidopyrimidine (fapy)
DNA glycosylase-induced artificial strand breaks), or inflammation in white blood cells
isolated from the subjects, whereas exposure to noise caused oxidative DNA damage [115].

There is an obvious inflammatory involvement in PM-induced cardiovascular con-
sequence that likely contributes to ROS generation. PM can present as a “danger signal”
or damage-associated molecular patterns (DAMP) via CD44, TLR4, and CD36 to trigger
activation of NFκB, kinase signaling, and cytokine synthesis [116]. Downstream, TLR4 is
a direct activator of NOX2, an important producer of superoxide in phagocytes [117]. A
cohort study of 18 highway maintenance workers showed that their exposure to PM and
traffic noise were associated with C-reactive protein, serum amyloid A, increased heart rate
variability, or systolic, and diastolic blood pressure [118]. Overall, exposure to PM is likely
to work through a variety of oxidative and inflammatory mechanisms, to cause serious
cardiovascular complications, which seem to be exacerbated in the setting of established
disease and other risk factors, including noise.

Two additional pathways might be important as well. Sirtuins might play a role in
air pollution-induced disease and aging, as they are important regulators of antioxidant
defense via control of the acetylation status of NRF2 and FOXO3a [119,120]. A study in mice
showed that sirtuin1 protects against PM2.5-induced lung coagulation and inflammation,
by exposing sirtuin1 knock-out mice, who were highly susceptible to these disorders [121].
Analysis of the Chinese Longitudinal Healthy Longevity Survey with 7083 participants,
revealed that there is an increase in the mortality hazard ratio corresponding to certain
sirtuin1 alleles (1336 vs. 1078 for participants carrying two SIRT1_391 minor alleles vs.
participants carrying one or none minor alleles) [122]. The mammalian target of rapamycin
(mTOR) inhibits autophagy, a natural and essential biological process through which cells
recycle damaged and dysfunctional organelles [123]. Therefore, blocking of the mTOR
pathway promotes longevity but might also cause impairment of energy metabolism and
induce long-term health consequences [124]. In mice, PM2.5 exposure causes overexpression
of mTOR, leading to apoptosis [125], as well as pulmonary inflammation and fibrosis [126].

6. Oxidative Stress and Inflammation by Traffic Noise Exposure

Noise is another newly studied cardiovascular risk factor with strong ties to oxidative
stress pathways. Noise appears to exert its effects through stress mechanisms, which
subsequently cause a cascade of oxidative, inflammatory, and metabolic effects that work
in tandem to cause vascular damage and lead to higher cardiovascular risk (Figure 2). This
noise stress concept was established by Babisch [127,128] and was recently confirmed at
the molecular level, through positron emission tomography scans in men demonstrating
amygdala activation due to severe noise exposure, which was associated with more pro-
nounced coronary atherosclerotic/inflammatory alterations and higher cardiovascular risk
(more major adverse cardiovascular events) [129]. Other studies support this mechanistic
line, including a study in rats exposed to octave band noise for 8 h a day over 20 days
(80–100 dB(A), 8–16 kHz, 8 rats/group). Increased levels of stress hormones corticosterone,
adrenaline, and noradrenaline, as well as vasoconstrictor endothelin-1 were found in the
plasma of these rats [130], supporting the hypothesis that stress is induced by noise ex-
posure. The effects of stress hormones on the physiology are diverse but are generally
associated with increased blood pressure and heart rate [131]. Effects on endothelium-
dependent vasodilation were also seen in rats exposed to 100 dB(A) of noise for 2 and
4 weeks. Rings from the thoracic aorta showed blunted response to acetylcholine and
increased sensitivity to serotonin, but not to phenylephrine or potassium chloride, clearly
showing an endothelium-mediated effect in vasoconstriction. Furthermore, an increase in
systolic blood pressure of 31 mmHg was also recorded [132]. Studies in rats also demon-
strated higher levels of ROS in the cerebral cortex, alongside reduced levels of •NO in the
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cerebellum and brainstem, which was reduced with rosuvastatin, a cholesterol-lowering
drug with antioxidative effects [133]. Taken in sum, these indicate that the effects of noise
are not specific to the vasculature but might also have effects in systems other than the
cardiovascular.

Beyond studies in rodents, field studies in humans were also conducted with re-
gard to noise exposure. One such study of overnight at-home noise exposure to aircraft
noise yielded results that showed significant endothelial dysfunction, as measured by
flow-mediated dilation of the brachial artery [134]. Acute administration of vitamin C
rescued the endothelial function of these study participants, very clearly indicating either
insufficient ROS clearance or overactive ROS generation as the culprit. Repeated exposure
to noise can “prime” the vasculature for damage, where over time, the effects of oxidative
stress overwhelm antioxidant defense and incur lasting damage. Echoing the results seen
in rodents, study participants also had increases in catecholamine production, indicating
stress responses that can lay the foundation to CVD development. The HYENA study, a
field study of 4861 people living near major airports in Europe, was unable to associate
daytime noise exposure with increases in blood pressure, but did find significant increases
in blood pressure in participants exposed to nighttime noise exposure [135]. Last, we
found endothelial dysfunction, sleep disruption, and an increase in blood pressure to
be exacerbated in patients with coronary artery disease [136]. There was no correlation
between those who responded to be annoyed by or sensitive to noise, implying that the
effects were not via an emotional pathway and that noise-induced damage would occur
independent of cognition. Conversely, population-based cohort studies clearly demon-
strated a dose-dependent increase of prevalent atrial fibrillation [137], accompanied by
increased midregional pro-atrial natriuretic peptide levels [138], a cardiac hormone that
mirrored endothelial activation and predicted future cardiovascular events, in response
to annoyance due to different noise sources, including traffic noise. These effects could
possibly be impactful on future cardiovascular events [16,139].

We established a protocol for aircraft noise exposure consisting of 69 43-s-long aircraft
noise events, irregularly spaced over 2 h, interspersed with silent periods, in order to
ascertain the effects of noise exposure on the vasculature, in a systemic manner (max-
imum sound pressure level (SPL) of 83 dB(A), mean 71.6 dB(A), 50–55 dB(A) in silent
periods) [140]. The noise events were repeated constantly over the course of 1, 2, and
4 days. We observed increases in catecholamines, angiotensin-II, and endothelin-1 levels
in plasma or systolic/diastolic blood pressure, as well as impaired •NO signaling, super-
sensitivity to vasoconstrictors, and endothelial dysfunction over the entire duration of the
noise exposure. Noise-exposed animals had increases in oxidative stress markers, such as
eNOS uncoupling (L-NAME-sensitive superoxide signal and eNOS S-glutathionylation),
3-nitrotyrosine- and malondialdehyde-positive proteins, endothelin-1 and NOX-2 protein
expression, accompanied by increased dihydroethidium signal (marker of ROS production)
and immune cell infiltration in the vascular wall. None of these effects were replicated
when mice were exposed to white noise [140]. In a subsequent study, we could also
demonstrate neuroinflammation, cerebral oxidative stress, and circadian dysregulation,
upon aircraft noise exposure and prevention of all adverse effects in noise-exposed Nox2
knockout mice [141]. Figure 3 shows the pathomechanisms for increasing the risk of car-
diometabolic disease, induced by air pollution and noise exposure. The impact of noise on
sirtuin and mTOR pathways is not well studied (only few reports on models of hearing
loss are available, which is not within the focus of the present review).



Int. J. Mol. Sci. 2021, 22, 2419 11 of 23

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 11 of 23 
 

 

studied (only few reports on models of hearing loss are available, which is not within the 465 
focus of the present review). 466 

 467 

Figure 3. Pathophysiological mechanisms of neurological and cardiovascular disease induced by air pollution and noise 468 
exposure. Arrows indicate directions of pathways and pathomechanisms. Red circles indicate the release adverse sig-469 
naling ROS. Summarized from Münzel et al. [142] and presented data in the present review article. Created with Bio-470 
Render.com. 471 

7. Human Evidence on the Association between air Pollution and Biomarkers of Aging 472 

There is ample evidence from human studies suggesting that exposure to multiple 473 
air pollutants associates with increased biological aging, mainly examined on the basis of 474 
telomere length, mtDNA content, and DNA methylation. In the studies presented here, 475 
telomere length was basically used as a biomarker of the aging (senescence) process. 476 
Pieters et al. investigated the association between long-term exposure to PM with telo-477 
mere length and mtDNA content, in a Belgium sample of 166 non-smoking elderly sub-478 
jects [143]. After multivariable adjustment, the authors found an increase in PM2.5 levels 479 
per 5 μg/m3 to be associated with a relative decrease of 16.8% (95% CI −26.0 to −7.4) in 480 
telomere length and a relative decrease of 25.7% (95% CI −35.2 to −16.2) in mtDNA con-481 
tent. Likewise, a study of high PM-exposed workers (N = 240) from China revealed an 482 
association between long-term PM10 exposure and telomere shortening (−9.9%, 95% CI 483 

Figure 3. Pathophysiological mechanisms of neurological and cardiovascular disease induced by air pollution and noise
exposure. Arrows indicate directions of pathways and pathomechanisms. Red circles indicate the release adverse signaling
ROS. Summarized from Münzel et al. [142] and presented data in the present review article. Created with BioRender.com.

7. Human Evidence on the Association between air Pollution and Biomarkers
of Aging

There is ample evidence from human studies suggesting that exposure to multiple
air pollutants associates with increased biological aging, mainly examined on the basis of
telomere length, mtDNA content, and DNA methylation. In the studies presented here,
telomere length was basically used as a biomarker of the aging (senescence) process. Pieters
et al. investigated the association between long-term exposure to PM with telomere length
and mtDNA content, in a Belgium sample of 166 non-smoking elderly subjects [143]. After
multivariable adjustment, the authors found an increase in PM2.5 levels per 5 µg/m3 to
be associated with a relative decrease of 16.8% (95% CI −26.0 to −7.4) in telomere length
and a relative decrease of 25.7% (95% CI −35.2 to −16.2) in mtDNA content. Likewise, a
study of high PM-exposed workers (N = 240) from China revealed an association between
long-term PM10 exposure and telomere shortening (−9.9%, 95% CI −17.6 to −1.5 per IQR
increase) [144]. Data from the NAS cohort demonstrated a 7.6% decrease (95% CI −12.8 to
−2.1 per IQR increase) in telomere length, in response to long-term black carbon exposure
in 165 never-smoked elderly men, with subgroup analysis indicating stronger effects for
older (≥75 years of age) than younger subjects [145]. A meta-analysis of three cohort
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studies from Germany and the USA by Panni et al. indicated substantial associations
between DNA methylation (cytosine-guanine dinucleotide sites) and short- and mid-term
PM2.5 exposure [146]. In the German KORA cohort study (N = 1777), associations between
multiple air pollutants and various biomarkers of aging including telomere length and other
epigenetic measures were assessed in a sex-specific manner [147]. A multiple phenotype
analysis combining all aging measures revealed long-term exposure to black carbon and
PM10 to be broadly associated with biological aging in men. In a U.S. cohort of 2747 women
from the Sisters Study, long-term exposure to NO2 was inversely associated with DNA
methylation age acceleration (β = −0.24, 95% CI −0.47 to −0.02 per IQR increase), whereas
no association was observed for PM10 [148].

The relationship between air pollution and telomere length in adults was the subject
of a recent systematic review and meta-analysis from Miri et al., including 19 observational
studies (11 retrospective and seven prospective studies) [149]. Herein, long-term PM2.5
exposure was inversely related to telomere length, as indicated by the meta-analysis of
two studies (−0.03, 95% CI −0.05 to −0.01 per 5 µg/m3 increase). The meta-analysis
of three short-term PM2.5 studies (0.03, 95% CI 0.02 to 0.04) and two polychlorinated
biphenyls studies (0.10, 95% CI 0.06 to 0.15) showed positive associations with telomere
length. In contrast, no associations were found between short-term exposure to PM10 and
polycyclic aromatic hydrocarbon exposure and telomere length, respectively. In line with
these results, it is widely assumed that short-term exposure to air pollutants is related to
increased telomere length, in the manner of an acute adaptive response, whereas long-
term exposure with subsequent cumulative burden of oxidative stress and inflammation
is associated with shorter telomere length. Conflictingly, in a prospective U.S. cohort
of 772 critically ill patient’s long-term exposure to ozone was associated with increased
telomere length after adjustment for potential confounders, which remained stable for the
analysis of subgroups with sepsis, trauma, and acute respiratory distress syndrome [150].
Further analyses of air pollutants including PM2.5, PM10, CO, NO2, and SO2 revealed no
associations with telomere length, whereas higher warm-season PM2.5 and CO exposures
were independently associated with increased telomere length. A wide range of studies
investigated the relationship between prenatal exposure to air pollution and biological
aging at birth (for review see [151]). In this context, Martens et al. examined the association
of prenatal exposure to PM and newborn telomere length in a prospective birth cohort
of 730 mother–newborn pairs from Belgium. After multivariable adjustment, an inverse
relationship was found between PM2.5 exposure (per 5 µg/m3 increase) during the entire
pregnancy, and cord blood leukocyte telomeres (−8.8%, 95% CI −14.1 to −3.1) and placental
telomere length (−13.2%, 95% CI −19.3 to −6.7) [152]. A study on 200 Iranian preschool
children (5–7 years old) found exposure to higher levels of ambient PM1, PM2.5, and PM10
at home and kindergartens to be associated with a shorter telomere length [153].

8. Human Evidence on the Association between (Traffic) Noise Exposure and
Biomarkers of Aging

Since inflammatory and oxidative stress processes are fundamentally involved in
the pathogenesis of noise-induced health conditions, along with the fact that noise and
air pollution usually co-exist [16,23], it is of special importance to determine the impact
of noise exposure on measures suggestive of biological aging. Recent studies primar-
ily focused on inflammatory and oxidative stress pathways in response to traffic noise
exposure in the context of CVD development (for review see [22,23,131]), while human
data linking noise exposure to measures such as telomere length and DNA methylation
are generally lacking. Evidence on the association between traffic noise exposure and
biological aging mainly arises from animal studies [154–159]. Indirect evidence on the role
of noise exposure in biological aging is given by human studies demonstrating oxidative
DNA damage, a correlate of altered DNA methylation and gene expression, in subjects
exposed to occupational [160,161] and traffic noise [114]. However, there are only few
human studies suggesting that noise exposure, like air pollution, might also influence
health via DNA methylation and telomere length.
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Eze et al. were first to examine the association between long-term exposure to traffic
noise, air pollution, and DNA methylation in 1389 Swiss subjects from the SAPALDIA
study [162]. DNA methylation was independently associated with measures of transporta-
tion noise (aircraft, railway, and road traffic noise) and air pollution (NO2 and PM2.5), with
enrichment for pathways related to inflammation and immune response, which might
explain at least in part the relationship between these exposures and various age-related
outcomes, as the authors concluded. In the NESDA cohort (N = 2902), neighborhood
quality comprising measures of perceived neighborhood disorder, fear of crime, and noise
(“how often do you experience noise from neighbors, traffic or other sources in your neigh-
borhood?”) was determined to assess its relation with telomere length, after comprehensive
adjustment for individual and community level variables [163]. The results revealed a
69 base pair shorter mean telomere length in subjects who reported moderate neighborhood
quality (β −69.33, 95% CI −119.49 to −19.17) and a 174 base pair shorter mean telomere
length in subjects who reported poor neighborhood quality (β −173.80, 95% CI −298.80 to
−49.01), compared to subjects who reported good neighborhood quality. Importantly, these
outcomes corresponded to 8.7 and 11.9 years in chronological age, respectively. However,
when looking specifically at the subdomain of noise, no associations were observed with
telomere length after multivariable adjustment. Of note, in these studies telomere length
was basically used as a biomarker of the aging (senescence) process.

Since chronic exposure to excessive noise levels is among the leading risk factors for
hearing loss mediated by noise-induced inflammation, oxidative stress, and endothelial
damage, further evidence of a contribution of noise in biological aging might arise from
studies examining the association between biomarkers of aging and hearing loss. A recent
case-control study from China examined the association between telomere length and risk
of hearing loss, including 817 cases and 817 matched control subjects [164]. Decreased
odds of hearing loss was observed for subjects in the highest quartile of telomere length,
compared to the lowest quartile (OR 0.53, 95% CI 0.38 to 0.74). In good agreement, a further
case-control study from China demonstrated decreased odds of hearing impairment with
increasing telomere length [165].

9. Conclusions

Despite apparent differences in symptomology, CVDs and neurological diseases have
a clear overlap in risk factors, mechanisms, and possibly etiology, which likely all work in
concert. Most CVD and metabolic disease such as diabetes as well as neurological diseases
have associations with inflammation and oxidative stress, which seemingly suggests that
any factor that impacts those could potentially have great clinical significance. Aging, air
pollution, and noise exposure all have strong ties connecting these risk factors with oxida-
tive stress, mtROS or otherwise, and inflammation. While the mechanisms truly underlying
the onset of aging are not fully elucidated, there is clear evidence for a convergence with
other risk factors, including environmental stressors, at the level of oxidative stress and
inflammation. Noise induces a hormonal stress response via the HPA axis, which then
triggers a cascade of cytokine production, immune cell migration, and ROS production.
Air pollution activates very similar pathophysiological pathways but, in addition, can
cause direct damage at the level of blood vessels and organs (either by interaction of small
particles with phagocyting immune cells such as neutrophils and macrophages, or by
direct ROS formation on the active surfaces of the particles). In the elderly, low-grade
inflammation is known to contribute to a higher prevalence of metabolic and cardiovas-
cular complications [166]. Our data [140] and reports by others [118] also clearly show
that air and noise pollution induce an inflammatory “kickstart”, and in the presence of
other risk factors, even exacerbate the underlying pathophysiology, as seen in patients with
coronary artery disease [136], and hypertensive mice with noise exposure [167]. Figure 4
displays an overview of the pathomechanisms, underlying the aging process, as well as
the environmental risk factors of air pollution and traffic noise exposure, to increase the
risk of CVD and neurological disease.
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While there are no studies specifically examining these environmental risks in the el-
derly, it is conceivable that these factors could exacerbate an underlying immunosenescence
that either accompanies or produces age-related disease and common comorbidities [4–6].
Data from a recent study in an animal model of metformin-dependent AMP-activated
protein kinase (AMPK) activation, demonstrated an increased lifespan and healthspan in
elderly animals, due to the improvement of inflammatory and oxidative damage [168]. Nor-
malizing the effects of inflammation and equally importantly, oxidative stress, could be a
promising strategy for improving healthspan [169]. Since mtROS formation increases with
age [34] and activates immune cells along with their NADPH oxidase, thereby stimulating
cytokine release and the inflammasome [170–175], mtROS is responsible for initiating a
self-perpetuating cycle of oxidative stress and inflammation in the aged. Coupled with
additional risk factors, including noise and air pollution, intervention by quenching mtROS
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production seems an elegant method of promoting healthy aging. As these stressors have a
point of convergence with aging processes, there is potential to affect all of them through a
single interventional route such as antioxidant pharmacological (e.g., dietary AMPK [176]
or NRF2 [177] activation) and non-pharmacological interventions (e.g., physical exer-
cise [178,179] and intermittent fasting), possibly making huge impacts in epidemiological
outcomes. However, while the exact mechanisms through which environmental stressors
accelerate aging and contribute to increased risk of age-related diseases as well as specific
treatment options, remain to be established, there is general consensus that we urgently
need measures to reduce exposure to environmental pollutants. In the setting of traffic
noise, a variety of mitigation strategies are proposed, such as developing and using low-
noise tires, quiet engines, and breaks, applying quiet surfaces, installing noise barriers in
densely populated areas, introducing adequate speed limits (in particular during sleeping
hours), minimizing the overlap of traffic routes and housing zones, introducing night bans,
installing sound-reducing windows, and placing sleeping rooms towards the quiet side
of the house. Current approaches to mitigate air pollution exposure are mainly focused
on personal actions like using air filtration or face masks, avoiding exposure by changing
travel routes, staying indoors/closing windows, modification of outdoor activities, and
keeping distance from areas where higher concentrations of air pollutants are expected,
such as major roadways [180]. In any case, large-scale macro interventions in the long run,
on a political and societal level that question the way we work and live are clearly needed
to achieve sustainable success.
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Abbreviations

8-oxo-dG 8-oxo-deoxyguanosine
ALDH-2 Aldehyde dehydrogenase 2
AT-II Angiotensin II
CO Carbon monoxide
CRP C-reactive protein
CVD Cardiovascular disease
DAMP Damage-associated molecular pattern
eNOS Endothelial nitric oxide synthase
ET-1 Endothelin 1
FACS Fluorescence activated cell sorting
GPx-1 Glutathione peroxidase 1
HDL High density lipoproteins
HO-1 Heme oxygenase 1
HYENA Hypertension and exposure to noise near airports
IL Interleukin
L-NAME L-NG-Nitro arginine methyl ester
MCP-1 Monocyte chemoattractant protein 1
mtDNA Mitochondrial DNA
mtROS Mitochondrial reactive oxygen species
MnSOD Manganese superoxide dismutase
NO Nitric Oxide
NO2 Nitrogen dioxide
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NOX NADPH oxidase
PKC Protein kinase C
PM Particulate matter
PYK-2 Protein tyrosine kinase
ROS Reactive oxygen species
SO2 Sulfur dioxide
SOD Superoxide dismutase
SPL Sound-pressure level
sVCAM-1 Soluble vascular adhesion molecule 1
Trx Thioredoxin
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