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Abstract: Naringenin, a natural flavonoid widely found in citrus fruits, has been reported to possess 
anti-oxidant, anti-inflammatory, and hepatoprotective properties as a natural dietary supplement. 
However, the regulatory mechanism of naringenin in human liver remains unclear. In the present 
study, messenger RNA sequencing (mRNA-seq), microRNA sequencing (miRNA-seq), and real-
time qPCR were used to distinguish the expression differences between control and naringenin-
treated HepaRG cells. We obtained 1037 differentially expressed mRNAs and 234 miRNAs. Accord-
ing to the target prediction and integration analysis in silico, we found 20 potential miRNA-mRNA 
pairs involved in liver metabolism. This study is the first to provide a perspective of miRNA–mRNA 
interactions in the regulation of naringenin via an integrated analysis of mRNA-seq and miRNA-
seq in HepaRG cells, which further characterizes the nutraceutical value of naringenin as a food 
additive. 
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1. Introduction 
Naringenin, a natural flavonoid, is found abundantly in citrus fruits and other edible 

fruits, like grapefruit, oranges, bergamot, tomatoes, and figs [1]. After oral administration, 
naringenin is widely distributed in the gastrointestinal tract and liver [2,3] and exhibits a 
direct antioxidant property by free radical scavenging activity on account of its molecular 
structure, and induces the endogenous antioxidant system in the liver [4]. Growing evi-
dence from both in vitro and in vivo studies has identified various protective capacities 
of naringenin, such as anti-inflammatory [5], antioxidant [6], anti-fibrosis [7], and hepato-
protective [4,8] activities. These capacities suggest that dietary naringenin could be ap-
plied to prevent metabolic syndrome and malignant diseases, including fulminant hepa-
titis, fatty liver disease, fibrosis, etc. [9,10]. However, there are few detailed studies about 
the regulatory effects of naringenin on the overall genes of liver [4]. 

MicroRNAs (miRNAs) are a class of non-coding, single-stranded RNA molecules 
with a length of 18–26 nucleotides encoded by endogenous genes, which exhibit a broad 
range of biological regulatory functions in phylogeny, differentiation, proliferation, and 
apoptosis [11]. miRNA, binding messenger RNAs (mRNAs) by sequence-specific recog-
nition, negatively regulates gene expression at the post-transcriptional level through deg-
radation of target mRNAs [12]. Under exogenous stimulation, miRNA expression is al-
tered, and then target mRNA expression is regulated. Eventually, extensive physiological 
functions are changed to cope with the challenges caused by exogenous stimulation [13]. 
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A more reliable method for predicting miRNA–mRNA target relations is to simultane-
ously integrate mRNA-seq analysis with miRNA-seq analysis using a particular pro-
cessing context in silico [14]. 

Therefore, our objective was to study the effects of naringenin on global genes and 
highlight the possible regulatory mechanism of miRNA-mRNA pairs in the liver. In pre-
sent study, mRNA expression changes and miRNA expression profiles were investigated 
in HepaRG cells by performing mRNA-seq, miRNA-seq, bioinformatic analyses, and real-
time qPCR to provide evidence for the potential of naringenin as a natural dietary supple-
ment. 

2. Results 
2.1. Analysis of Transcriptome Sequencing in the Response to Naringenin 

To identify mRNA expression changes of HepaRG cells in response to naringenin, 
eight complementary DNA (cDNA) libraries in the control group (CK-1, CK-2, CK-3, and 
CK-4) and the experimental group (T-1, T-2, T-3, and T-4) were constructed with total 
RNA and subjected to Illumina HiSeq2500 sequencing(Genedenovo Biotechnology Co., 
Ltd, Guangzhou, China). Overviews of the sequencing and assembly results for the con-
trol group and experimental group are shown in Table 1. Gene expression changes were 
analyzed by comparing the treated and control groups. As shown in Figure 1a, the 
naringenin-exposed group expressed 1037 differentially expressed genes (DEGs) com-
pared with the control group. A heat map of 1037 DEGs showed the cluster analysis of the 
control group and the naringenin group (Figure 1b; 381 up- and 656 down-regulated 
genes; Table S1, Supplementary Materials). 

Table 1. Summary of sequence data generated for HepaRG cells transcriptome and quality filtering. 

Sample Raw Data Clean Data 
(%) Raw Data (bp) Clean Data 

(bp) 
After Filtering 

Q20 (%) 
After Filtering 

Q30 (%) 
After Filtering 

N (%) 
After Filtering 

GC (%) 

CK-1 47,663,932 
47,577,906 
(99.82%) 

7149,589,800 7114,281,738 
6992,811,543 

(98.29%) 
6,756,607,154 

(94.97%) 
19,427 

(0.00%) 
3,804,122,670 

(53.47%) 

CK-2 42,079,942 
42,026,040 
(99.87%) 

6311,991,300 6283,554,811 
6189,856,925 

(98.51%) 
6,000,864,261 

(95.50%) 
8392 

(0.00%) 
3,360,455,066 

(53.48%) 

CK-3 41,188,030 
41,131,120 
(99.86%) 

6178,204,500 6147,638,474 
6,050,714,205 

(98.42%) 
5,857,735,081 

(95.28%) 
8775 

(0.00%) 
3,273,834,153 

(53.25%) 

CK-4 43,096,530 
43,039,450 
(99.87%) 

6464,479,500 6433,433,599 
6,333,636,124 

(98.45%) 
6,134,820,735 

(95.36%) 
8660 

(0.00%) 
3,439,680,095 

(53.47%) 

T-1 51,658,770 
51,539,258 
(99.77%) 

7748,815,500 7706,270,162 
7,562,514,956 

(98.13%) 
7,292,630,398 

(94.63%) 
26,068 

(0.00%) 
4,098,720,423 

(53.19%) 

T-2 48,606,134 
48,501,812 
(99.79%) 

7290,920,100 7250,461,713 
7,113,064,471 

(98.10%) 
6,85,1340,567 

(94.50%) 
23,956 

(0.00%) 
3,887,698,839 

(53.62%) 

T-3 62,602,866 
62,433,856 
(99.73%) 

9390,429,900 9333,102,578 
9,155,158,477 

(98.09%) 
8,825,370,611 

(94.56%) 
45,571 

(0.00%) 
4,878,494,560 

(52.27%) 

T-4 41,346,744 
41,292,738 
(99.87%) 

6202,011,600 6166,582,431 
6,070,483,986 

(98.44%) 
5,876,108,215 

(95.29%) 
8644 

(0.00%) 
3,277,271,342 

(53.15%) 
CK-1, CK-2, CK-3, and CK-4, the control group; T-1, T-2, T-3, and T-4, the naringenin group. 
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(a) (b) 

Figure 1. Identification of differentially expressed messenger RNAs (mRNAs) in response to naringenin. (a) Volcano plot 
showed that all non-redundant unigenes were identified in the control group and the naringenin group. The 20,285 gray 
dots represent non-significantly differentially expressed mRNAs, the 381 red dots represent significantly differentially up-
regulated mRNAs, and the 656 blue dots represent significantly differentially down-regulated mRNAs; FC (fold change) 
= the naringenin group/the control group; FDR (false discovery rate), the expected percent of false predictions in the set of 
predictions; (b) heat map showing 1037 differentially expressed genes (DEGs), comparing the control group with the 
naringenin group. Each row represents one mRNA, and each column represents a sample. Red, upregulation; blue, down-
regulation; CK-1, CK-2, CK-3, and CK-4, the control group; T-1, T-2, T-3, and T-4, the naringenin group. 

According to the Gene Ontology (GO) classification system, 1037 DEGs were classi-
fied into three major functional categories (biological process, cellular component, and 
molecular function) and 61 subcategories (Figure 2). Among the biological process, cellu-
lar process (731) was the most commonly represented, followed by single-organism pro-
cess (672) and biological regulation (595). In the category of cellular component, a signifi-
cant proportion of clusters was assigned to cell (727), cell part (721), and organelle (580). 
Genes involved in binding (666) and catalytic activity (238) groups were notably repre-
sented in the molecular function category. 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) classification was found for 
1037 DEGs that were further classified into the top twenty biochemical pathways accord-
ing to the smallest q-value and the largest GeneNumber in pathway annotation  
(Figure 3).The GeneNumber and ratio of annotated genes of the top five pathways are 
systemic lupus erythematosus (33, 8.4%), alcoholism (38, 9.67%), transcriptional misregu-
lation in cancers (22, 5.6%), PI3K–Akt signaling pathway (34, 8.65%) and complement and 
coagulation cascades (12, 3.05%). There were more than 10 enriched genes among the five 
pathways. Overall, undergoing naringenin treatment had a significant impact on the 
global gene expression profile of HepaRG cells. These results implied that the genes in-
volved in these pathways may play crucial roles in naringenin regulation. 
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Figure 2. Gene Ontology (GO) terms categorization of 1037 DEGs. Number of genes: number of target genes in a term. 
Red, upregulation; green, downregulation; CK, the control group; T, the naringenin group. 

 

Figure 3. Top 20 pathways of Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for 1037 
DEGs. GeneNumber: number of target genes in a pathway. RichFactor: ratio of number of target 
genes divided by number of all the genes in a term or pathway. 
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2.2. Analysis of miRNA Transcript Levels in Response to Naringenin 
In this study, we aimed to determine whether naringenin exposure alters the expres-

sion levels of miRNAs in HepaRG cells. After exposure, we collected small RNAs and 
measured their relative abundance using Illumina HiSeq2500 (Genedenovo Biotechnol-
ogy Co., Ltd, Guangzhou, China). As shown in Table 2, clean reads of eight samples were 
generated, respectively, after removing contaminant reads. An overview of reads for 
small RNA sequencing from raw data to high quality and with quality filtering is pro-
vided in Table 2. The length distributions of small RNAs were similar among libraries in 
that 21–23 nt RNAs were the most abundant (Figure 4). 

Table 2. Summary of sequence data generated for HepaRG cells’ small RNA and quality filtering. 

Sample Clean Reads High Quality Smaller than 18 Nt Polya Low Cutoff Clean Tags 

CK-1 
13,123,917 13,076,410 2,570,571 540 328,987 10,051,993 

(100%) (99.6380%) (19.6581%) (0.0041%) (2.5159%) (76.8712%) 

CK-2 
13,744,858 13,687,348 1,981,919 807 443,665 11,100,847 

(100%) (99.5816%) (14.4799%) (0.0059%) (3.2414%) (81.1030%) 

CK-3 
12,609,501 12,563,626 1,535,545 766 306,124 10,571,146 

(100%) (99.6362%) (12.2221%) (0.0061%) (2.4366%) (84.1409%) 

CK-4 
13,923,071 13,865,587 3,070,687 377 386,734 10,259,540 

(100%) (99.5871%) (22.1461%) (0.0027%) (2.7892%) (73.9928%) 

T-1 
12,156,840 12,100,462 2,354,606 464 465,005 9,161,791 

(100%) (99.5362%) (19.4588%) (0.0038%) (3.8429%) (75.7144%) 

T-2 
12,620,973 12,574,364 1,472,821 741 337,320 10,592,975 

 (99.6307%) (11.7129%) (0.0059%) (2.6826%) (84.2426%) 

T-3 
12,806,071 12,758,280 1,603,461 1012 307,185 10,700,322 

(100%) (99.6268%) (12.5680%) (0.0079%) (2.4077%) (83.8696%) 

T-4 
14,891,138 14,831,250 2,514,654 556 317,307 11,831,747 

(100%) (99.5978%) (16.9551%) (0.0037%) (2.1394%) (79.7758%) 
CK-1, CK-2, CK-3, and CK-4, the control group; T-1, T-2, T-3, and T-4, the naringenin group. 

 
Figure 4. The length distribution of the small RNA sequence. CK-1, CK-2, CK-3, and CK-4, the control group; T-1, T-2, T-
3, and T-4, the naringenin group. 
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All the small RNAs were aligned in the GeneBank database (Release 209.0) and the 
Rfam database (11.0) to identify and remove ribosomal RNA (rRNA), small conditional 
RNA (scRNA), small nucleolar (snoRNA), small nuclear (snRNA), and transfer RNA 
(tRNA). In accordance with reference genome, these small RNAs, mapped to exons, in-
trons, and repeat sequences, were also removed. The filtering small RNAs were searched 
against miRBase database (Release 21) to identify miRNAs. The heat map of 3373 miRNAs 
shows the cluster analysis of the control group and the naringenin group in Figure 5a. 
Illumina HiSeq2500 profiling of the 3373 miRNAs analyzed in naringenin exposure vs. 
control samples showed that a total of 234 differentially expressed miRNAs (DEMs, 174 
up- and 60 down-regulated; Table S2, Supplementary Materials) were detectable in Hep-
aRG cells (Figure 5b). 

 
(a) (b) 

Figure 5. Identification of differentially expressed microRNA (miRNAs) in response to naringenin. (a) Heat map of 3373 
expressed miRNAs in response to naringenin. Each row represents one miRNA, and each column represents a sample. 
Red, upregulation; blue, downregulation; CK-1, CK-2, CK-3, and CK-4, the control group; T-1, T-2, T-3, and T-4, the 
naringenin group; (b) scatter plot showing 234 DEMs (174 up- and 60 down-regulated) comparing the control group with 
the naringenin group. Each dot represents one miRNA. Red, upregulation; green, downregulation; blue, non-significance. 
CK, the control group; T, the naringenin group. 

2.3. Target Prediction and Integration Analysis of mRNA and miRNA Expression Profiles in 
Response to Naringenin 

Acting at the post-transcriptional level, miRNAs silence and/or down-regulate cellu-
lar mRNA gene expression by target RNA cleavage. To predict the target genes of 234 
DEMs, we performed computational analyses using the RNAhybrid (v2.1.2) + svmlight 
(v6.01), Miranda (v3.3a), and TargetScan (Version: 7.0). The simultaneous profiling of 234 
DEMs and 1037 DEGs levels in silico can identify the presumptive target mRNAs of miR-
NAs. We selected the intersection of DEGs and target genes of DEMs, and then performed 
bioinformatics analysis on these intersection genes. A total of 5607 negative miRNA-
mRNA pairs for naringenin treatment were obtained, with the involvement of 216 DEMs 
and 681 DEGs (Table S3, Supplementary Materials). In line with the GO classification sys-
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tem, 681 DEGs were classified into 58 subcategories (Figure 6). The first three subcatego-
ries had not changed in three major functional categories compared with transcriptome 
sequencing analysis (Figures 2 and 6). 

 
Figure 6. Gene Ontology terms categorization of 681 DEGs. Number of genes: number of target genes in a term. Red, 
upregulation; green, downregulation; CK, the control group; T, the naringenin group. 

Pathway enrichment analysis for 681 DEGs of 5607 negative miRNA-mRNA pairs 
identified the top twenty pathways according to the smallest q-value and the largest Gene-
Number in pathway annotation after naringenin exposure (Figure 7): with PI3K–Akt sig-
naling pathway (25, 8.96%) being the eighth pathway and the second-most abundant. 
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Figure 7. Top 20 pathways of KEGG terms for 681 DEGs. GeneNumber: number of target genes in 
a pathway. RichFactor: ratio of number of target genes divided by number of all the genes in a 
term or pathway. 

2.4. Real-Time qPCR Validation of Naringenin Regulation in Liver Metabolism and Potential 
Regulatory miRNA-mRNA Pairs 

According to global gene function annotations, literature review, and their potential 
relationship with naringenin-responsive miRNAs, 19 DEGs (ALOX15, CA9, TH, HKDC1, 
NDUFA4L2, RRM2, ACSL5, PLA2G4C, LIPT2, UGDH, FTCD, ABAT, AZIN2, HS6ST3, 
B4GALT6, GUSB, DCT, ALAS2, and MAT1A) were manually selected as representatives 
for their potential roles in liver metabolism. In addition, the PI3K–Akt signaling pathway 
had been significantly enriched (fourth in the KEGG of RNA-seq analysis, Figure 3; eighth 
in the KEGG of miRNA-RNA-seq analysis, Figure 7); therefore, 11 DEGs (PDGFRB, 
CSF1R, FGFR2, IL2RG, IL7R, ITGB4, GNG4, PCK1, CREB3L3, CREB3L1, and NFκB1) 
among the PI3K–Akt signaling pathway were screened out. 

We here described the interaction between the 30 DEGs and 11 human miRNAs (hsa-
miR-1306-5p, hsa-miR-627-3p, hsa-miR-194-3p, hsa-miR-676-3p, hsa-miR-6837-5p, hsa-
miR-429, hsa-miR-100-3p, hsa-miR-194-5p, hsa-miR-519a-3p, hsa-miR-7-5p, and hsa-miR-
200a-5p), including 20 negative miRNA–mRNA interactions (Figure 8). As shown in Fig-
ure 8, a single miRNA can regulate multiple target mRNAs and vice versa (e.g., ABAT, 
HS6ST3, B4GALT6, and DCT could possibly be simultaneously regulated by hsa-miR-429; 
HS6ST3 may be simultaneously regulated by hsa-miR-429, hsa-miR-100-3p, hsa-miR-
519a-3p, hsa-miR-676-3p, hsa-miR-7-5p, and hsa-miR-194-5p; some DEGs had no paired 
DEMs). The expression profiles of 19 DEGs related to liver metabolism and 11 DEGs 
among the PI3K–Akt signaling pathway were further validated using real-time qPCR 
(Figure 9a,b). The expression level of 11 human miRNAs (two up- and nine down-regu-
lated) was further assessed for naringenin-induced changes by real-time qPCR consistent 
with sequencing results (Figure 9c). Although there were some quantitative differences 
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between the two analytical platforms, the similarities between the RNA-seq data and the 
real-time qPCR suggested that the RNA-seq data were reproducible and reliable. 

 
Figure 8. Putative miRNA–mRNA negative correlation network in response to naringenin. Rectan-
gular nodes, mRNAs; diamond nodes, miRNAs. 

. 

(a) 
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(b) 

 
(c) 

Figure 9. Relative mRNA and miRNA expression of the control group and the naringenin group, in respect to RNA-seq 
and real-time qPCR. (a) The 19 genes involved in liver metabolism; (b) 11 genes involved in the PI3K–Akt signaling path-
way; (c) 11 putative regulatory miRNAs. Y-axis represents log2 (FC); FC (fold change) = the naringenin group/the control 
group. The dashed line indicated fold change data of 2.0. Values are the mean ± SD (n = 4). 

3. Discussion and Conclusions 
The findings discussed here reveal the first detailed information regarding parallel 

mRNA and miRNA expression changes in HepaRG cells in response to naringenin. We 
performed an integrative analysis of these data including 234 DEMs and 1037 DEGs in-
duced by naringenin, which provide global insight into the miRNA–mRNA interactions 
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of naringenin in the regulatory mechanism. According to the gene function annotations 
and literature review, 19 DEGs related to metabolism were screened out. In particular, the 
PI3K–Akt signaling pathway was significantly enriched both in analysis of transcriptome 
sequencing (the third-most abundant, and ranked fourth) and integration analysis of 
miRNA-mRNA expression profiles (the second-most abundant, and ranked eighth) in re-
sponses to naringenin. In addition, 11 DEGs in the PI3K–Akt signaling pathway were fur-
ther validated using real-time qPCR analysis. In this work, we constructed a miRNA-
mRNA regulatory network according to the DEMs and DEGs datasets and miRNA-tar-
geting information. Some studies have demonstrated that the miRNA–mRNA regulatory 
network responds to liver damage, including hepatocellular carcinoma and oxidative 
stress [15]. Although several miRNA-induced RNA activation phenomena were identified 
[16], under most circumstances, the negative correlation between miRNAs and their target 
mRNAs is often considered support for miRNA targeting [17]. Ultimately, 20 miRNA-
mRNA negative correlation pairs were identified with the involvement of liver metabo-
lism and the PI3K–Akt signaling pathway. 

With regard to global genes, we addressed our particular research question using 
pathway analysis to highlight 19 DEGs related to the functional clusters: metabolism, in-
cluding Lipid metabolism (ALOX15, ACSL5, PLA2G4C, and B4GALT6), Energy metabo-
lism (CA9 and NDUFA4L2), Metabolism of cofactors and vitamins (TH, LIPT2, and 
FTCD), Amino acid metabolism (RRM2, AZIN2, DCT, ALAS2, and MAT1A), Glycan bio-
synthesis and metabolism (HS6ST3 and GUSB), and Carbohydrate metabolism” (HKDC1, 
PCK1, UGDH, and ABAT). These 19 DEGs enriched to metabolism are primarily involved 
in insulin sensitivity, lipid accumulation, glycogen storage, and energy expenditure. Pre-
vious studies reported that the down-regulation of ALOX15 in alcohol-induced mice liver 
damage [18], CA9 in BALB/c mice [19], TH in nonalcoholic fatty liver disease (NAFLD) 
[20], HKDC1 [21], and the up-regulation of UGDH [22] can significantly relieve oxidative 
stress, lipid accumulation, and liver damage. Knockdown of NDUFA4L2 suppressed ROS 
accumulation and apoptosis in hepatocellular carcinoma (HCC) cells [23]. RRM2 silencing 
inhibited NCI-H929 cell proliferation [24], and FTCD overexpression suppressed cell pro-
liferation by promoting DNA damage and inducing cell apoptosis in HCC cells [25]. Ab-
lation of ACSL5 improved insulin sensitivity, increased energy expenditure, and delayed 
triglyceride absorption in mice [26]. DCT supplementation improved age-associated liver 
steatosis and inflammation [27]. Lipid droplet formation upon fatty acid and hepatitis C 
virus stimulation in PLA2G4C knockdown cells was impaired [28]. The down-regulation 
of LIPT2 inhibited fatty acid synthesis [29]. The up-regulation of ABAT [30], AZIN2 [31], 
B4GALT6 [32], HS6ST3 [33], and GUSB [34] could promote fatty acid and glycogen de-
composition. ALAS2 overexpression could improve liver hematopoietic capacity [35], and 
MAT1A expressed in hepatocytes maintained the differentiated state of these cells [36]. 
Consistent with the findings described above, the regulation of these metabolic genes in 
our results may be favorable to improve metabolism in response to naringenin. 

The PI3K–Akt signaling pathway may offer clues for the molecular mechanism in-
volved in metabolism, inflammation, and oxidative stress [37], which plays a pivotal role 
in the response to naringenin. The PI3K–Akt signaling pathway has diverse downstream 
effects on cellular metabolism through either direct regulation of nutrient transporters and 
metabolic enzymes or the control of transcription factors that regulate the expression of 
key components of metabolic pathways [38,39], including glucose metabolism, biosynthe-
sis of macromolecules, and maintenance of redox balance. It was reported that PDGFRB 
silencing inhibited the activation and proliferation of hepatic stellate cells and ameliorated 
liver fibrosis [40]. The collaborative inhibition of CSF1R and FGFR2 is expected to enhance 
the antitumor effects by targeting immune evasion and angiogenesis in the tumor micro-
environment [41]. Knocking down ITGB4 suppressed glycolysis in cancer-associated fi-
broblasts [42]. Genetic knockdown of PCK1 prevented fatty-acid-induced rise in oxidative 
flux, oxidative stress, and inflammation [43], which was also correlated with signaling 
pathways governed by insulin [44]. It was shown that overexpression of nuclear CREB3L3 
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induced systemic lipolysis, hepatic ketogenesis, and insulin sensitivity with increased en-
ergy expenditure [45]. Inhibition of CREB3L1 reportedly blocked cancer invasion and me-
tastasis [46]. NFκB is a key regulator of immune development, immune responses, inflam-
mation, and cancer [47]. It has been well-established that suppressing NFκB transduces 
anti-inflammatory signals and reduces inflammation [48]. In the PI3K–Akt signaling path-
way, our results showed that naringenin significantly down-regulated the mRNA expres-
sions of PDGFRB, PCK1, CREB3L1, and NFκB1 with related miRNAs (has-miR-1306-5p 
and hsa-miR-627-3p) being significantly down-regulated. Therefore, our data suggested 
that naringenin may play a salutary role in anti-inflammatory, anti-oxidative stress, and 
ameliorative metabolism via the inhibition of the PI3K–Akt signaling pathway. 

This study was the first to integrated the analysis of mRNA-seq and miRNA-seq in 
the liver in response to naringenin, and provide a perspective of metabolism in naringenin 
regulation. In terms of metabolism and the PI3K–Akt signaling pathway, the 11 DEMs, 30 
DEGs, and 20 miRNA-mRNA pairs need more research for the activities of naringenin. 
There are some limitations of this research; for example, the dose-dependent and time-
dependent effects of naringenin in miRNA-mRNA interactions were still unclear. Alt-
hough given miRNAs analyzed in silico suggested regulatory capacities, their functions 
need to be further certified in a specific context within a living system. In summary, we 
provided preliminary research analyzing mRNA and miRNA expression and profiling of 
metabolism. The regulatory mechanism of miRNA-mRNA pairs could be additional pos-
sible evidence for annotating the nutraceutical value of naringenin. 

4. Materials and Methods 
4.1. Chemicals and Reagents 

The HepaRG cell line was originally purchased from Biopredic International 
(Rennes, France). RPMI-1640 medium and penicillin-streptomycin-glutamine solution 
were obtained from Gibco (Gaithersburg, MD, USA). Fetal bovine serum (FBS) was pur-
chased from Corning (Auckland, New Zealand). Naringenin and dimethyl sulfoxide 
(DMSO) were from Sigma-Aldrich (St. Louis, MO, USA). TRIzol™ reagent was supplied 
by Thermo Fisher (Carlsbad, CA, USA). Ultrapure water was purified by a Milli-Q aca-
demic water purification system (Millipore, Bedford, MA, USA). All other reagents were 
commercialized products of the highest analytical grade available. 

4.2. HepaRG Cells Culture 
The HepaRG cells were seeded at 5 × 104 cells/cm2 in six-well plates and grown in 

RPMI-1640 medium, cultured with or without 100 μM naringenin for 48 h, and supple-
mented with 10% FBS and 1% antibiotics (100 U/mL penicillin and 100 μg/mL streptomy-
cin) at 37 °C in a humidified 5% CO2 incubator. CK-1, CK-2, CK-3, and CK-4 refer to the 
control check group; T-1, T-2, T-3, and T-4 refer to the 100 μM naringenin treatment group. 
The numbers 1, 2, 3, and 4 represent samples from four independent repeated experi-
ments. 

4.3. Total RNA Extraction 
HepaRG cells were washed twice with ice-cold phosphate-buffered saline (PBS) and 

harvested with TRIzol™ reagent as recommended by the manufacturer. Thermo Scientific 
NanoDrop™ 2000 c Spectrophotometers (Wilmington, DE, USA) were used to measure 
the RNA quality and quantity of each sample according to the manufacturers’ protocol. 

4.4. RNA Sequencing 
The mRNA was enriched by Oligo(dT) beads, then the enriched mRNA was frag-

mented and reverse-transcripted into cDNA with random primers by QiaQuick PCR ex-
traction kit (Qiagen,Venlo, The Netherlands). RNA molecules in a size range of 18–30 nt 
were enriched by polyacrylamide gel electrophoresis. The 3′ and 5′ adapters were added, 
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then enriched RNAs were reverse-transcripted by the QiaQuick PCR extraction kit, ac-
cording to the manufacturer’s instructions (Qiagen,Venlo, The Netherlands). The ligation 
products were size-selected by agarose gel electrophoresis. There were four samples in 
the naringenin group and four samples in the control group. Each sample generated two 
cDNA libraries: one for mRNA-seq and the other for miRNA-seq. PCR amplified products 
were enriched to respectively generate 16 cDNA libraries and sequenced using Illumina 
HiSeq2500 by Genedenovo Biotechnology Co. (Guangzhou, China). The RNA and small 
RNA sequencing data were deposited in the NCBI Sequence Read Archive (accession 
numbers from SRR13675952 to SRR13675963). 

4.5. Real-Time qPCR 
Transcription of mRNA into cDNA was conducted with the GoScript™ Reverse 

Transcription System (Promega, Madison, WI, USA) from 3 μg of total RNA, according to 
the manufacturer’s instructions. For miRNA analysis, cDNA-synthesis was performed 
with the miRNA First Strand cDNA Synthesis (Tailing Reaction, Sangon Biotech, Shang-
hai, China) from 2 μg of total RNA. 

The real-time qPCR was carried out with GoTaq® qPCR Master Mix (Promega, Mad-
ison, WI, USA) on a LightCycler 480 (Roche, Mannheim, Germany), as recommended by 
the manufacturer. The thermal cycling procedure started with an initial denaturation at 
95 °C for 10 min. This was followed by 45 cycles of denaturation for 10 s at 95 °C, primer 
binding for 20 s at 60 °C, and elongation for 20 s at 72 °C. The procedure ended with a 
final amplification at 95 °C for 5 s, 65 °C for 1 min, the addition of a dissociation curve 
step, and a cooling step. Primers were purchased from Sangon Biotech (Shanghai, China). 
The primer pairs’ sequences used for the validation of the signature are described in  
Tables 3 and 4. Ct-values were calculated in reference to β-actin or U6. 

Table 3. List of 32 mRNA primers for real-time qPCR. 

Gene Forward Sequence (5′→3′) Reverse Sequence (5′→3′) 
PDGFRB TGCAGACATCGAGTCCTCCAAC GCTTAGCACTGGAGACTCGTTG 

CSF1R GCTGCCTTACAACGAGAAGTGG CATCCTCCTTGCCCAGACCAAA 
FGFR2 GTGCCGAATGAAGAACACGACC GGCGTGTTGTTATCCTCACCAG 
IL2RG CACTCTGTGGAAGTGCTCAGCA GAGCCAACAGAGATAACCACGG 
IL7R ATCGCAGCACTCACTGACCTGT TCAGGCACTTTACCTCCACGAG 

ITGB4 AGGATGACGACGAGAAGCAGCT ACCGAGAACTCAGGCTGCTCAA 
GNG4 CTCCAGATTCAGCCTCCGTTTTG TGCCATAGGTCTGGAAGAGGTG 
PCK1 CATTGCCTGGATGAAGTTTGACG GGGTTGGTCTTCACTGAAGTCC 

CREB3L3 GAAGCCTCTGTGACCATAGACC GGAGGTCTTTCACGGTGAGATTG 
CREB3L1 GCCTTGTGCTTTGTTCTGGTGC CCGTCATCGTAGAATAGGAGGC 

NFκB1 GCAGCACTACTTCTTGACCACC TCTGCTCCTGAGCATTGACGTC 
ALOX15 ACCTTCCTGCTCGCCTAGTGTT GGCTACAGAGAATGACGTTGGC 

CA9 GTGCCTATGAGCAGTTGCTGTC AAGTAGCGGCTGAAGTCAGAGG 
TH GCTGGACAAGTGTCATCACCTG CCTGTACTGGAAGGCGATCTCA 

HKDC1 ATCGCCGACTTCCTGGACTACA GCCTTGAAACCTTTGGTCCACC 
NDUFA4L2 CTGGGACAGAAAGAACAACCCG CAGCCTGGCTTAGAAGTCTGGC 

RRM2 CTGGCTCAAGAAACGAGGACTG CTCTCCTCCGATGGTTTGTGTAC 
ACSL5 GCTTATGAGCCCACTCCTGATG GGAAGAATCCAACTCTGGCTCC 

PLA2G4C GGAAGACTGGTCAGAACTCACC GCATTAGCAACAGCCCTTCTCC 
LIPT2 GTCTGGCTAGACGATCGCAAGA GCACGATGTGCTCAAACCACGT 
UGDH TGTGATGGTGCCCATGCTGTTG GTCCATCGAAGATAAAGGCTGGC 
FTCD GGAGAACCTCTTCATCCTGGAG ATGATCCGCTCCTTAGGGCTGA 
ABAT GCCTCTGATGAAGACGGAAGTC CATTCGGTTGCCGTCCACATCA 
AZIN2 CTTCACTGTGGCAGTCAGCATC TCCCATACACGCCCTCATCAAG 
HS6ST3 ACTGGACGGAGCTCACCAACTG TCGCTCAGGTAACGTGACACTG 

B4GALT6 CTCATTCCTTTCCGTAATCGCCA GCCCACATTGAAAAGCATCGCAC 
GUSB CTGTCACCAAGAGCCAGTTCCT GGTTGAAGTCCTTCACCAGCAG 
DCT CTCAGACCAACTTGGCTACAGC CAACCAAAGCCACCAGTGTTCC 
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Gene Forward Sequence (5′→3′) Reverse Sequence (5′→3′) 
ALAS2 GCCTCAAAGGATGTGTCCGTCT TACTGGTGCCTGAGATGTTGCG 
MAT1A GCCAAGTCTCTGGTGAAAGCAG CTGTCTTCTGAGAGGTTCCGTAG 
β-Actin TGAATGATGAGCCTTCGTGC CTGGTCTCAAGTCAGTGTAC 

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT 

Table 4. List of 11 miRNA primers for real-time qPCR. 

miRNA Name miRNA Sequence (5′→3′) Forward Sequence (5′→3′) 
hsa-miR-1306-5p CCACCTCCCCTGCAAACGTCCA GCCACCTCCCCTGC 
hsa-miR-627-3p TCTTTTCTTTGAGACTCACT CGCAGTCTTTTCTTTGAGACTC 
hsa-miR-194-3p CCAGTGGGGCTGCTGTTATCTG CAGTGGGGCTGCTGT 
hsa-miR-676-3p CTGTCCTAAGGTTGTTGAGTT CAGCTGTCCTAAGGTTGTTG 

hsa-miR-6837-5p ACCAGGGCCAGCAGGGAATGT ACCAGGGCCAGCAG 
hsa-miR-429 TAATACTGTCTGGTAAAACCGT CGCAGTAATACTGTCTGGT 

hsa-miR-100-3p CAAGCTTGTATCTATAGGTATG CGCAGCAAGCTTGTATC 
hsa-miR-194-5p CGGGTAGAGAGGGCAGTGGGAGG CGGGTAGAGAGGGCAGT 

hsa-miR-519a-3p AAAGTGCATCCTTTTAGAGTGT GCAGAAAGTGCATCCTTTTAGAG 
hsa-miR-7-5p TGGAAGACTAGTGATTTTGTTGTT CGCAGTGGAAGACTAGTGA 

hsa-miR-200a-5p CATCTTACCGGACAGTGCTGGA AGCATCTTACCGGACAGT 

4.6. Bioinformatic Analysis and SStatistics 
DEGs and DEMs were identified using an R-based software package. The threshold 

value for selection of DEGs and DEMs was q-value (adjusted p-value) ≤ 0.05 and fold 
change (FC) ≥2 or ≤0.5. KEGG and GO classification including molecular functions, bio-
logical processes, and cellular components were used to analyze DEGs and DEMs. The 
results of biological assay are presented in the form of mean ± SD based on four independ-
ent experiments in GraphPad Prism 8. 

Supplementary Materials: The following are available online at www.mdpi.com/1422-
0067/22/5/2292/s1: Table S1, Identification of 1037 differentially expressed mRNAs in response to 
naringenin; Table S2, Identification of 234 differentially expressed miRNAs in response to 
naringenin; Table S3, Identification of 5607 negative miRNA-mRNA pairs in response to naringenin, 
with the involvement of 216 DEMs and 681 DEGs in total. 
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