Supplementary data: Decoding the molecular effects of atovaquone linked resistant mutations on *Plasmodium falciparum* Cytb-ISP complex in the phospholipid bilayer membrane

Lorna Chebon-Bore ^{1,†}, Taremekedzwa Allan Sanyanga ^{1,†}, Colleen Varaidzo Manyumwa ¹, Afrah Khairallah ¹ and Özlem Tastan Bishop ^{1,*}

- ¹ Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; <u>lornajemosop@gmail.com</u>, <u>asanyanga@gmail.com</u>, <u>colleen.manyumwa06@gmail.com</u>, <u>afrahkhairalla@gmail.com</u>
- + Equally contributed first authorship
- * Correspondence: <u>o.tastanbishop@ru.ac.za (</u>Ö.T.B); Tel.: +27-46-603-8072 (O.T.B.)

Table S1. Computed pKa (1/2) values for all ionizable groups (side chains) that are coordinated in the metal center of the
PfCytb-ISP protein complex (Internal dielectric of 10).

Deprotonatio	on state(ε)	Deprotonation s	state(δ/SG)
Site	pKa values	Site	pKa values
His78	4.7	His301	<0.0
His92	<0.0	His320	1.2
His173	2.6	Cys299	>12.0
His187	4.5	Cys317	6.6
C-Term	4.7	N-Term	5.1
Total charge at pH 7.0	4	Isoelectric point	8.64

Table S2. Titratable residues and pKa values in the PfCytb-ISP protein complex

Residue	pK (int)	pKa_(1/2)	Residue	pK (int)	pKa_(1/2)	Residue	pK (int)	pKa_(1/2)
TYR-2	11.160	>12.000	CYS-310	10.463	10.189	ASP-473	6.271	< 0.000
CYS-4	11.058	>12.000	TYR-313	12.143	>12.000	ARG-477	11.789	>12.000
TYR-14	11.330	>12.000	CYS-320	9.510	9.361	ARG-479	11.287	>12.000
ARG-35	12.118	>12.000	ASP-325	3.876	2.734	GLU-488	5.623	1.812
TYR-36	14.652	>12.000	TYR-330	10.027	10.072	TYR-492	12.303	>12.000
ASP-39	3.584	2.076	ARG-332	12.244	>12.000	GLU-493	4.930	3.562
TYR-42	10.429	10.636	CYS-340	9.619	9.393	ASP-496	4.608	3.001
TYR-44	11.718	>12.000	HIS-348	5.819	4.919	GLU-497	4.451	2.924
TYR-45	10.057	10.160	TYR-349	10.003	9.952	LYS-501	10.182	>12.000
HIS-49	6.067	6.658	ARG-350	13.576	>12.000	CTASN-36	1 5.192	4.681
ARG-52	12.409	>12.000	ARG-351	11.992	>12.000	ASP-473	6.271	< 0.000
GLU-53	4.706	2.437	HIS-353	2.975	<0.000	ARG-477	11.789	>12.000
CYS-59	9.050	8.825	TYR-354	9.973	9.929	ARG-479	11.287	>12.000
ARG-61	10.818	>12.000	ASP-355	5.352	3.234			
TYR-62	11.376	11.657	TYR-356	9.834	10.132			
HID-64	6.239	4.746	NTASN-1	6.908	5.029			
TYR-76	11.774	>12.000	NT CYS-36	62 8.126	7.935			
HIS-78	4.667	< 0.000	LYS-363	10.201	10.024			
ARG-81	10.864	>12.000	HIS-366	6.496	5.836			
TYR-85	12.449	10.926	LYS-372	10.203	10.941			
TYR-87	12.909	>12.000	ASP-373	3.921	2.741			
TYR-89	10.095	9.951	GLU-381	5.545	5.074			
TYR-112	10.773	>12.000	ASP-383	3.867	1.768			
TYR-121	12.813	>12.000	ARG-385	12.067	>12.000			
CYS-142	11.459	11.532	GLU-391	4.212	3.079			
TYR-145	12.226	9.966	HIS-392	5.725	4.122			
ASP-149	4.262	0.551	LYS-396	10.095	10.531			
LYS-153	9.714	>12.000	ARG-398	12.462	>12.000			
ARG-154	12.600	>12.000	LYS-400	9.934	>12.000			

HIS-159	5.792	2.608	LYS-405	10.189	>12.000	
CYS-168	9.273	9.182	HID-406	7.143	7.022	
HID-173	6.246	4.463	ARG-407	12.854	>12.000	
HIS-178	6.066	5.662	GLU-410	5.172	4.492	
HIS-180	6.564	5.832	ASP-411	4.318	<0.000	
TYR-188	11.056	10.993	ARG-414	12.066	>12.000	
ASP-189	3.965	2.709	LYS-416	9.838	>12.000	
LYS-193	9.978	10.823	GLU-417	5.511	2.963	
TYR-197	9.328	9.343	ASP-418	5.434	0.436	
ASP-204	4.730	3.064	ASP-419	3.755	2.706	
LYS-206	10.360	10.876	LYS-420	10.393	11.725	
HID-228	4.530	4.797	ARG-426	12.923	>12.000	
ASP-230	3.544	2.014	ASP-427	3.237	1.368	
TYR-238	12.779	>12.000	ASP-431	7.220	<0.000	
GLU-247	6.434	3.415	ASP-433	3.770	3.138	
TYR-249	14.109	>12.000	ARG-434	12.729	>12.000	
LYS-258	11.439	>12.000	LYS-437	9.841	>12.000	
LYS-263	10.896	11.739	GLU-439	5.317	3.630	
GLU-282	4.497	2.110	CYS-447	8.775	>12.000	
ARG-284	12.469	>12.000	HIS-449	3.925	<0.000	
LYS-293	10.144	10.054	TYR-460	10.496	11.004	
ARG-299	13.129	>12.000	TYR-463	14.864	>12.000	
ASP-300	4.115	2.877	CYS-465	7.745	6.648	
TYR-301	10.462	11.616	HID-468	5.114	1.246	

Atoms	Initial atomic Charge	RESP charge
	BEFORE	AFTER
FE1 (HEME BL)	2.0000	-0.0093
FE1 (HEME BH)	2.0000	-0.0093
FE2 [2FE-2S]	2.0000	0.5906
FE3 [2FE-2S]	2.0000	0.7323
SG1 CYS [2FE-2S]	-2.0000	-0.8579
SG2 CYS [2FE-2S]	-2.0000	-0.6260

Table S3. Partial atomic charges before (formal charge) and after charge calculations restrained electrostatic potential (RESP) charges derived using gaussian09 software using B3LYP/6-31G* basic set at DFT level of theory. NB: RESP charges for only the coordinating residues are presented below.

Table S4. Parameter and coordinate files for both Heme & [2FE-2S) cluster model B3LYP/6-31G* containing optimized coordinates and derived atomic partial charges (AMBER parameter files included also):

- (a) Protoporphyrin IX containing FE; Heme (HEM.mol2)
- (b) Heme proximal histidine ligand (His78.mol2)
- (c) Heme distal histidine ligand (His173.mol2)
- (d) [2FE-2S] proximal histidine ligand (His301.mol2)
- (e) [2FE-2S] distal histidine ligand (His320.mol2)
- (f) [2FE-2S] proximal cysteine ligand (Cys299.mol2)
- (g) [2FE-2S] distal cysteine ligand (Cys317.mol2)
- (h) An AMBER parameter (*.frcmod) file

(a) Protoporphyrin IX Heme octa-coordinate and its derived atomic charges.

HEM.mol2

@ <tripo< th=""><th>S>MOLECUL</th><th>E</th><th></th><th></th><th></th><th></th><th></th></tripo<>	S>MOLECUL	E					
HEM							
72	76 1	L O	0				
SMALL							
RESP Cha	arge						
	2						
0							
@ <tripos< td=""><td>S>A'I'OM</td><td></td><td></td><td>CO. 4 C 4 O</td><td>-</td><td></td><td>0 0 5 0 0 0 1</td></tripos<>	S>A'I'OM			CO. 4 C 4 O	-		0 0 5 0 0 0 1
1	СНА	56.5750	66.3360	63.4640 Ce	1	HEM	-0.053091
2	СНВ	60.1540	67.7760	66.4260 Ce	1	HEM	-0.142569
3	СНС	57.4820	66.6/40	/0.2620 ce	1	HEM	-0.109350
4	CHD	53.9860	65.2570	67.2620 ce	1	HEM	-0.139521
5	CIA	57.8200	66.8080	63.9350 cc	1	HEM	-0.074815
6	C2A	58.9610	67.3250	63.1290 cc	1	HEM	-0.097541
./	C3A	59.9930	67.6700	63.9390 cd	1	HEM	0.042618
8	C4A	59.4420	67.4480	65.2850 cd	1	HEM	-0.055780
9	CMA	61.3210	68.2390	63.5190 c3	1	HEM	-0.105332
10	CAA	58.9710	67.6000	61.6440 c3	1	HEM	-0.022660
11	CBA	58.1140	68.8300	61.4130 c3	1	HEM	-0.041797
12	CGA	57.7700	69.0520	59.9490 c	1	HEM	0.541097
13	01A	58.6220	69.5690	59.1970 o	1	HEM	-0.620901
14	02A	56.6400	68.7090	59.5600 o	1	HEM	-0.413672
15	C1B	59.7360	67.6250	67.7480 cc	1	HEM	-0.099086
16	C2B	60.5620	67.8750	68.9500 cc	1	HEM	0.060434
17	C3B	59.8020	67.5880	70.0560 cd	1	HEM	-0.027679
18	C4B	58.5100	67.1300	69.5160 cd	1	HEM	-0.054395
19	CMB	61.9990	68.4120	68.9750 c3	1	HEM	-0.068779
20	CAB	60.1620	67.7100	71.3790 cf	1	HEM	-0.095735
21	CBB	61.4930	67.3490	72.0660 c2	1	HEM	-0.533903
22	C1C	56.3060	66.0990	69.7970 cc	1	HEM	-0.019937
23	C2C	55.2140	65.4930	70.6100 cc	1	HEM	0.051407
24	C3C	54.2770	65.0860	69.6910 cd	1	HEM	-0.018292
25	C4C	54.7650	65.4670	68.4040 cd	1	HEM	-0.059841
26	CMC	55.1110	65.3790	72.1150 c3	1	HEM	-0.139834
27	CAC	53.0820	64.4560	69.8290 cf	1	HEM	-0.148847
28	CBC	52.5290	63.7950	71.1010 c2	1	HEM	-0.560753
29	C1D	54.3020	65.4620	65.9720 cc	1	HEM	-0.053396
30	C2D	53.4620	65.0580	64.8450 cc	1	HEM	0.040491
31	C3D	54.1720	65.4390	63.7570 cd	1	HEM	-0.066318
32	C4D	55.4860	65.9830	64.2460 cd	1	HEM	-0.055737
33	CMD	52.1540	64.2910	64.9280 c3	1	HEM	-0.101229
34	CAD	53.8050	65.2490	62.2930 c3	1	HEM	-0.019091
35	CBD	53.1580	66.4690	61.6420 c3	1	HEM	-0.006871
36	CGD	54.1670	67.5250	61.2390 c	1	HEM	0.611618
37	01D	54.0410	68.6920	61.6790 o	1	HEM	-0.659831
38	02D	55.0900	67.1730	60.4790 o	1	HEM	-0.516704
39	NA	58.1540	66.9310	65.2830 Y3	1	HEM	-0.094695
40	NB	58.4810	67.1140	68.0970 Y4	1	HEM	-0.011203
41	NC	55.9850	66.0330	68.4530 Y5	1	HEM	0.040970
42	ND	55.5520	65.9930	65.6200 Y6	1	HEM	-0.059847
43	HMA1	61.5890	67.8460	62.6730 hc	1	HEM	0.040745
44	HMA2	61.9880	68.0370	64.1940 hc	1	HEM	0.040745
45	НМАЗ	61.2440	69.2010	63.4190 hc	1	HEM	0.040745
46	HMB1	62.1430	68.9140	69.7920 hc	1	HEM	0.030254

47	HMB2	62.1410	68.9920	68.2110	hc	1	HEM	0.030254
48	HMB3	62.6230	67.6700	68.9380	hc	1	HEM	0.030254
49	HMC1	54.1770	65.3950	72.3780	hc	1	HEM	0.051120
50	HMC2	55.5760	66.1230	72.5290	hc	1	HEM	0.051120
51	HMC3	55.5140	64.5460	72.4050	hc	1	HEM	0.051120
52	HMD1	51.5830	64.5440	64.1860	hc	1	HEM	0.037984
53	HMD2	51.7090	64.4990	65.7640	hc	1	HEM	0.037984
54	HMD3	52.3340	63.3390	64.8870	hc	1	HEM	0.037984
55	HBB1	61.6010	67.4930	73.0190	ha	1	HEM	0.197664
56	HBB2	62.2220	66.9780	71.5450	ha	1	HEM	0.197664
57	HBC1	51.6570	63.3700	71.0870	ha	1	HEM	0.187462
58	HBC2	53.0520	63.8020	71.9180	ha	1	HEM	0.187462
59	HBA1	58.5800	69.6100	61.7520	hc	1	HEM	0.046864
60	HBA2	57.2930	68.7460	61.9230	hc	1	HEM	0.046864
61	HAA1	58.6210	66.8410	61.1520	hc	1	HEM	0.044499
62	HAA2	59.8760	67.7490	61.3290	hc	1	HEM	0.044499
63	HBD1	52.5180	66.8580	62.2580	hc	1	HEM	-0.005904
64	HBD2	52.6610	66.1870	60.8580	hc	1	HEM	-0.005904
65	HAD1	53.1980	64.4960	62.2180	hc	1	HEM	0.022799
66	HAD2	54.6060	65.0180	61.7970	hc	1	HEM	0.022799
67	HHA	56.4760	66.2540	62.5430	ha	1	HEM	0.159129
68	HHB	61.0020	68.1360	66.2970	ha	1	HEM	0.148531
69	HHC	57.5700	66.7530	71.1840	ha	1	HEM	0.110019
70	HHD	53.1290	64.9300	67.4170	ha	1	HEM	0.111705
71	HAB	59.4790	68.0760	71.9630	ha	1	HEM	0.129768
72	HAC	52.5180	64.4190	69.0410	ha	1	HEM	0.165550

@<TRIPOS>BOND 1 1 5 1

\perp	T	5	T	
2	1	32	1	
3	1	67	1	
4	2	8	1	
5	2	15	1	
6	2	68	1	
7	3	18	1	
8	3	22	1	
9	3	69	1	
10	4	25	1	
11	4	29	1	
12	4	70	1	
13	5	6	1	
14	5	39	1	
15	6	7	1	
16	6	10	1	
17	7	8	1	
18	7	9	1	
19	8	39	1	
20	9	43	1	
21	9	44	1	
22	9	45	1	
23	10	11	1	
24	10	61	1	
25	10	62	1	
26	11	12	1	
27	11	59	1	
28	11	60	1	
29	12	13	1	
30	12	14	1	
31	15	16	1	
32	15	40	1	
33	16	17	1	
34	16	19	1	
35	17	18	1	

36 37 38 39 40 42 43 44 56 47 48 951 52 34 56 78 961 62 64 66 66 76 89 70 72 72	17 18 19 19 20 21 22 23 24 25 26 26 27 27 28 29 20 31 32 33 34 34 35 55	20 40 44 47 55 21 22 24 55 21 22 21 55 21 22 21 55 21 20 21 20 22 21 22 21 22 21 23 22 21 20 21 20 21 21 22 21 23 22 21 20 21 20 21 20 21 21 23 22 21 20 21 21 23 22 23 23 24 23 24 23 24 23 24 23 24 23 25 24 25 25 25 25 25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
70 71	34 34	65 66	1 1	
72	35	36	1	
73	35	63	1	
74	35	64 27	1	
75	30 36	37 38	⊥ 1	
@ <tripos></tripos>	SUBS	rru(- CTUI	RE
1 HE	M		1	TEMP

0 **** **** 0 ROOT

(b) HEME proximal histidine ligand coordinates and atomic charges

His78.mol2

@ <tripo< th=""><th>S>MOLE</th><th>CULE</th><th></th><th></th><th></th><th></th><th></th><th></th></tripo<>	S>MOLE	CULE						
HD3								
17	17	1	0	0				
SMALL								
RESP Cha	arge							
@ <tripo< td=""><td>S>ATOM</td><td>I</td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<>	S>ATOM	I						
1	Ν		55.2010	74.0280	65.4910	Ν	1 HD3	-0.415700
2	Н		54.4690	73.8790	65.0650	Н	1 HD3	0.235973
3	CA		55.9850	72.8320	65.7720	CX	1 HD3	0.018800
4	HA		56.2340	72.8430	66.7090	H1	1 HD3	0.056284
5	СВ		55.1420	71.5730	65.5280	СТ	1 HD3	0.082654
6	HB2		54.2330	71.7390	65.8230	HC	1 HD3	0.035925
7	HB3		55.1030	71.3980	64.5750	HC	1 HD3	0.035925
8	CG		55.6730	70.3480	66.2320	CC	1 HD3	-0.172662
9	ND1		55.4930	70.0840	67.5890	NA	1 HD3	-0.192872
10	HD1		55.1160	70.5950	68.1690	Н	1 HD3	0.329990
11	CE1		56.0260	68.8700	67.8090	CR	1 HD3	-0.034138
12	HE1		56.0320	68.4340	68.6300	Н5	1 HD3	0.083349
13	NE2		56.5490	68.3760	66.6750	Y1	1 HD3	-0.014437
14	CD2		56.3410	69.2980	65.6670	CV	1 HD3	-0.005823
15	HD2		56.6040	69.2190	64.7780	Н4	1 HD3	0.159459
16	С		57.2920	72.8160	64.9870	С	1 HD3	0.597300
17	0		58.3470	72.7770	65.6090	0	1 HD3	-0.567900
@ <tripo:< td=""><td>S>BOND</td><td>)</td><td></td><td></td><td></td><td></td><td></td><td></td></tripo:<>	S>BOND)						
1	1	21						
2	1	31						
3	3	4 I						
4	3	5 L						
5	3	10 1						
07	5	0 I 7 1						
8	5	9 1						
9	2 Q	0 I 9 1						
10	8	14 1						
11	9	10 1						
12	9	11 1						
13	11	12 1						
14	11	13 1						
15	13	14 1						
16	14	15 1						
17	16	17 1						
@ <tripo< td=""><td>S>SUBS</td><td>TRUCT</td><td>URE</td><td></td><td></td><td></td><td></td><td></td></tripo<>	S>SUBS	TRUCT	URE					
1 1	HD3		1 TEMP		0 ****	* * * *	0 ROOT	

(c) HEME distal histidine ligand coordinates and atomic charges

His173.mol2

@ <tripo< th=""><th>S>MOLE</th><th>CULE</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tripo<>	S>MOLE	CULE							
HD4 17 SMALL RESP Ch	17 arge	1	0	0					
@ <tripo< td=""><td>S>ATOM</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<>	S>ATOM								
1	N		58.4080	59.0740	68.6040	Ν	1	HD4	-0.415700
2	Н		58.1220	58.7250	67.8720	Н	1	HD4	0.228349
3	CA		58.3640	60.5340	68.5970	CX	1	HD4	0.018800
4	HA		59.2630	60.8110	68.8350	H1	1	HD4	0.074433
5	СВ		58.0100	61.1030	67.2150	СТ	1	HD4	0.048962
6	HB2		58.6540	60.7720	66.5700	HC	1	HD4	0.034786
7	HB3		57.1420	60.7590	66.9520	HC	1	HD4	0.034786
8	CG		57.9760	62.6190	67.1310	CC	1	HD4	-0.116106
9	ND1		59.0670	63.4650	67.3120	NA	1	HD4	-0.223384
1 U	HDI OF1		59.8/80	63.2330	67.4780	H	1	HD4	0.336/86
12	UEI UE1		50.6010	64./120	67.2690	UK US	⊥ 1	HD4 UD4	-0.009107
13	NE2		57 2840	64 6910	66 8870	11J V2	1	HD4 HD1	0.130437
14			56 8650	63 3740	66 8620	CV	1	пра нра	-0 124850
15	HD2		56 0040	63 0640	66 6960	Н4	1	HD4	0 152567
16	C		57.3820	61.0980	69.6230	С	1	HD4	0.597300
17	0		57.6140	62.1550	70.2020	0	1	HD4	-0.567900
@ <tripo< td=""><td>S>BOND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<>	S>BOND								
1	1	2 1	L						
2	1	3 1	L						
3	3	4 1	L						
4	3	5 1	L						
5	3	16 1	L						
6	5	6 1	L						
./	5	7 1	<u>_</u>						
8	5	8 1	<u>_</u>						
10	8	9 1	L						
1 U	ð	10 1	<u>_</u>						
12	9	11 1	<u>-</u>						
13	11	12 1	-						
14	⊥⊥ 11	13 1	<u>-</u>						
15	13	14 1	-						
16	14	15 1	-						
17	16	17 1	-						
@ <tripo< td=""><td>S>SUBS</td><td>TRUCI</td><td>TURE</td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<>	S>SUBS	TRUCI	TURE						
1 1	HD4		1 TEMP		0 ****	* * * *	0 RC	TOC	

(d) [2FE-2S] cluster proximal histidine ligand coordinates and atomic charges

His320.mol2

@ <tripo< th=""><th>S>MOLE</th><th>CULE</th><th></th><th></th><th></th><th></th><th></th><th></th></tripo<>	S>MOLE	CULE						
HEZ 17 SMALL	17	1	0	0				
RESP Cha	arge							
@ <tripo< td=""><td>S>ATOM</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<>	S>ATOM							
1	Ν		76.6730	60.4870	51.0020	Ν	1 HE2	-0.415700
2	H		76.4680	59.6910	50.7480	H	1 HE2	0.263227
3	CA		78.0730	60.6/10 61 5640	51.2/60	CX	L HEZ	-0.058100
4 5	пА СР		78.6600	61.3640 59.8310	52 3950	пі Ст	1 NEZ 1 NE2	-0 005376
5	HB2		78.7920	58 9110	52.3930	НС	1 HE2	0 059976
7	HB3		79.5240	60.1690	52.6770	HC	1 HE2	0.059976
8	CG		77.6500	59.9330	53.4880	CC	1 HE2	0.130370
9	ND1		76.5060	59.1620	53.4310	Z 4	1 HE2	-0.382996
10	CE1		75.7900	59.4580	54.5470	CR	1 HE2	-0.021464
11	HE1		74.9690	59.0730	54.7530	Н5	1 HE2	0.155613
12	NE2		76.3940	60.3570	55.3070	NA	1 HE2	-0.148993
13	HE2		76.1180	60.6840	56.0530	H	1 HE2	0.327309
14	CDZ UD2		78 2090	60.6560	54.0300	CW UA	L HEZ 1 up2	-0.200/40
16	пDZ С		78.2090	60 7970	50 0760	С	1 HE2	0.103024
17	0		80.1690	60.5950	50.2030	0	1 HE2	-0.567900
@ <tripo< td=""><td>S>BOND</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></tripo<>	S>BOND					-		
1	1	2 1						
2	1	31						
3	3	4 1						
4	3	5 1						
5	3 5							
0 7	5	7 1						
8	5	8 1						
9	8	91						
10	8	14 1						
11	9	10 1						
12	10	11 1						
1J 17	10 12	12 1						
14 15	⊥∠ 12	14 1						
16	14	1.5 1						
17	16	17 1						
@ <tripo< td=""><td>S>SUBS'</td><td>TRUCT</td><td>URE</td><td></td><td></td><td></td><td></td><td></td></tripo<>	S>SUBS'	TRUCT	URE					
1 1	HE2		1 TEMP		0 ****	**** () ROOT	

(e) [2FE-2S] cluster distal histidine ligand coordinates and atomic charges

His301.mol2

@ <tripo HE1</tripo 	S>MOLE	CULE								
17 SMALL RESP Cha	17 arge	1		0	0					
@ <trtpo:< td=""><td>ς>ατομ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></trtpo:<>	ς>ατομ									
1	N		7	6.9840	52,1080	51,4450	N	1	HE1	-0.415700
2	Н		7	6.9200	52.5150	50.5930	Н	1	HE1	0.325555
3	CA		7	7.2400	52.6660	52.4610	CX	1	HE1	-0.058100
4	HA		7	8.0560	52.1390	52.9350	H1	1	HE1	0.038670
5	СВ		7	7.5370	54.0500	51.9540	СТ	1	HE1	0.080741
6	HB2		7	8.3760	54.0220	51.2350	HC	1	HE1	-0.027235
7	HB3		7	6.6270	54.3380	51.4260	HC	1	HE1	-0.027235
8	CG		7	7.7700	55.1340	52.9230	CC	1	HE1	0.082017
9	ND1		7	7.1630	55.4180	54.1410	Ζ2	1	HE1	-0.454443
10	CE1		7	7.7440	56.4410	54.6630	CR	1	HE1	0.089071
11	HE1		7	7.5230	56.9120	55.6000	Н5	1	HE1	0.115415
12	NE2		7	/8.5580	56.9320	53.6630	NA	1	HE1	-0.082129
13	HE2		1	9.3430	57.6740	53.8690	H	1	HE1	0.212982
14	CD2		/	8.5950	56.0/30	52.6800	CW	1	HEL UD1	-0.0/9996
15	HDZ		/	9.1690	56.1450	51.8220	H4	1	HEL UD1	0.1904/6
10 17	0		-	5 7200	52.628U	53.3380	0	1	러뜨니 니다1	-0.567900
			/	J.1200	JI.0JJ0	55.9900	0	T	пет	-0.307900
evinieu. 1	37BOND 1	2	1							
2	1	3	1							
3	3	4	1							
4	3	5	1							
5	3	16	1							
6	5	6	1							
7	5	7	1							
8	5	8	1							
9	8	9	1							
10	8	14	1							
11	9	10	1							
12	10		⊥ 1							
1J	10 10	⊥∠ 1 ⊃	⊥ 1							
1 L 4	⊥∠ 1 ⊃	1J	⊥ 1							
15 16	⊥∠ 1 /	⊥4 1 ⊑	⊥ 1							
±0 17	16	17	⊥ 1							
@ <trtpo:< td=""><td>S>SUBS</td><td>TRUC</td><td>- नाग्र</td><td>₹E</td><td></td><td></td><td></td><td></td><td></td><td></td></trtpo:<>	S>SUBS	TRUC	- नाग्र	₹E						
1	HE1		1	TEMP		0 ****	* * * *	0 R	.OOT	

(f) [2FE-2S] cluster proximal cysteine ligand coordinates and atomic charges

Cys317.mol2

Q <tripos< th=""><th>S>MOLE(</th><th>CULE</th><th></th><th></th><th></th><th></th><th></th><th></th></tripos<>	S>MOLE(CULE						
10	9	1	0	0				
SMAT.T.	2	1	0	0				
RESP Cha	arae							
	arge							
@ <tripos< td=""><td>S>ATOM</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripos<>	S>ATOM							
1	N		73.2370	51,9060	47,9180	N	1 CX1	-0.415700
2	Н		72.7060	52.5760	48.0110	Н	1 CX1	0.267345
3	CA		74.6370	52.1740	48.1270	CX	1 CX1	0.042900
4	HA		75.0900	51.7480	47.3830	Н1	1 CX1	0.028004
5	СВ		75.1250	53.6340	47.9420	2C	1 CX1	0.147741
6	HB2		76.0690	53.6020	47.7190	H1	1 CX1	-0.056234
7	нв3		74.6640	54.0020	47.1720	H1	1 CX1	-0.056234
8	SG		74.9250	54.8020	49.3090	Y7	1 CX1	-0.276273
9	С		75.0760	51.5540	49.4170	С	1 CX1	0.597300
10	0		74.4540	51.7120	50.4670	0	1 CX1	-0.567900
@ <tripos< td=""><td>S>BOND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripos<>	S>BOND							
1	1	2 1						
2	1	31						
3	3	4 1						
4	3	5 1						
5	3	91						
6	5	6 1						
7	5	7 1						
8	5	8 1						
9	9	10 1						
@ <tripos< td=""><td>S>SUBSI</td><td>TRUCT</td><td>URE</td><td></td><td></td><td></td><td></td><td></td></tripos<>	S>SUBSI	TRUCT	URE					
1 (CX1		1 TEMP		0 ****	* * * *	0 ROOT	

(g) [2FE-2S] cluster distal cysteine ligand coordinates and atomic charges

Cys299.mol2

@ <tripc< th=""><th>)S>MOLE(</th><th>CULE</th><th></th><th></th><th></th><th></th><th></th><th></th></tripc<>)S>MOLE(CULE						
CXZ	0	1	0	0				
LU	9	T	U	0				
SMALL								
RESP Cr	large							
@ <tripc< td=""><td>S>ATOM</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripc<>	S>ATOM							
1	. N		76.1250	58.5360	44.7370	Ν	1 CX2	-0.415700
2	2 H		76.9360	58.3270	44.9330	Н	1 CX2	0.247913
3	B CA		75.2200	58.5520	45.8390	CX	1 CX2	0.042900
4	l HA		74.2890	58.5170	45.5690	H1	1 CX2	0.028474
5	5 CB		75.4370	57.3240	46.6870	2C	1 CX2	-0.023435
6	5 HB2		75.4190	56.5340	46.1240	H1	1 CX2	0.098355
7	/ HB3		76.3170	57.3620	47.0940	H1	1 CX2	0.098355
8	3 SG		74.1830	57.1740	47.9760	Y8	1 CX2	-0.454266
ç	C		75.4600	59.8410	46.5610	С	1 CX2	0.597300
10) ()		76.5310	60.0950	47.1120	0	1 CX2	-0.567900
@ <tripc< td=""><td>)S>BOND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripc<>)S>BOND							
1	1	2 1						
2	1	31						
3	3	4 1						
4	3	5 1						
5	3	91						
6	5	6 1						
7	5	7 1						
8	5	8 1						
9	9	10 1						
@ <tripc< td=""><td>S>SUBS</td><td>TRUCT</td><td>URE</td><td></td><td></td><td></td><td></td><td></td></tripc<>	S>SUBS	TRUCT	URE					
1	CX2		1 TEMP		0 ****	* * * *	0 ROOT	

MASS M1 55.85 M2 55.85 M3 55.85 Y1 14.01 Y2 14.01 Y7 32.06 Z2 14.01 Y8 32.06 Z4 14.01 Y3 14.01 Y4 14.01 Y5 14.01 Y5 14.01 Y6 14.01 Z1 32.060 Z3 32.060	0.530 0.530 2.900 0.530 2.900 0.530 0.530 0.530 0.530 0.530 2.900 2.900	Fe ion Fe ion Fe ion sp2 N in 5 memb.ring w/LP (HIS,ADE,GUA) sp2 N in 5 memb.ring w/LP (HIS,ADE,GUA) S in disulfide linkage,pol:JPC,102,2399,98 sp2 N in 5 memb.ring w/LP (HIS,ADE,GUA) S in disulfide linkage,pol:JPC,102,2399,98 sp2 N in 5 memb.ring w/LP (HIS,ADE,GUA) Sp2 N in non-pure aromatic systems, identical Sp2 N in non-pure aromatic systems, identical same as s same as s
BOND M2-Z1 139.7 M2-Z3 125.7 M3-Z1 52.8 M3-Z3 76.5 Y1-M1 42.7 Y2-M1 43.0 Y3-M1 55.9 Y4-M1 44.2 Y5-M1 46.2 Y6-M1 64.2 Y7-M2 131.0 Y8-M2 118.6 Z2-M3 32.8 Z4-M3 74.0 2C-Y7 227.0 2C-Y8 227.0 CC-Z2 410.0 CC-Z4 410.0 CR-Y1 488.0 CR-Y2 488.0 Y1-CV 410.0 Y2-CV 410.0 Z2-CR 488.0 Z4-CR 488.0 Z4-CR 488.0 CC-Y3 525.4 cC-Y6 525.4 cC-Y6 525.4 cd-Y3 441.1 cd-Y6 441.1	2.1207 2.1429 2.3568 2.2768 2.0205 2.0146 2.0251 2.0251 2.0276 2.0276 2.0069 2.1410 2.1544 2.2053 1.9660 1.8100 1.394 1.394 1.335 1.335 1.335 1.335 1.335 1.335 1.335 1.3172 1.3172 1.3172 1.3172 1.3172 1.3694 1.3694 1.3694 1.3694	Created by Seminario method using MCPB.py Created by Seminario method using MCPB.py Source3_SOURCES 4612 0.0083 SOURCE3_SOURCES 4612 0.0083 SOURCE3_SOURCES 4612 0.0083 SOURCE1_SOURCES 2269 0.0086 SOURCE1_SOURCES 2269 0.0086 SOURCE1_SOURCES 2269 0.0086
ANGLE 2C-SG1-FE2 11 2C-SG2-FE2 11	3.72 4.44	105.40 Created by Seminario method using MCPB.py 108.29 Created by Seminario method using MCPB.py

REMARK GOES HERE, THIS FILE IS GENERATED BY MCPB.PY

CC-ND1-FE3	27.74	75.99	Created	by	Seminario	method	using	МСРВ.ру
CC-NDI-FE3	111.09	131.96	Created	by	Seminario	method	using	MCPB.py
CR-NE2-FE1	104.90	125.70	Created	by	Seminario	method	using	MCPB.py
CR-NE2-FE1	116.43	125.74	Created	by	Seminario	method	using	MCPB.py
FE1-NE2-CV	100.14	127.65	Created	bv	Seminario	method	usina	MCPB.pv
FE1-NE2-CV	116.63	127.90	Created	bv	Seminario	method	using	MCPB.pv
FE2-S1-FE3	47.73	82.71	Created	bv	Seminario	method	using	MCPB.pv
FE2-S2-FE3	59 04	84 16	Created	hv	Seminario	method	using	MCPB py
FE3-ND1-CR	0 00	64 27	Created	by	Seminario	method	using	MCPB py
FE2_ND1_CD	112 04	120 57	Created	by	Sominario	mothod	using	MCDB py
NEO EE1 NEO	160 21	170.07	Created	by	Seminario	method	using	MCPB.py
NEZ-FEI-NEZ	124 50	170.29 01 42	Created	by	Seminario	method	using	MCPB.py
NEZ-FEI-NA	134.59	91.43	Created	by	Seminario		using	мсрв.ру
NEZ-FEI-NB	139.06	91.23	Created	ру	Seminario	method	using	мсрв.ру
NEZ-FEI-NC	127.35	91.04	Created	ру	Seminario	method	using	мсрв.ру
NE2-FE1-ND	134.33	87.49	Created	by	Seminario	method	using	МСРВ.ру
NE2-FE1-NA	118.97	88.52	Created	by	Seminario	method	using	МСРВ.ру
NE2-FE1-NB	130.18	90.49	Created	by	Seminario	method	using	МСРВ.ру
NE2-FE1-NC	116.87	89.01	Created	by	Seminario	method	using	МСРВ.ру
NE2-FE1-ND	126.00	90.80	Created	by	Seminario	method	using	МСРВ.ру
NA-FE1-NB	148.86	90.13	Created	by	Seminario	${\tt method}$	using	МСРВ.ру
NA-FE1-NC	98.29	177.53	Created	by	Seminario	method	using	MCPB.py
NA-FE1-ND	141.95	90.05	Created	by	Seminario	method	using	MCPB.py
NB-FE1-NC	132.38	89.77	Created	by	Seminario	method	using	MCPB.py
NB-FE1-ND	120.06	178.71	Created	by	Seminario	method	using	MCPB.py
NC-FE1-ND	130.63	90.11	Created	bv	Seminario	method	usina	MCPB.pv
SG1-FE2-SG2	71.89	112.81	Created	bv	Seminario	method	using	MCPB.pv
SG1-FE2-S1	62.87	118.90	Created	bv	Seminario	method	using	MCPB.pv
SG1-FE2-S2	49.14	102.83	Created	bv	Seminario	method	using	MCPB.pv
SG2-FE2-S1	57 34	110 40	Created	bv	Seminario	method	using	MCPB py
SG2-FE2-S2	61 01	109 01	Created	bv	Seminario	method	using	MCPB py
ND1-FE3-S1	9 62	147 65	Created	hv	Seminario	method	using	MCPB by
ND1-FE3-S2	40 97	97.83	Created	by	Seminario	method	using	MCPB by
ND1-FE3-ND1	23 70	114 21	Created	by	Seminario	method	using	MCPB py
92_FF2_91	16 25	101 55	Created	by	Sominario	mothod	using	MCDB py
32 - FE2 - 51	40.25	101.00	Created	by	Seminario	mothod	using	MCPB.py
SZ-FES-SI ND1 EE2 01	93.40	90.92	Created	by	Seminario	method	using	MCPB.py
NDI-FES-SI	64.03 FF 17	95.01 05.02	Created	by	Seminario	method	using	MCPB.py
NDI-FE3-52	55.17	95.03	Created	by ,	Seminario	method	using	мсрв.ру
CC-NA-FEI	144.34	127.03	Created	by	Seminario	method	using	мсрв.ру
CC-NB-FEI	132.43	126.78	Created	by	Seminario	method	using	мсрв.ру
cc-NC-FE1	139.16	127.11	Created	by	Seminario	method	using	МСРВ.ру
cc-ND-FE1	154.01	126.94	Created	by	Seminario	method	using	МСРВ.ру
cd-NA-FE1	138.95	127.38	Created	by	Seminario	method	using	МСРВ.ру
cd-NB-FE1	133.72	127.36	Created	by	Seminario	method	using	МСРВ.ру
cd-NC-FE1	138.87	126.95	Created	by	Seminario	method	using	МСРВ.ру
cd-ND-FE1	149.99	126.74	Created	by	Seminario	method	using	МСРВ.ру
CC-CV-Y1	70.0	120.00	AA his					
CC-CV-Y2	70.0	120.00	AA his					
CC-Z2-CR	70.0	117.00	AA his					
CC-Z4-CR	70.0	117.00	AA his					
CR-Y1-CV	70.0	117.00	AA his					
CR-Y2-CV	70.0	117.00	AA his					
CT-CC-Z2	70.0	120.00	AA his					
CT-CC-Z4	70.0	120.00	AA his					
CW-CC-Z2	70.0	120.00	AA his					
CW-CC-Z4	70.0	120.00	AA his					
CX-2C-SG1	50.0	114.70	~					
CX-2C-Y8	50.0	114.70						
NA-CR-Y1	70 0	120 00	AA his					
NA-CR-Y?	70 0	120.00	AA hie					
Y1-CR-H5	50 0	120.00	AA hie					
тт ск по v1_сv_ц/	50.0	120.00	AD his					
$V^2 - CD - U5$	50.0	120.00	AA IIIS					
	JU.U		$\nabla \nabla$ $\Pi \mp \Im$					

Y2-CV-H4	50.0	120.00	AA his				
Y3-cc-cc	71.57	112.56			SOURCE3	141	4.2871
Y4-cc-cc	71.57	112.56			SOURCE3	141	4.2871
Y5-cc-cc	71.57	112.56			SOURCE3	141	4.2871
Y6-cc-cc	71.57	112.56			SOURCE3	141	4.2871
SG1-2C-H1	50 0	109 50					
V8-2C-H1	50 0	109.50					
72_CD_U5	50.0	120 00	NN hia				
ZZ-CR-HJ	50.0	120.00	AA HIS				
ZZ-CR-NA	70.0	120.00	AA his				
Z4-CR-H5	50.0	120.00	AA his				
Z4-CR-NA	70.0	120.00	AA his				
cc-Y3-cd	71.76	105.49		CORR	SOURCE5	1810	1.9032
cc-Y4-cd	71.76	105.49		CORR	SOURCE5	1810	1.9032
cc-Y5-cd	71.76	105.49		CORR	SOURCE5	1810	1.9032
cc-Y6-cd	71.76	105.49		CORR	SOURCE5	1810	1.9032
cd-cd-Y3	67 63	121 98		CORR	SOURCES	141	1 9633
cd-cd-Y4	67 63	121 98		CORR	SOURCES	1 4 1	1 9633
cd_cd_V5	67.63	121.00		CORR	SOURCES	1/1	1 0622
cu-cu-rj	07.03	121.90		CORR	_SOURCES	141	1.9055
ca-ca-16	67.63	121.98		CORR	SOURCES	141	1.9633
ce-cc-Y3	68.07	121.70		CORR	_SOURCE5	58	1.4179
ce-cc-Y4	68.07	121.70		CORR	_SOURCE5	58	1.4179
ce-cc-Y5	68.07	121.70		CORR	SOURCE5	58	1.4179
ce-cc-Y6	68.07	121.70		CORR	SOURCE5	58	1.4179
ce-cd-Y3	68.67	123.98	S	OURCE4	SOURCE5	10	2.4097
ce-cd-Y4	68.67	123.98	S	OURCE4	SOURCE5	10	2.4097
ce-cd-Y5	68 67	123 98	S	OURCE4	SOURCES	10	2 4097
ce-cd-V6	68 67	123.90	S	OURCEA	SOURCES	10	2 /097
ce cu io	00.07	123.90		- CONCEP	_SOORCES	ΞŪ	2.4057
DIUE							
DIHE	0	4 0	100 0	0 0			000
x -cc-z2-x	2	4.8	180.0	2.0	Ĺ	JCC, /, (1986)	,230
X -CC-Z4-X	2	4.8	180.0	2.0	, L	JCC,7,(1986)	,230
X -CR-Y1-X	2	10.0	180.0	2.0	, L	JCC,7,(1986)	,230
X -CR-Y2-X	2	10.0	180.0	2.0		JCC,7,(1986)	,230
X -CV-Y1-X	2	4.8	180.0	2.0		JCC,7,(1986)	,230
X -CV-Y2-X	2	4.8	180.0	2.0		JCC.7.(1986)	.230
X -72-CR-X	2	10 0	180 0	2 0		100.7.(1986)	.230
X -74-CR-X	2	10 0	180 0	2.0		TCC 7 (1986)	230
	2	10.0	100.0	2.0	atat		from normal
X -00-13-X	2	9.J	100.0	2.0	Stat	listic value	from parm94
X -CC-14-X	2	9.5	180.0	2.0	stat	istic value	from parm94
X -cc-Y5-X	2	9.5	180.0	2.0	stat	cistic value	from parm94
X -cc-Y6-X	2	9.5	180.0	2.0	stat	cistic value	from parm94
X -cd-Y3-X	2	9.5	180.0	2.0	stat	cistiv value	from parm94
X -cd-Y4-X	2	9.5	180.0	2.0	stat	cistiv value	from parm94
X -cd-Y5-X	2	9.5	180.0	2.0	stat	cistiv value	from parm94
X -cd-Y6-X	2	9.5	180.0	2.0	stat	cistiv value	from parm94
2C-SG1-M2-Y	78 3	0.00	0.00	3.0	Treat	as zero bv	MCPB.vv
2C-SG1-M2-7	21 3	0 00	0 00	3 0	Treat	as zero by	MCPR ny
2C-SC1-M2-7	7 7 7 7 7 7 7	0.00	0.00	3 0	Treat	as zero by	MCPB ny
20 VO M2 71	2	0.00	0.00	2.0	Treat	as zero by	MCDD py
2C-10-M2-21		0.00	0.00	5.0	Ireat	as zero by	мсгв.ру
2C-18-M2-23	3 3	0.00	0.00	3.0	Treat	as zero by	мсрв.ру
C - CX - 2C - SG	51 1	0.278	0.0	-4.0	C-C		
C -CX-2C-SG	G1 1	0.323	0.0	-3.0			
C -CX-2C-SG	G1 1	0.394	180.0	-2.0			
C -CX-2C-SG	51 1	0.602	0.0	1.0			
С -СХ-2С-У8	3 1	0.278	0.0	-4.0	C-C		
C -CX-2C-Y8	3 1	0.323	0.0	-3.0			
C = CX = 2C = YR	3 1	0 394	180 0	-2 0			
C -CX-3C-V8	· <u>+</u> { 1	0 602	100.0	1 0			
$C = C T = V^{1} M^{1}$, <u> </u>	0.002		2 ∩ 1.0	Tran t	ac zara h	MODE no
	. 3	0.00	0.00	3.0	Ireat	as zero by	MCDD
CC-CV-YZ-MI	- 3	0.00	0.00	3.0	Ireat	as zero by	мсгв.ру
CC-Z2-M3-Z1	_ 3	0.00	0.00	3.0	'I'reat	as zero by	мсгв.ру
CC-Z2-M3-Z3	3 3	0.00	0.00	3.0	Treat	as zero by	МСРВ.ру

CC-Z2-M3-Z4	3	0.00	0.00	3.0	Treat	as	zero	by	МСРВ.ру
CC-Z4-M3-Z1	3	0.00	0.00	3.0	Treat	as	zero	by	МСРВ.ру
CC-Z4-M3-Z3	3	0.00	0.00	3.0	Treat	as	zero	by	МСРВ.ру
CR-Y1-M1-Y2	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
CR-Y1-M1-Y3	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
CR-Y1-M1-Y4	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
CR-Y1-M1-Y5	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
CR-Y1-M1-Y6	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
CR-Y2-M1-Y3	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
CR-Y2-M1-Y4	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
CR-Y2-M1-Y5	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
CR-Y2-M1-Y6	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
CT-CC-Z2-M3	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
CT-CC-Z4-M3	3	0.00	0.00	3.0	Treat	as	zero	bv	MCPB.pv
CW-CC-Z2-M3	3	0.00	0.00	3.0	Treat	as	zero	bv	MCPB.pv
CW-CC-Z4-M3	3	0.00	0.00	3.0	Treat	as	zero	bv	MCPB.pv
СХ-2С-Ү7-М2	3	0.00	0.00	3.0	Treat	as	zero	bv	MCPB.pv
СХ-2С-Ү8-М2	3	0.00	0.00	3.0	Treat	as	zero	bv	MCPB.pv
CX-CT-CC-Z2	1	0.047	180.0	-4.0				- 1	1 1
CX-CT-CC-72	1	0.74	0.0	-3.0					
CX-CT-CC-72	1	0.204	0.0	-2.0					
CX-CT-CC-72	1	0 69	0 0	1 0					
CX-CT-CC-Z4	1	0 047	180 0	-4 0					
CX-CT-CC-Z4	1	0 74	0.0	-3 0					
CX-CT-CC-Z4	1	0 204	0.0	-2 0					
CX - CT - CC - 7.4	1	0.204	0.0	1 0					
M1-V1-CR-H5	.⊥ 	0.00	0.0	3 0	Treat	29	zoro	hv	MCPB ny
M1 = V1 = CV = HA	3	0.00	0.00	3.0	Treat	20	Zero	by	MCPB DV
M1_V2_CD_U5	3	0.00	0.00	3 0	Treat	25	zoro	by	MCPR py
M1 - V2 - CV - UA	3	0.00	0.00	3.0	Treat	25	zero	by	MCPB py
M1-12-CV-II4	2	0.00	0.00	2.0	Treat	a5 29	Zero	by	MCPB py
M1-13-00-00	2	0.00	0.00	3.0	Treat	as	Zero	by	MCPB.py
M1 - 14 - CC - CC	с С	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
MI-15-CC-CC	3	0.00	0.00	3.0	Treat	as	zero	by	мсрв.ру
MI-16-CC-CC	3	0.00	0.00	3.0	Treat	as	zero	by	мсрв.ру
M2-Y/-2C-H1	3	0.00	0.00	3.0	Treat	as	zero	by '	мсрв.ру
MZ-18-ZC-HI	3	0.00	0.00	3.0	Treat	as	zero	by '	мсрв.ру
MZ-ZI-M3-Z3	3	0.00	0.00	3.0	Treat	as	zero	by	мсрв.ру
M2-Z3-M3-Z1	3	0.00	0.00	3.0	Treat	as	zero	by	мсрв.ру
M3-Z2-CR-H5	3	0.00	0.00	3.0	Treat	as	zero	by	мсрв.ру
M3-ZZ-CR-NA	3	0.00	0.00	3.0	Treat	as	zero	by	мсрв.ру
M3-Z3-M2-Z1	3	0.00	0.00	3.0	Treat	as	zero	by	мсрв.ру
M3-Z4-CR-H5	3	0.00	0.00	3.0	Treat	as	zero	by	мсрв.ру
M3-Z4-CR-NA	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
N - CX - 2C - Y/	1	0.064	0.0	-4.0					
N -CX-2C-Y7	1	0.323	0.0	-3.0					
N -CX-2C-Y/	1	0.021	180.0	-2.0					
N -CX-2C-Y'/	1	0.469	0.0	1.0					
N -CX-2C-Y8	1	0.064	0.0	-4.0					
N -CX-2C-Y8	1	0.323	0.0	-3.0					
N -CX-2C-Y8	1	0.021	180.0	-2.0					
N -CX-2C-Y8	1	0.469	0.0	1.0					
NA-CR-Y1-M1	3	0.00	0.00	3.0	Treat	as	zero	by	МСРВ.ру
NA-CR-Y2-M1	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
Y1-M1-Y2-CR	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
Y1-M1-Y2-CV	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
Y1-M1-Y3-cc	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
Y1-M1-Y3-cd	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
Y1-M1-Y4-cc	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
Y1-M1-Y4-cd	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
Y1-M1-Y5-cc	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
Y1-M1-Y5-cd	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py
Y1-M1-Y6-cc	3	0.00	0.00	3.0	Treat	as	zero	by	MCPB.py

Y1-M1-Y6-cd	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y2-M1-Y1-CV	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y2-M1-Y3-cc	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y2-M1-Y3-cd	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y2-M1-Y4-cc	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y2-M1-Y4-cd	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y2-M1-Y5-cc	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y2-M1-Y5-cd	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y2-M1-Y6-cc	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y2-M1-Y6-cd	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y3-M1-Y1-CV	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y3-M1-Y2-CV	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y4-M1-Y1-CV	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y4-M1-Y2-CV	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y4-cc-ce-cd	1	1.0	180.0	2.0	same as X -ce-ce-X
Y5-M1-Y1-CV	3	0.00	0.00	3.0	Treat as zero by MCPB.pv
$Y_{5-M1-Y_{2-CV}}$	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Y5-cc-ce-cd	1	1.0	180.0	2.0	same as X -ce-ce-X
Y6-M1-Y1-CV	3	0 00	0 00	3 0	Treat as zero by MCPB py
Y6-M1-Y2-CV	3	0.00	0 00	3 0	Treat as zero by MCPB by
V6-cc-ce-cd	1	1 0	180 0	2 0	same as X -co-co-X
V6-cd-ce-cc	1	1 0	180.0	2.0	
V7_M2_V8_2C	3	1.0	180.0	2.0	Troat as zoro by MCPR by
17 - M2 - 10 - 2C V7 - M2 - 71 - M2	2	0.00	0.00	2.0	Treat as zero by MCPB.py
17-M2-21-M3	5	0.00	0.00	2.0	Treat as zero by MCPB.py
1/-M2-23-M3	3	0.00	0.00	3.0	Treat as zero by MCPB.py
18-M2-21-M3	3	0.00	0.00	3.0	Treat as zero by MCPB.py
18-M2-23-M3	3	0.00	0.00	3.0	Treat as zero by MCPB.py
ZI-M3-ZZ-CR	3	0.00	0.00	3.0	Treat as zero by MCPB.py
ZI-M3-Z4-CR	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Z2-M3-Z1-M2	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Z2-M3-Z3-M2	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Z2-M3-Z4-CC	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Z2-M3-Z4-CR	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Z3-M2-Z1-M3	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Z3-M3-Z2-CR	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Z3-M3-Z4-CR	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Z4-M3-Z1-M2	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Z4-M3-Z2-CR	3	0.00	0.00	3.0	Treat as zero by MCPB.py
Z4-M3-Z3-M2	3	0.00	0.00	3.0	Treat as zero by MCPB.py
cc-Y3-M1-Y4	3	0.00	0.00	3.0	Treat as zero by MCPB.py
cc-Y3-M1-Y5	3	0.00	0.00	3.0	Treat as zero by MCPB.py
cc-Y3-M1-Y6	3	0.00	0.00	3.0	Treat as zero by MCPB.py
cc-Y4-M1-Y3	3	0.00	0.00	3.0	Treat as zero by MCPB.py
cc-Y4-M1-Y5	3	0.00	0.00	3.0	Treat as zero by MCPB.py
cc-Y4-M1-Y6	3	0.00	0.00	3.0	Treat as zero by MCPB.py
cc-Y5-M1-Y3	3	0.00	0.00	3.0	Treat as zero by MCPB.py
cc-Y5-M1-Y4	3	0.00	0.00	3.0	Treat as zero by MCPB.py
cc-Y5-M1-Y6	3	0.00	0.00	3.0	Treat as zero by MCPB.pv
cc-Y6-M1-Y3	3	0.00	0.00	3.0	Treat as zero by MCPB.pv
CC - Y6 - M1 - Y4	3	0.00	0.00	3.0	Treat as zero by MCPB.py
CC-Y6-M1-Y5	3	0 00	0 00	3 0	Treat as zero by MCPB by
cc-ce-cd-Y3	1	1 0	180 0	2 0	same as X -ce-ce-X
cc-ce-cd-V/	1	1 0	180.0	2.0	
cc ce cd 14	1	1 0	180.0	2.0	
cd - V3 - M1 - V4	3	1.0	180.0	2.0	Troat as zoro by MCPR by
$cd = V_3 = M_1 = V_5$	с С	0.00	0.00	3.0	Treat as zero by MCPB.py
d_{V}^{-M1}	с С	0.00	0.00	3.0	Treat as zero by MCrD.py
cu = 13 = M1 = 10	ン っ	0.00	0.00	J.U 2 0	Treat as zero by MCPB.py
CU = 14 - MI = 13	3	0.00	0.00	3.0	Treat as zero by MCPB.py
CU = 14 - MI = 15	3	0.00	0.00	3.0	Treat as zero by MCPB.py
cu = 14 - MI - Y6	3	0.00	0.00	3.0	Treat as zero by MCPB.py
ca-15-MI-Y3	3	0.00	0.00	3.0	Treat as zero by MCPB.py
cd-Y5-M1-Y4	3	0.00	0.00	3.0	Treat as zero by MCPB.py

cd-Y5-M1-Y6	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	.py		
cd-Y6-M1-Y3	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	.py		
cd-Y6-M1-Y4	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	.py		
cd-Y6-M1-Y5	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	.py		
cd-cd-Y3-M1	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	.py		
cd-cd-Y4-M1	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	.py		
cd-cd-Y5-M1	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	.py		
cd-cd-Y6-M1	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	.py		
cd-ce-cc-Y3	1	1.0	180.0	2.0	same as	X -c	e-ce-X			
ce-cc-Y3-M1	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	•ру		
ce-cc-Y4-M1	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	•ру		
ce-cc-Y5-M1	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	•ру		
ce-cc-Y6-M1	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	•ру		
ce-cd-Y3-M1	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	•ру		
ce-cd-Y4-M1	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	•ру		
ce-cd-Y5-M1	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	•ру		
ce-cd-Y6-M1	3	0.00	0.00	3.0	Treat as z	zero	by MCPB	•ру		
ha-ce-cc-Y3	1	1.0	180.0	2.0	same as	Х -с	e-ce-X			
ha-ce-cc-Y4	1	1.0	180.0	2.0	same as	Х -с	e-ce-X			
ha-ce-cc-Y5	1	1.0	180.0	2.0	same as	Х -с	e-ce-X			
ha-ce-cc-Y6	1	1.0	180.0	2.0	same as	Х -с	e-ce-X			
ha-ce-cd-Y3	1	1.0	180.0	2.0	same as	Х -с	e-ce-X			
ha-ce-cd-Y4	1	1.0	180.0	2.0	same as	Х -с	e-ce-X			
ha-ce-cd-Y5	1	1.0	180.0	2.0	same as	Х -с	e-ce-X			
ha-ce-cd-Y6	1	1.0	180.0	2.0	same as	Х -с	e-ce-X			
IMPR										
CT-CW-CC-Z2	1	.1	180.		2.					
Y3-cd-cd-ce	1	.1	180.0		2.0	Us	ing def	ault	z va	lue
Y4-cd-cd-ce	1	.1	180.0		2.0	Us	ing def	ault	z va	lue
CT-CW-CC-Z4	1	.1	180.		2.					
Y6-cc-cc-ce	1	.1	180.0		2.0	Us	ing def	ault	z va	lue
Y6-cd-cd-ce	1	.1	180.0		2.0	Us	ing def	ault	z va	lue
Y4-cc-cc-ce	1	.1	180.0		2.0	Us	ing def	ault	z va	lue
Y5-cd-cd-ce	1	.1	180.0		2.0	Us	ing def	ault	z va	lue
Y5-cc-cc-ce	1	.1	180.0		2.0	Us	ing def	ault	z va	lue
Y3-cc-cc-ce	1	.1	180.0		2.0	Us	ing def	ault	va.	lue
NONB										
M1	1.4090	0.017210	0000	IOD s	set for Fe2+	ion	from Li	et	al.	2013
M2	1.4090	0.017210	0000	IOD s	set for Fe2+	ion	from Li	et	al.	2013
МЗ	1.4090	0.017210	0000	IOD s	set for Fe2+	ion	from Li	et	al.	2013
Y1	1.8240	0.1700		OPLS						
Υ2	1.8240	0.1700		OPLS						
Y7	2.0000	0.2500		W. Co	ornell CH3SH	and	CH3SCH3	FEF	's	
Z2	1.8240	0.1700		OPLS						
Υ8	2.0000	0.2500		W. Co	ornell CH3SH	and	CH3SCH3	FEF	's	
Z 4	1.8240	0.1700		OPLS						
YЗ	1.8240	0.1700		OPLS						
Y4	1.8240	0.1700		OPLS						
Y5	1.8240	0.1700		OPLS						
Y6	1.8240	0.1700		OPLS						
Z1	2.0000	0.2500		same	as s					
Z3	2.0000	0.2500		same	as s					

Table S5: Derived metal force-field parameters. Comparison of Fe^{2+} bond distance (between Fe^{2+} metal and its interacting residues) among template structure, force field parameters and post-MD (**A**) Heme bL and (**B**) [2FE-2S] cluster located in both PfCytb and ISP chains, respectively.

Α	Bond distance (Å): Heme bL								
	Template	QM derived	Force constants	Post-MD					
	(1PP9)	parameters	(kcal/ mol ⁻¹ Å ⁻²)						
FE1- NA	1.970	2.0073	55.9	2.0387±0.00591*					
FE1- NB	2.032	2.0251	44.2	2.0479±0.00585*					
FE1- NC	1.927	2.0276	46.2	2.0745±0.00581*					
FE1- ND	2.007	2.0069	64.2	2.0275±0.00583*					
FE1-NE2 (His78)	2.005	2.0205	42.7	2.0546±0.00580*					
FE1-NE2 (His173)	2.003	2.0146	43.0	2.0831±0.00581*					
В			Bond distance (Å):	[2FE-2S]					
	Template	QM derived	Force constants	Post-MD					
	(1PP9)	parameters	(kcal/mol⁻¹Å⁻²)						
FE ₃ -SG (Cys299)	2.279	2.1410	131.0	2.1199±0.00573*					
FE2-ND1 (His301)	2.139	2.2053	32.8	2.1507±0.00582*					
FE ₃ -SG (Cys317)	2.225	2.1544	118.6	2.1234±0.00583*					
FE2-ND1 (His320)	2.147	1.9660	74.0	1.9311±0.00576*					

*350 ns MD simulation values provided as an average \pm 1 standard deviation

Table S6. Table of residues having high *Betweenness Centrality* (*BC*) values in ATQ-bound protein systems (WT, Y268C, Y268N and Y268S) to assess effect of mutation; + significant positive values while – stands for significant negative values. Active site residues are shown in bold, common residues in all systems (Bold#) and common residues in at least two runs (Bold*). A threshold value of +/- 2 SD of the *BC* values was used for each system.

Betweenness Centrality (BC); Significant Residues										
Mutant systems		RUN_1	RUN_2	RUN_3						
WT	+	PfCytb Chain: Ser_83, Val_85, Phe_86, Thr_89, Leu_112, Ile_117, Phe_118, Ala_122, Tyr_126, Val_127, Gly_137, Thr_139, Asn_250, Val_259*, Pro_260, Glu_261, Tyr_263, Phe_264*, Leu_271, Lys_277, Gly_280, Leu_291 ISP Chain: Gly_297, Ile_298, Cys_299*, His_301*, Gly_303, His_320*, Ile_330, Ala_335 ISP Chain:	PfCytb Chain: Ser_83, Val_85, Thr_89, Ala_122, Phe_123, Val_127, Thr_139, Thr_160, Thr_165, Phe_169*, Trp_262, Leu_265, Ala_269, Met_270, Leu_271, Lys_272, Cys_324 ISP Chain: Lys_252, Ile_296, Gly_297, Ile_298, Leu_302, His_320*, Ser_322	PfCytb Chain: Val_85, Leu_88, Arg_95, Thr_121, Val_124, Val_127, Phe_169*, Ile_237, Ser_241, His_242, Thr_254, Ile_258, Val_259*, Phe_264*, Leu_265, Tyr_268, Val_274, Lys_277, Gly_280, Leu_281, Val_284, Ser_287, Leu_290, Leu_291ISP Chain:Gly_297, Cys_299*, His_301*, Gly_303, Val_305, Ile_330, Pro_334, Ala_335						
Y268C	+	PfCytb Chain: Ser_83, Val_85, Thr_89, Tyr_99, Leu_112, Phe_118, Ala_122, Phe_123*, Val_124*, Thr_139, Ile_141, Ser_162, Tyr_263*, Phe_264#, Leu_271*, Lys_272, Lys_277, Val_284 ISP Chain: Leu_226, Ile_298, His_301#, Leu_302, Gly_303, His_320#, Ser_322, Ile_330	PfCytb Chain: Ala_82, Val_85, Arg_95, Phe_118, Thr_121, Ala_122, Phe_123*, Val_124*, Val_127, Ala_138, Thr_160, Thr_165, Arg_168, Phe_169, Leu_172, Leu_176, Phe_264#, Leu_271*, Lys_272, Lys_277, Leu_281, Ile_320 ISP Chain: Lys_252, His_301#, Leu_302, Gly_303, His_320#, Ser_322, Ile_330	PfCytb Chain: Ser_83, Thr_89, Leu_112, Phe_118, Thr_121, Ala_122, Tyr_126, Val_127, Met_133, Gly_137, Thr_139, Pro_255, Pro_260, Tyr_263*, Phe_264#, Cys_268, Lys_272, Lys_277, Leu_288 ISP Chain: Gly_297, Ile_298, His_301#, Gly_303, Val_305, His_320#, Ser_322, Ile_330						
Y268N	+	PfCytb Chain: Ser_83, Val_85, Phe_86, Thr_89, Leu_112, Val_127, Met_133*, Tyr_252, Thr_254, Ile_258, Val_259, Pro_260, Tyr_263*, Phe_264*, Asn_268*, Lys_272, Lys_277 ISP Chain: Gly_297, His_301*, Leu_302, Val_305, His_320#, Ser_322, Ile_330	 PfCytb Chain: Val_85, Phe_86, Thr_89, Leu_112, Phe_118, Ile_119, Ala_122, Ser_134, Asn_143, Val_249, Tyr_263*, Phe_264*, Asn_268*, Ala_269, Lys_272, Lys_277 ISP Chain: Ile_298, His_301*, Leu_302, Gly_303, His_320#, Ser_322, Ile_330 	PfCytb Chain: Leu_112, Ala_122, Phe_123, Val_124, Tyr_126, Val_127, Met_133*, Ser_134, Trp_136, Thr_139, Ile_237, Ser_241, His_242, Phe_264, Met_270, Leu_271, Lys_272, Leu_281 ISP Chain: Gly_297, Ile_298, Gly_303, His_320#, Ser_322, Ile_330, Pro_334, Ala_335						
Y268S	+	PfCytb Chain: Ser_83, Val_85, Phe_86, Thr_89, Ile_93, Leu_97, Leu_112, Ala_122, Phe_123*, Val_140*, Ile_141, Ile_258, Trp_262, Phe_264#, Leu_265, Ser_268*, Lys_272, Leu_288 ISP Chain: Gly_297, Ile_298, His_301*, Gly_303, Val_305, His_320#, Ser_322	 PfCytb Chain: Val_85, Phe_86, Thr_89, Arg_95, Phe_118, Thr_121, Val_124, Val_127, Gly_137*, Val_140*, Thr_160, Val_161, Thr_165, Phe_169, Tyr_263*, Phe_264#, Ser_268*, Leu_271, Lys_272, Lys_277, Leu_281, Gln_289, Leu_290, Phe_292 ISP Chain: Lys_252, His_301*, Leu_302, His_320#, Ser_322, Ile_330 	PfCytb Chain: Ala_82, Val_85, Phe_86, Thr_89, Leu_112, Ala_122, Phe_123*, Trp_136, Gly_137*, Thr_142, Asn_143, Thr_160, Thr_165, Tyr_263*, Phe_264#, Lys_272, Leu_290, Leu_294 ISP Chain: Gly_297, Ile_298, Leu_302, Val_305, His_320#, Pro_336						

Table S7. Table of residues having significant changes in *Betweenness Centrality* (ΔBC) in three Holo mutant systems to assess effect of mutation; + significant positive values while – stands for significant negative values. Active site residues are shown in bold, common residues in all systems (Bold#) and common residues in at least two runs (Bold*). A threshold value of +/- 2 SD of the ΔBC values was used for each system.

		Betweenness Centrality	(<i>ΔBC);</i> (WT– Mutant); Significant 1	Residues
Mutant systems		RUN_1	RUN_2	RUN_3
Y268C	+	PfCytb chain: Ser_83, Ile_93, Asn_143, Trp_262#, Leu_265, Cys_268, Lys_272, Val_274, Ile_283, Leu_288 ISP chain: Trp_221, Ile_222, Ile_298, Leu_302, His_320, Ser_322, Ile_330	PfCytb chain: Trp_26, Tyr_101, Met_102, Phe_115, Ile_119*, Val_124, Thr_160, Gln_257, Ile_258, Val_259, Trp_262#, Leu_265, Leu_291 ISP chain: Val_227	PfCytb chain: Leu_25, Leu_94, Ile_119*, Ala_122, Phe_123, Trp_136, Ile_141, Ile_237, Ser_241, Trp_262#, Leu_265, Thr_301, Trp_331, Val_305
	-	PfCytb chain: Phe_86, Met_102, Phe_118, Ala_122, Phe_123*, Thr_160, Val_161, His_187, Gln_232, Glu_261	PfCytb chain: Leu_94, Val_120, Phe_123*, Ala_138, Thr_139, Val_140, Ile_141, Ser_241, Val_249, Tyr_263, Gln_289, Leu_290, Cys_324, Leu_357 ISP chain: Ser_223, Cys_304, Pro_334	PfCytb chain: Tyr_99, Leu_112, Ile_155, Thr_160, Thr_165, Arg_168, Leu_240, Asp_244, Tyr_252, Gln_257, Phe_264, Lys_252, Leu_302
Y268N	+	PfCytb chain: Ser_83, Ala_122, Phe_123*, Val_140,* Ile_141*, Asn_143, Leu_144, Trp_262#, Leu_265, Asn_268, Lys_272, Ile_309 ISP chain: Trp_221, Ile_222, Leu_302	PfCytb chain: Trp_26, Phe_118, Ala_122, Thr_197, Ile_247, Thr_251, Gln_257, Ile_258, Val_259, Trp_262#, Lys_277, Leu_281, Leu_291 ISP chain: Ile_222, Ile_298, Cys_304, Pro_318	PfCytb chain: Phe_118, Ala_122, Phe_123*, Trp_136, Val_140,* Ile_141*, Thr_160, Ser_162, Ile_237, Trp_262#, Leu_265, Leu_294, Val_305
	-	PfCytb chain: Phe_86, Val_124 , Thr_160, Phe_169, Ile_237, Ser_241, His_242, Asn_250, Tyr_263, Phe_264 #, Lys_277, Leu_357	PfCytb chain: Ser_241, His_242, Val_253, Thr_254, Pro_260* , Tyr_263, Phe_264# , Asn_268 , Ile_342, Pro_334, Pro_336	PfCytb chain: Phe_30, His_92, Leu_112, Ile_155, Leu_172, Leu_176, Leu_215, Tyr_252, Pro_260*, Phe_264 #, Val_274, Leu_288, Gly_303, Pro_334, Pro_336
Y268S	+	PfCytb chain: Thr_80, Ser_83, Asn_143, Tyr_252, Trp_262 #, Leu_265, Ser_268 , Lys_272, Leu_281, Leu_288, Leu_290, Leu_291 ISP chain: Ile_222, Leu_302, His_320*, Ile_330	PfCytb chain: Tyr_101, Met_102, Phe_115, Ile_119 *, Thr_197, Thr_251, Gln_257, Ile_258, Val_259*, Glu_261, Trp_262 #, Phe_264 , Lys_277, Leu_291, Leu_294, Cys_304	PfCytb chain: Leu_25, Ala_82, Ile_119*, Ala_122, Phe_123, Gly_131, Trp_136, Ile_237, Asn_250, Val_259*, Trp_262#, Leu_265 ISP chain: Ile_222, His_320*
	-	PfCytb chain: Ile_35, Val_85, Phe_86, Thr_89, Met_102, Trp_108, Val_120, Leu_145, Ser_146, Tyr_159, Thr_160, Pro_260, Glu_261, Leu_271, Cys_304, Pro_318	PfCytb chain: Tyr_16, Val_127, Trp_136 , Asn_143, Ser_146, Ile_188, Ser_241, His_242, Tyr_263* , Cys_324, Cys_319*	PfCytb chain: Ser_83, Thr_121, Ala_138, Thr_139, Ile_155, Tyr_263*, Phe_264, Phe_267, Ser_268, Val_274 ISP chain: Leu_226, Cys_304, Cys_319*, Gly_321, Pro_334

Table S8. Table of residues having significant changes in *Betweenness Centrality* (ΔBC) in three ATQ-bound mutant systems to assess effect of mutation; + significant positive values while – stands for significant negative values. Active site residues are shown in bold, common residues in all systems (Bold#) and common residues in at least two runs (Bold*). A threshold value of +/- 2 SD of the ΔBC values was used for each system.

Betweenness Centrality (<i>DBC</i>); (WT– Mutant); Significant Residues				
Mutant systems		RUN_1	RUN_2	RUN_3
Y268C	+	PfCytb Chain: Phe_86, Arg_95, Val_127, Gly_137, Thr_139, Pro_164, Arg_168, His_187, Val_259*, Pro_260, Glu_261, Phe_264, Lys_277, Gly_280, Leu_291 ISP Chain: Ile_298, Cys_299, His_301, Gly_303, Cys_319, Ala_335	PfCytb Chain: Leu_25, Ser_83, Phe_86, Tyr_90, Thr_139, Ile_141, Cys_156, Pro_164, Leu_191, His_242, Asp_244, Trp_262, Leu_265, Ala_269, Met_270, Lys_272, Cys_324, Tyr_363 ISP Chain: Trp_221, Ile_298	PfCytb Chain: Ile_155, Thr_160, Phe_169, Ile_237, Ser_241, His_242, Thr_254, Ile_258, Val_259*, Leu_265, Thr_273, Val_274, Gly_280, Leu_281, Ser_287, Pro_334, Ala_335
	-	PfCytb Chain: Tyr_99, Met_116 , Phe_123 , Trp_136 , Ile_141 , Leu_144 , Ser_162, Ser_196, Ser_241, Ser_287 ISP Chain: Leu_226, Lys_252, Leu_302, Ser_322	PfCytb Chain: Asn_27, Leu_31, Arg_95, Met_102, Phe_118, Ala_122, Thr_160, Leu_172, Ala_246, Phe_264*, Lys_277, Leu_281, Leu_285, Gln_289, Ile_320 ISP Chain: Phe_219, Gly_251, Lys_252, His_301	PfCytb Chain: Ser_83, Thr_89, Ala_122, Phe_264*, Leu_271, Lys_272, Tyr_327, Pro_337 ISP Chain: His_320, Gly_321, Ser_322
Y268N	+	PfCytb Chain: Tyr_16, Ala_122, Gly_137 , Thr_139, Ile_247, Leu_271, Pro_337, Ile_298, Gly_303, Ala_335	PfCytb Chain: Ser_83, Thr_139, Thr_160, Ser_162, Pro_164, Thr_165, Trp_262, Leu_265, Met_270, Leu_271, Cys_324, Gly_333 ISP Chain: Trp_221	PfCytb Chain: Tyr_28, Val_85, Leu_88, Thr_160, Phe_169, Asn_245, Ile_258, Val_259, Val_274, Pro_275, Ser_276, Lys_277, Gly_280, Ser_287, Leu_294, Ile_309 ISP Chain: His_301, Val_305
	-	PfCytb Chain: Leu_94, Met_133, Ser_241, His_242, Tyr_252, Thr_254, Ile_258, Lys_272 ISP Chain: Val_305, His_320*, Ser_322	PfCytb Chain: Phe_86, His_92, Phe_118, Gly_131, His_192*, Asn_245, Val_249, Tyr_252, Tyr_263, Phe_264, Tyr_268, Pro_278 ISP Chain: His_301, Gly_303	PfCytb Chain: Ala_122, Trp_136, Ser_147, Leu_172, His_187, His_192*, Leu_271, Lys_272 ISP Chain: Cys_324, His_320*, Ser_322, Pro_334, Pro_336
Y2685	+	PfCytb Chain: Arg_95, Gly_137, Thr_139, Ile_247, Pro_260, Phe_264, Lys_277, Leu_291 ISP Chain: Ile_298, His_301*, Gly_303, Cys_319, Ala_335	PfCytb Chain: Leu_25, Ala_122, Phe_123, Thr_139, Pro_164, Ile_188, Trp_262, Leu_265, Ala_269, Lys_272, Leu_288, Cys_324, Ala_328 ISP Chain: Ile_298, Leu_302	PfCytb Chain: Val_124, Val_127, Phe_169, Ile_237, Ser_241, His_242, Thr_254, Pro_255, Ile_258, Val_259, Leu_265, Val_274, Lys_277, Gly_280, Leu_291 ISP Chain: His_301*
	-	PfCytb Chain: Thr_89, Ile_93, Leu_97, Phe_123*, Met_133, Val_140, Ile_141, Thr_160, Ser_241, Trp_262, Leu_265, Cys_304, Ser_322	PfCytb Chain: Phe_86, Arg_95, Leu_97, Met_102, Gly_137, Val_140, Leu_144, Val_161, Ser_241, Tyr_263, Phe_264, Lys_277, Leu_281, Leu_285, Gln_289, Leu_290, Phe_292 ISP Chain: His_301	PfCytb Chain: Phe_86, Thr_89, Ala_122, Phe_123*, Trp_136, Thr_142, Asn_143, Gly_195, Tyr_263*, Lys_272 ISP Chain: Tyr_327, Pro_337, His_320, Pro_336

Table S9. Residues having significant changes in average shortest path (ΔL) in three Holo mutant systems to assess effect of mutation ; + significant positive values while – stands for significant negative values. Interfacing residues in Bold, common residues in all systems (Bold#) and common residues in at least two runs (Bold*). A threshold value of +/- 2 SD of the ΔL values was used for each system.

Average Shortest Path (Δ <i>L</i>); (WT– Mutant); Significant Residues					
Mutant systems		RUN_1:	RUN_2	RUN_3	
Y268C	+	PfCytb chain: Arg_298 ISP chain: Val_227, Ala_228 *, Gly_229 , Gly_251, Lys_272, Leu_273, Thr_276	PfCytb chain: Pro_17, Pro_19, Leu_20, Asn_23, Leu_25, Leu_94, Asn_98, Ile_237, Ser_241, His_242, Pro_243, Asn_245, Lys_307, Leu_357, Tyr_368 ISP chain: Lys_215	PfCytb chain: Asn_15, Tyr_16, Ala_151, Gly_201, Arg_298, Phe_306, Lys_307, Met_308, Ile_309, Phe_310, ISP chain: Leu_226, Ala_228*, Gly_229, Glu_262, Asp_263, Arg_266, Lys_272, Leu_273, Thr_276	
	-	PfCytb chain: Gly_221, Phe_222, Asn_223, Val_225, Ile_226, Phe_229, Leu_230, Ser_233, Leu_234, Gly_311, Ala_312 ISP chain: Cys_214, Ser_216, Val_217, His_218, Trp_221	PfCytb chain: Thr_302, Gln_373, Ala_374, Asn_375 ISP chain: Ile_222* , Lys_224, Val_227, Ala_228, Gly_251	PfCytb chain: Leu_25, Ala_328 ISP chain: Phe_219, Phe_220, Trp_221, Ile_222*, Lys_224	
Y268N	+	PfCytb chain: Ala_205, Ser_241, His_242, Asn_375 ISP chain: Leu_273, Thr_276	PfCytb chain: Asn_224, Phe_235, Gly_236, Ile_237, Ile_238, Ser_241, His_242, Pro_243, Asp_244, Asn_245, Thr_254, ISP chain: Lys_215, Ser_216, Val_217, Thr_276, Glu_349	PfCytb chain: Ala_151, Leu_200, Leu_215, Ile_304 ISP chain: Cys_214, Ala_228, Glu_262, Asp_263, Gln_265, Arg_266, Ala_267, Lys_268, Glu_269	
	-	PfCytb chain: Asn_15, Ser_147, Lys_207, Met_308, Ile_309, Phe_310, Gly_311, Asp_314, His_367, Asp_369, Tyr_370, ISP chain: Cys_214, Lys_215, Ser_216, Val_217, His_218, Phe_220, Trp_221#, Gln_265, Arg_266, Glu_269	PfCytb chain: Ser_147, Gly_195, Ser_196, Ala_312, Arg_313, Gln_373, Ala_374, Asn_375 ISP chain: Trp_221# , Ile_222* , Ser_223, Lys_224, Glu_262, Asp_263	PfCytb chain: Lys_207, Asn_224, Val_225, Leu_228, Ile_231, Gln_232, Ile_237, Pro_239, Leu_240, Lys_307, Met_308, Ile_309 ISP chain: Val_217, Trp_221#, Ile_222*, Leu_234	
Y268S	+	PfCytb chain: Phe_235, Gly_236, Pro_239, Asp_270, Gln_275	PfCytb chain: Asn_15, Tyr_16, Pro_17, Pro_19, Leu_206, Ile_208, Pro_209, Phe_210, Asn_213, Gly_236, Ile_237, Ile_238, Ser_241, His_242, Pro_243, Asp_244, Asn_245 ISP chain: Lys_215, Ser_223, Glu_349	PfCytb chain: Ser_147, Val_150, Ala_151, Phe_306, Lys_307, Met_308, Ile_309, Phe_310 ISP chain: Cys_214, Lys_215, Ser_216, Leu_226, Val_227	
	-	PfCytb chain: Asn_15, Tyr_16, Pro_199, Ile_304, Ile_309, Phe_310, Gly_311, Asp_314, Ser_316 ISP chain: Cys_214 , Lys_215, His_218	PfCytb chain: Ile_22, Gly_195, Ser_196, Thr_197, Asn_198, Pro_199, Leu_200, Leu_215, Gln_257, Gln_297, Arg_298, Ser_299, Met_308, Ile_309, Phe_310, Ser_371, Gln_373, Asn_375 ISP chain: Val_227	PfCytb chain: Leu_25, Asp_203, Val_248, Asn_250, Thr_251, Tyr_252, Ile_340 ISP chain: Ile_222	

Table S10. Residues having significant changes in average shortest path (ΔL) in three ATQ-bound mutant systems to assess effect of mutation ; + significant positive values while – stands for significant negative values. Interfacing residues in Bold, common residues in all systems (Bold#) and common residues in at least two runs (Bold*). A threshold value of +/- 2 SD of the ΔL values was used for each system.

Average Shortest Path (ΔL); (WT– Mutant); Significant Residues				
Mutant systems		RUN_1:	RUN_2	RUN_3
Y268C	+	PfCytb Chain: Gly_158, Tyr_159,	PfCytb Chain: Thr_197, Tyr_202,	PfCytb Chain: Asn_15, Tyr_16, Provide 200 Physical Action 100 Physica
		Inr_160, Ser_216, Asp_218, Cys_334, Ala_374, Asn_375 ISP Chain: Cys_214#, Phe_220,	Arg_364, Arg_365, 1yr_368, Asp_369, Tyr_370, Ser_371, Ser_372, Gln_373, Ala 374, Asn 375	Pro_17, Pro_209, Phe_210, Tyr_211, Pro_212, Leu_215, Pro_337, Gln_338, Ile_340.
		Glu_262, Asp_263, Arg_266, Ala_267, Lys_268, Asp_270	ISP Chain: Cys_214#, Val_217, His_218, Phe_219	ISP Chain: Cys_214 #, Lys_215, Ser_216, Phe_219, Gln_275, Gly_309, Cly_310_Asp_311
	-	PfCytb Chain: Asn_15, Tyr_16, Pro_17, Ser_70, Pro_199, Leu_200,	PfCytb Chain: Asn_15, Leu_25, Thr_204, Ile_238*, Pro_239 #,	PfCytb Chain: Pro_149, Val_150, Ile_155, Ser_196, Pro_199, Gly_236,
		Tyr_202, Asp_203, Thr_204, Ala_205, Pro_209, Pro_212, Pro_239#, Leu_240# , Val_259, Gln_297, Arg_298, Leu_300	Leu_240#, Ser_241, His_242, Pro_243, Asp_244, Asn_245 ISP Chain: Ser_223, Lys_224, Asp_225, Val_227, Lys_272	Ile_237, Ile_238* , Pro_239# , Leu_240# , Ser_241, His_242, Pro_243, Met_308, Ile_309, Phe_310, ISP Chain: Trp_221, Ile_222
Y268N	+	ISP Chain: Leu_273 PfCytb Chain: Pro_199, Ser_216, Asp_218, Phe_235, Gly_236, Ile_237, Ile_238, Ser_241, His_242, Pro_243, Asn_245, Cys_334 ISP Chain: Cys_214*, Lys_215*, His_218, Phe_219*	PfCytb Chain: Ile_303, Leu_360, Arg_364, Arg_365, Thr_366, Tyr_368, Asp_369, Tyr_370, Ser_372, Gln_373, Ala_374, Asn_375 ISP Chain: Ser_216, Val_217, Phe_219*, Phe_220, Glu_262,	PfCytb Chain: Ser_147, Ile_304, Pro_337, Gln_338 ISP Chain: Cys_214*, Lys_215*, Ser_216, Gly_309, Gly_310, Asn_311, Pro_336
	-	PfCytb Chain: Asn_15, Tyr_16, Pro_105, Ser_147, Pro_149, Val_161, Pro_209, Pro_212, Ser_299, Pro_337, Tyr_368, Asp_369 ISP Chain: Ser_223*, Asp_225, Leu 226*, Val 227*	Asp_263, Gln_265, Arg_266, Glu_269 PfCytb Chain: Asn_21, Asn_23, Pro_199 ISP Chain: Ser_223* , Lys_224, Leu_226* , Val_227* , Lys_272, Leu_273, Thr_276, Asn_311	PfCytb Chain: Tyr_28, Gly_229, Gly_230, Gly_251, Ala_267, Lys_268, Glu_269, Asp_270, Asp_271, Lys_272, Leu_273, lle_274
Y268S	+	PfCytb Chain: Asn_21, Ser_216, Asp_218, Cys_334 ISP Chain: Cys_214, Lys_215, Ser_216, His_218, Phe_219*, Arg_266, Ala_267, Lys_268	PfCytb Chain: Ser_147, Asn_213, Leu_214, Ile_304, Arg_364, Arg_365, Tyr_368, Asp_369, Tyr_370, Ser_371, Ser_372, Gln_373, Ala_374, Asn_375, ISP Chain: Glu_262, Asp_263, Gln_265, Arg_266, Ala_267, Lys_268	PfCytb Chain: Thr_142, Ile_148, Phe_210, Leu_215, Arg_298, Pro_337, Gln_338 ISP Chain: Phe_219*, Gln_275, Thr_276, Met_277, Arg_278, Gly_310, Asn_311, Pro_336
	-	PfCytb Chain: Asp_203, Thr_204, Ala_205, Pro_209, Pro_239, Glu_296, Gln_297, Ser_299, Leu_300, Thr_301, Thr_302, Ile_303, Val_361, Arg_365, Tyr_370, Ser_371, Ser_372, Asn_375 ISP Chain: Leu_226*	PfCytb Chain: Asn_15, Asn_23, Leu_25, Ala_205, Ala_328 ISP Chain: Lys_215, Ser_223, Asp_270*, Asp_271, Lys_272, Leu_273, Thr_276	PfCytb Chain: Asp_203, Leu_228, Phe_235, Gly_236, Ile_237, Ile_238, Ser_241, His_242, Pro_243, Asp_244, Asn_245, Gln_257, Ala_312, Arg_313, Cys_334, Asn_375 ISP Chain: Asp_225, Leu_226, Asp_270

System	Bilayer	Lipids	Water	Counter Ions (added after tleap)	
				Na+	Cl-
Wild-type	POPC:POPE	990	29497	3	4
Y268C	POPC:POPE	984	29574	3	4
Y268N	POPC:POPE	987	29710	2	3
Y268S	POPC:POPE	981	29504	2	3

Table S11. Molecular composition of the simulation systems

Program	Functionality/Description		
AmberTools [1]	A suite of MD tools and associated programs that allow users to carry out molecular dynamics simulations on biomolecules.		
CPPTRAJ [2]	A program designed for processing and analysing MD simulation trajectories including RMSD, Rg, RMSF as well as hydrogen bond analysis. It can also perform clustering analysis between trajectories or between frames of the same trajectory. It is a part of AmberTools.		
Discovery Studio Visualizer [3]	3D molecular graphics visualization tool used to view and analyze macromolecular structures.		
Gaussian09 [4]	Computational chemistry software package. It employs laws of quantum mechanics to perform a multitude of calculations to predict energies, molecular structures, and spectroscopic data.		
GaussView [5]	GaussView is a graphical interface for Gaussian, it mainly assists with pre-and post- processing of jobs from Gaussian.		
GROMACS [6]	Tool for molecular dynamics simulations of macromolecular structures. The software package also contains functionality for trajectory analysis .		
H++ server [7]	Open source web-server used for the protonation of a protein structure. It first computes the pK values of ionizable groups in the protein, then adds missing protons according to the pH of the environment. It outputs parameters and coordinate files for simulations, currently in AMBER format.		
I-TASSER [8–10]	Template-based prediction tool for protein structures and function. Structure prediction proceeds by threading with the use of one main template along with other templates. The Local Meta-Threading Server,(LOMETS) is utilized for threading and the BioLIP protein function database is used to predict the function of the model.		
Maestro [11]	Molecular modeling software. It is also a molecular graphics visualization tool used to view and analyze macromolecular structures.		
MD-TASK [12]	A suite of Python scripts that It employs graph theory techniques, perturbation response scanning, and dynamic cross-correlation for analyzing MD trajectories.		
МСРВ.ру [13]	Python-based metal center parameter builder for the modeling of metal centers and simulation of metal complexes. It involves a semi-automated workflow of parameterization schemes to drive both force constants of metals and charged parameters.		
Packmol-memgen [14]	Generalized workflow for automated building of membrane-protein-lipid-bilayer systems.		
PROCHECK [15]	A suite of programs used to assess the stereochemical quality of proteins. It produces a number of Pos-script plots showing the overall analysis of the protein and residues by residue geometry, it further highlights regions that may need investigation.		
PyMOL [16]	3D molecular graphics visualization tools used to view and analyze macromolecular structures.		
RAMPAGE [17]	A Web server used for the validation of 3D structure modeled.		
VMD [18]	Molecular modeling and visualization computer program.		

Figure S1. Predicted protein model validation in form of Ramachandran plots. (**A**) and (**B**) representing PfCytb and ISP respectively using PROCHECK as well as (**C**) and (**D**) representing PfCytb and ISP respectively using RAMPAGE. Most of sthe residues are observed to be in the most favored and allowed regions. Overall, the model quality was good.

Figure S2. Calculated bond distances monitored during 350 ns MD simulations. (**A**) and (**B**) represents i) Heme and ii) [2FE-2S] cofactors, respectively. Metal ion FE stands for FE₁ for the heme and two iron metals (FE₂ and FE₃) for the 2FE-2S] cluster. The various bond distances are also represented as violin plots for distinction of some of the overlapping bonds present in the line graph. Fe²⁺ bonds to His78, His173, NA, NB, NC, and ND are shown in red, blue, cyan, yellow, maroon and green respectively for Heme cofactor while Fe²⁺ bonds to His301, His320, Cys299 and Cys317 are shown in red, cyan, maroon and yellow colors respectively for 2FE-2S] cluster.

Figure S3. Calculated bond distances monitored during 350 ns MD simulations in the mutant systems (Y268C, Y268N and Y268S). Graphs shown in (**A**) and (**B**) represents Heme and [2FE-2S] cluster cofactors, respectively. Fe²⁺ bonds to His78, His173, NA, NB, NC, and ND are shown in red, blue, cyan, yellow, maroon and green respectively for Heme cofactor while Fe²⁺ bonds to His301, His320, Cys299 and Cys317 are shown in red, cyan, maroon and yellow colors respectively for 2FE-2S] cluster. Metal parameters were successfully transferred to the systems prior to MD simulation. The bond distances are comparable to the WT system shown in Figure S2.

Figure S4. Rg comparison of WT and mutant both in the presence and absence of ATQ during the 350 ns MD simulation. A Line graph representation. **B** Violin plot presentation

Figure S5. Line graph comparison of RMSF as observed in the WT and mutant PfCytb-ISP protein systems during 350 ns MD simulation in the presence and absence of ATQ. A total of three replicate runs were calculated and displayed. High values show regions of high flexibility.

Figure S6. Residue contact heatmap between active site residues (n = 28) and other residue contacts. Comparison of WT and mutant system Y268C was performed in both Holo and ATQ-bound proteins in their respective triplicate runs in the last 100 ns of MD simulation time. Regions observed to reduce or lose residue contact are shaded in light golden color.

Figure S7. Residue contact heatmap between active site residues (n = 28) and other residue contacts. Comparison of the WT and mutant system Y268N was performed in both Holo and ATQ-bound proteins in their respective triplicate runs in the last 100 ns of MD simulation time. Regions observed to reduce or lose residue contact are shaded in light golden color.

Figure S8. Residue contact heatmap between active site residues (n = 28) and other residue contacts. Comparison of the WT and mutant system Y268S was performed in both Holo and ATQ-bound proteins in their respective triplicate runs in the last 100 ns of MD simulation time. Regions observed to reduce or lose residue contact are shaded in light golden color.

Figure S9. Residue contact heat map of Y268C, Y268N, Y268S mutant systems with reference to wild type yieldedduring the last 100 ns of MD simulations for all systems in the triplicate runs. A PfCytb-ISP holo protein B PfCytb-ISPATQ-bound protein. Individual residue contact maps for WT and all mutant systems in triplicate runs are displayed inFigure S10. Residues ordered by the proportion of contacts across simulation time. Residue names ending with A or BrepresentchainAandB,respectively.

Figure S10. Residue contact map for each of the PfCytb-ISP Holo protein systems (WT, Y268C, Y268N and Y268S) in their respective triplicate runs in the last 100 ns of MD simulation time. Using WT as the reference, contact residues Gly333, Val259, Pro260 and Phe264 were noted to be compromised (reduced/lost) in the presence of mutation.

Figure S11. Residue contact map for each of the PfCytb-ISP ATQ-bound protein systems (WT, Y268C, Y268N and Y268S) in their respective triplicate runs in the last 100 ns of MD simulation time. Using WT as the reference, contact residues Gly333, Val259, Pro260 and Phe264 were noted to be compromised (reduced/lost) in the presence of mutation.

Figure S12. Heat map comparison of BC values in PfCytb-ISP holo and ATQ-bound proteins. High BC values indicate regions of high residue connectivity.

Figure S13. Density plot for delta *BC* and *L* **values (N =503) for mutant systems (Y268C, Y268N, and Y268S) in three replicate runs.** The plots show that (**A**) *BC* and (**B**) *L* data was normally distributed where the mean is displayed by a dotted line.

Figure S14. Structural representation of membrane construction with PfCytb-ISP protein. The protein embedded in a POPC:POPE bilayer at a ratio of 1.3:1. (**A**) Shows a lateral view of the system while (**B**) shows the orientation of the protein as seen on the side view.

References

- Case, D.A.; Betz, R.; Cerutti, D.; Cheatham, T.; Darden, T.; Duke, R.; Giese, T.; Gohlke, H.; Goetz, A.; Homeyer, N.; et al. AMBER 2016 Reference Manual. *Univ. Calif. San Franc.* 2016, 1–923.
- 2. Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. *J Chem Theory Comput* **2013**, *9*, 3084–3095, doi:10.1021/ct400341p.
- 3. BIOVIA, D.S. Discovery Studio Modeling Environment, Release 2017, San Diego: DassaultSystèmes, 2016. *Available FromAccessed 1 Sept. 2016* **2016**.
- 4. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H.; et al. Gaussian 09, Revision A. 02, Gaussian, Inc., Wallingford, CT, 2016. *Chem. Chem. Phys. Accept. Manuscr.*
- 5. Nielsen, A.; Holder, A. Gauss View 3.0, User's Reference. *Gaussian Inc Pittsburgh PA* 2003.
- 6. Abraham, M.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. *SoftwareX* **2015**, *1*, doi:10.1016/j.softx.2015.06.001.
- Gordon, J.C.; Myers, J.B.; Folta, T.; Shoja, V.; Heath, L.S.; Onufriev, A. H++: A Server for Estimating PKas and Adding Missing Hydrogens to Macromolecules. *Nucleic Acids Res* 2005, 33, W368–W371, doi:10.1093/nar/gki464.
- 8. Zhang, Y. I-TASSER Server for Protein 3D Structure Prediction. *BMC Bioinformatics* **2008**, *9*, 40, doi:10.1186/1471-2105-9-40.
- 9. Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A Unified Platform for Automated Protein Structure and Function Prediction. *Nat. Protoc.* **2010**, *5*, 725–738, doi:10.1038/nprot.2010.5.
- 10. Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein Structure and Function Prediction. *Nat. Methods* **2015**, *12*, 7–8, doi:10.1038/nmeth.3213.
- 11. Schrödinger Schrödinger Release 2019–3, Maestro; New York, 2019;
- 12. Brown, D.K.; Penkler, D.L.; Sheik Amamuddy, O.; Ross, C.; Atilgan, A.R.; Atilgan, C.; Tastan Bishop, Ö. MD-TASK: A Software Suite for Analyzing Molecular Dynamics Trajectories. *Bioinformatics* **2017**, *33*, 2768–2771, doi:10.1093/bioinformatics/btx349.
- 13. Li, P.; Merz, K.M. MCPB.Py: A Python Based Metal Center Parameter Builder. *J Chem Inf Model* **2016**, *56*, 599–604, doi:10.1021/acs.jcim.5b00674.
- Schott-Verdugo, S.; Gohlke, H. PACKMOL-Memgen: A Simple-to-Use, Generalized Workflow for Membrane-Protein–Lipid-Bilayer System Building. J. Chem. Inf. Model. 2019, 59, 2522–2528, doi:10.1021/acs.jcim.9b00269.
- 15. Laskowski, R.; MacArthur, M.; Moss, D.; Thornton, J. PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures. *J. Appl. Crystallogr.* **1993**, *26*, 283–291, doi:10.1107/s0021889892009944.
- 16. DeLano, W.L.; others Pymol: An Open-Source Molecular Graphics Tool. *CCP4 Newsl. Protein Crystallogr.* **2002**, *40*, 82–92.

- Lovell, S.C.; Davis, I.W.; Arendall, W.B.; de Bakker, P.I.W.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure Validation by Calpha Geometry: Phi,Psi and Cbeta Deviation. *Proteins* 2003, *50*, 437–450, doi:10.1002/prot.10286.
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. *J. Mol. Graph.* 1996, 14, 33–8, 27–8, doi:10.1016/0263-7855(96)00018-5.