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Abstract: The reproductive status of dairy cows remains a challenge for dairy farmers worldwide,
with impaired fertility linked to a significant reduction in herd profitability, due in part to impaired
immunity, increased metabolic pressure, and longer postpartum anestrous interval (PPAI). Exo-
somes are nanovesicles released from a variety of cell types and end up in circulation, and carry
proteins, bioactive peptides, lipids, and nucleic acids specific to the place of origin. As such, their
role in health and disease has been investigated in humans and animals. This review discusses re-
search into exosomes in the context of reproduction in dairy herds and introduces recent advances
in mass-spectrometry (MS) based proteomics that have a potential to advance quantitative profiling
of exosomal protein cargo in a search for early biomarkers of cattle fertility.

Keywords: exosome; mass-spectrometry; proteomics; SWATH; reproduction; fertility; dairy cow

1. Introduction

Dairy cow fertility has been in decline for the past 20 years [1-3]. Selective breeding
for milk production traits, negative energy balance (NEB), poor health or infection during
the transition period (3 weeks before and the 3 weeks after calving), and early pregnancy
loss have all been attributed to this decline [3-5]. These factors are thought to be linked
but the underlying biological mechanisms responsible for these perturbations to repro-
ductive performance have not yet been fully established.

Although it is widely accepted that increased metabolic pressure due to increased
milk production is associated with poor reproductive outcomes, average producing cows
may also experience reproductive challenges [6]. There are reports that discuss the lesser
significance of increased milk production on fertility, and instead highlight genetic poten-
tial, nutritional intake, health status and farm management as major contributing factors
to fertility status of the cow [7]. However, reliable predictors of future reproductive per-
formance remain to be determined.Body condition scoring (BCS), and more recently BCS
linked to timing of pubertal onset, is one of the few key indicators used by dairy farmers
to manage and predict herd profitability [8].

Heifers can be separated into high- and low-fertility groups based on their genetic
merit and other measurable physical traits [9]. However, this model has been found to be
substandard when trying to address underlying causes of subfertility, and newer models
expressing the extremes of the fertility spectrum have been developed in order to better
explore the mechanisms responsible for the decline in calving rates over the past two dec-
ades. Although these newer models have allowed for improved sampling and study of
the physiological stresses leading to poor reproductive performance, the biological mech-
anisms driving the disease process resulting in subfertility remain to be elucidated.
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Exosomes, nanovesicles of *<30-150 nm in diameter, can be isolated from the bodily
fluids of dairy cows (e.g., blood plasma, milk, and follicular fluid), and present a unique
opportunity to studying the molecular cues that underlie poor reproductive performance
[10]. Exosomes are most commonly formed by the inward budding of multivesicular bod-
ies (MVB) in the cell and begin as intraluminal vesicles (ILVs), and play a critical role in
cell—cell signaling [11,12]. The molecular contents of circulating exosomes derived from
the blood plasma and milk of dairy cows have been characterized to some extent, and
contain, for example, proteins, mRNA, micro(mi)RNAs, and lipids [10,13]. It is possible
that miRNA contained in the blood plasma exosomes of dairy cows serve as an epigenetic
regulator of biological signaling pathways, including inflammation, which in turn may
affect reproduction and development of the fetus during pregnancy [14]. Additionally,
qualitative differences in proteomic exosomal cargo have been previously established in
milk and plasma samples between high- and low-fertility dairy cows, and between cattle
with and without uterine infection [15-17]. Quantitative differences in exosomal proteins
between these high- and low-fertility groups are yet to be fully elucidated and may hold
the key to identifying potential biomarkers for fertility. Exosomes contained in the blood
plasma, for instance, can provide a systemic snapshot of valuable information about the
health-status of the animal, which may be directly or indirectly related to reproductive
status. This review will focus on the potential application of exosome-derived biomarkers
to predict and lead to improved bovine reproduction in relation to key aspects of dairy
cow fertility.

2. Exosomes
2.1. Formation and Function

Within the cell there is a complex protein synthesis and sorting pathway, whereby
protein folding and glycosylation begin in the endoplasmic reticulum (ER). Mature and
proproteins are further modified as they pass through the Golgi apparatus, and following
this are transported via transport vesicles to early endosomes (see Figure 1, next page)
[18]. Early endosomes mature further into late endosomes, whereby they are transported
to the cell surface and exocytosed via direct fusion with the plasma membrane [19]. En-
docytosed materials may also be transferred to late endosomes and transported to lyso-
somes, or recycled back to the cell surface [20]. Late endosomes contain nucleic acids, pro-
teins, lipids, and trans-Golgi Network (TGN)-derived transport vesicles; hence they are
also termed multivesicular bodies (MVBs) [21]. ILVs within MVBs are released as extra-
cellular vesicles (EVs), a subpopulation of which are termed exosomes [18,22]. Proteins
involved in MVB formation and cargo sorting (endosomal sorting complexes required for
transport (ESCRT) pathway) and its accessory proteins are also typically found in exo-
somes [22,23]. Therefore, ESCRT proteins such as Tumor Suppressor Gene 101 (TSG101)
are used experimentally as positive exosomal markers, as are members of the tetraspanin
family (CD9, CD63, CD81); the latter of which have recently been implicated as important
mediators in mammalian reproduction [22,24,25].

Exosomal molecular cargo can be endocytosed by target cells via a number of differ-
ent mechanisms; direct receptor-ligand interaction, through cell surface adhesion mole-
cules such as integrins or cadherins that initiate endocytosis, or by the opsonization of
exosomes inducing phagocytosis in the recipient cell [26,27]. It has been suggested that
the uptake of exosomes may also depend on the recipient-cell type, as a study involving
exosomes isolated from various cancer cell lines demonstrated differences in uptake by
recipient cells regardless of the cell type of exosomal origin [28]. This suggests that exo-
somes can interact with any cell type, independent of the cell from which they themselves
are derived, albeit by different mechanisms of endocytosis. Interestingly, Sung et al. (2020)
confirmed pathfinding behaviour of cells as they migrate towards exosomal tracks in 2D
and 3D models, and created a double reporter system to follow the release, uptake, and
acidification of exosomal deposits in internalized compartments containing exosomes
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[29]. The results of these studies present promising directions for future research when
considering the use of exosomes for targeted therapeutics.

Whereas exosomes were historically thought to contain cellular waste, more recent
exosomal profiling has resulted in the understanding that they are intrinsic to cell mainte-
nance, cell-cell signaling, immune modulation, and progression of tumor-derived cells
and metastasis [22]. This has led to research into their ability to carry biomarkers of disease
in easily attainable biological fluids such as blood, saliva, and urine [30-33], and their po-
tential as therapeutic targets and delivery vehicles [26,30,34]. Currently, researchers have
begun to establish EV profiles that will assist in determining the proportions of the various
EV subtypes in any given biological sample, with the aim to better understand hetero-
genous populations of EVs and their distinct functions [35,36].

I ,Exocytosis of ILVs [Extracellular vesicles)

%oo ”

Cellular uptake of exosomes by endocytosis

Itivesicular Body [MVE)

Figure 1. Routes of exosomal formation and release from the cell. The Golgi apparatus (1) trans-
ports and modifies proteins received from the endoplasmic reticulum (ER). Mature proteins and
proproteins are transferred from the Golgi to endosomes via transport vesicles (2a and 3). Early
endosomes go on to form late endosomes/multivesicular bodies (MVBs) (4 and 5), which are com-
posed of intraluminal vesicles (ILVs) formed from the inward budding of the endosomal mem-
brane during the maturation process. Endosomal sorting complex required for transport (ESCRT)
proteins are involved in this process and are found in ILV cargo. MVBs fuse with the plasma
membrane of the cell to release their contents into the extracellular milieu; extracellular vesicles
(EVs) (6). EVs are taken up by the cell via endocytosis or phagocytosis (2b) and transported to
endosomal compartments and lysosomes for processing [37].

3. Bovine Reproduction

The reproductive health of dairy cows has been associated with a number of physio-
logical factors and environmental factors. Heat stress has been implicated as an epigenetic
modifier than may negatively impact upon the reproductive status of offspring [38,39],
while NEB has been linked to poor transition around the time of calving and metabolic
stress [40,41]. Importantly, non-esterified fatty acid (NEFA) surplus as a result of NEB has
been shown to result in poor immune function and increased likelihood of uterine infec-
tion [40]. Inflammatory mediators from the prostaglandin (PG) family are known to play
a part in reproductive processes in cattle, and as such have been the subject of investiga-
tions surrounding impaired fertility in dairy herds [42]. Qin and colleagues (2020) exam-
ined the effects of high NEFA concentrations on PG production in bovine endometrial
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(BEND) cells and observed decreased levels of prostaglandin E2 (PGE:z) and prostaglandin
Faa (PGF2) in cell culture media supernatant compared to controls [43]. Similarly, cows
with metritis were found to have a differential abundance of common uterine bacteria
compared with healthy cows [44]. Researchers have therefore attempted to establish ways
to better manage cattle during times of physiological and metabolic challenge in hopes of
improving reproductive health. For example, micronutrient supplementation during the
transition period improved outcomes without altering the methylation state of the cows
[45]. Thus, factors affecting reproductive performance of dairy herds are various and com-
plex, and ways of determining intervention at an earlier stage may improve outcomes at
a minimal cost to farmers and herds.

Exosomes have been the focus of bovine studies examining effects on implantation
and embryo development. Two separate studies confirmed that exosomes derived from
the bovine uterus increased gene and protein expression of the pregnancy-recognition-
associated protein interferon-tau (IFN-t) when cocultured with bovine embryos in vitro
[46,47]. Another study implicated a role in exosome secretion from both conceptus and
endometrium in facilitating crosstalk during the attachment period, while exosomes de-
rived from follicular fluid have been shown to improve oocyte competence and resistance
to environmental stressors such as heat shock [48,49]. Collectively, these studies suggest
that exosomes are widely involved in bovine reproduction, thus supporting further eval-
uation of their contents and function.

While the protein cargo of exosomes has been somewhat characterized qualitatively,
larger scale in-depth studies of quantitative differences between high- and low-fertility
groups have not been conducted [13,17,50,51]. Dysregulation of the immune system, met-
abolic perturbations around the time of calving, and impaired embryonic-maternal cross-
talk during implantation have all been associated with poor reproductive outcomes, and
all of which exosomes are known to play a part [2,6,13,17,47,52]. Quantitative differences
in exosomal protein cargo may have a significant impact on the overall health of dairy
cows, upon which fertility may be directly or indirectly impacted. Differences may also
serve as a valuable tool for predicting reproductive outcomes early on in the life of the
cow and warrants further investigation.

3.1. The Immune System

Successful reproduction in dairy cows relies on a competent immune system, espe-
cially during the periparturient period. Compromised immunity is associated with poor
transition during the calving period and significant physiological stress, resulting in in-
creased risk of postpartum uterine infection, mastitis, and an extended postpartum anes-
trous interval (PPAI). Studies have focused on various aspects of the immune system to
better understand reproductive failings around early embryonic loss, postpartum uterine
infection, and associated poor reproductive outcomes. Exosomes carry lipid mediators
derived from arachidonic acid (AA), and enzymes involved in their synthesis, including
inflammatory mediators associated with reproduction [53-55]. For example, PGs are small
lipid compounds classed as eicosanoids, which among a diverse number of actions can
behave as inflammatory mediators that are not only upregulated during infection and
inflammation, but also play a critical role in establishment and maintenance of pregnancy
in cattle [42,56,57]. PGE2 and PGFza are responsible for establishing or inhibiting bovine
pregnancy, respectively [42]. Upregulation of inflammatory pathways during critical time
points in the reproductive cycle of dairy cows could therefore have a severe impact on
their reproductive health (see Figure 2). In an in vitro model of uterine inflammation, PGE2
and PGFza were found to be differentially expressed by bovine endometrial epithelial
(bEEL) and stromal (bCSC) cells when exposed to inflammatory stimuli [58]. In further
experiments, bEEL expression of PGFza was increased when coincubated with plasma ex-
osomes derived from dairy cows with uterine infection [51]. Fatty acid cyclooxygenase-2
(COX2), which is upstream of the proinflammatory PGE, has been highlighted as a po-
tential target for therapies including the use of nonsteroidal anti-inflammatory drugs
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(NSAIDs) (see Figure 2) [2,40], although NSAIDS have previously been found to be inef-
fectual on Cox2 mRNA levels [59]. Interestingly, NSAIDS were successful in inhibiting
lipopolysaccharide (LPS)-induced PGE:z and tumor necrosis factor-alpha (TNFa) mRNA
production, indicating a mechanism of action separate to Cox2 activity [59]. A recent
meta-analysis aimed to compare antibiotic with non-antibiotic methods (e.g., NSAIDs) of
treatment for acute puerperal metritis (APM) in postpartum cattle [60]. Unfortunately,
due to a shortage of comparable studies, the researchers were unable to perform the anal-
ysis for non-antibiotic methods, therefore the use of NSAIDs to treat postpartum uterine
infection in cattle remains largely unverified.
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Figure 2. Blended model of reproduction and inflammation: Arachidonic Acid (AA)/Eicosanoid Pathway. Fatty acid cy-
clooxygenase 1/2 (Cox 1/2) converts AA to downstream effector molecules (Prostanoids and Prostaglandins (PGs)) follow-
ing inflammatory stimuli. Interferon-tau (IFN-t) produced by the conceptus inhibits Oxytocin receptor (Oxtr) expression
and prevents luteolysis of luteinized granulosa cells to maintain progesterone secretion. IFN-t stimulates PGE2 production
in the endometrium, resulting in structural and functional changes required for pregnancy recognition. In vitro studies
show altered expression of PGFaaand PGE2when exposed to inflammatory stimuli, which in turn may compromise events
leading to successful establishment of pregnancy. Nonsteroidal anti-inflammatory drugs (NSAIDs) target the PG inflam-
matory cascade by inhibiting Cox2 expression and reducing production of PGHzand associated inflammatory mediators.

3.2. The Transition Period

The transition period is a demanding phase in the life of dairy cows and challenging
from the farm management perspective. It is typically defined as the period ranging from
3 weeks before and after calving [61] and represents a time of metabolic stress for the dairy
cow, as the animal undergoes immense physiological changes in preparation for and dur-
ing early lactation. Dairy cows that have been selectively bred for milk production traits
experience greater metabolic pressure associated with increased milk production. Subse-
quently, this results in a greater incidence of postpartum uterine infection and mastitis,
leading to ongoing health issues and negative implications for further reproduction
[1,2,41,62]. Markers of metabolic distress such as 3-hydroxybutyrate (BHB), triacylglycer-
ols (TAG) and fatty acids (FA) were found to be altered in the blood plasma [2,8,61]. In
addition to this, hypocalcemia resulting in ‘milk fever’ can occur, which results in the
death of approximately 1 in 20 affected cows, reduces both the productive lifespan and
milk production with each milk fever episode, and comes with associated costs of treat-
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ment and prevention [1,41,63]. The impact of metabolic distress during the transition pe-
riod on future calving is of interest to reproductive studies. Increased metabolic pressure
around the time of calving leads to lengthened PPAI and pre- and postovulatory dysfunc-
tion, which can significantly delay return to estrous and time to mating and is therefore
of major concern to dairy farmers who operate under a seasonal-calving pasture-based
system [2,8].

Numerous studies have focused on the link between BCS, NEB, and feed-intake dur-
ing the transition period as a method of immunomodulation, in hopes of improving man-
agement of the transition dairy cow [64-67]. The use of exosomes as a potential source of
biomarkers for low- versus high-risk populations of dairy cows has been investigated,
with promising, although inconclusive, results [13]. Exosomes derived from the blood
plasma of healthy versus dairy cows with cytological endometritis have been found to
differ in protein composition when analyzed by liquid chromatography—mass spectrom-
etry (LC-MS), which included proteins associated with innate immunity, acute immune
response, and immune regulation [68]. Similarly, an in vitro study applied blood plasma
exosomes isolated from dairy cows with and without uterine infection to endometrial cell
lines to study their effects on PG production and found a decrease in luteolytic promoter
PGFax produced by cells treated with exosomes derived from the infected cows [51]. This
suggests the involvement of PGFz in disrupting normal reproductive processes and offers
a potential target for improving outcomes in these animals. Despite this, the transition
period still proves to be a challenging time for dairy farmers and their herds, and further
research is required to better identify at-risk cows in hopes of preventing postpartum in-
fection and maintaining reproductive efficiency.

Thus far, partly due to the ethical nature of conducting in vivo experiments, studies
have steered towards in vitro modeling of bovine uterine infection. However, this may
not be representative of the full spectrum of physiological mechanisms involved in, and
leading to, high- or low-fertility and susceptibility to reproductive disruption in early life
and during the transition or postpartum period. Bodily fluid samples obtained from cattle
with and without disease may already be compromised regarding differences in molecu-
lar content, as it would be expected that inflammatory/disease markers would be present
in affected animals at the time of disease occurrence. A more useful and predictive method
of testing for differences would require sampling at the baseline stage, long before cattle
experience reproductive and immune challenges. For example, sampling may occur
around the time of puberty or earlier in order to establish a predictive model of reproduc-
tive performance and predisposition for disease in the early stages of reproductive life.
Currently, Fertility Breeding Value (FBV) and BCS are the only tools available to dairy
farmers to assist in the herd selection process, which does not consider the individual
genetics or physiology of animals, but merely relies on physical attributes and genetic
lineage as predictors [9,69]. Early biomarkers of fertility would aim to provide the dairy
industry with reliable data that can assist in herd selection and lessen the burden of oper-
ational costs associated with poor reproductive performance. While lipid and inflamma-
tory mediators transported by exosomes have been linked to reproduction in cattle, dif-
ferences in protein cargo may give a better understanding of cattle fertility and the mech-
anisms that underlie perturbations to healthy reproduction.

4. Epigenetics of Reproduction

Epigenetic regulation of gene expression has been well studied with regards to mam-
malian development [70-74]. However, a new area of epigenetics is developing following
research into the role of miRNAs as epigenetic modulators and has been reviewed recently
[75,76]. Briefly, the epigenome is controlled at the base level by the expression of genes
that encode for a group of enzymes, termed DNA methyltransferases (DNMTs) [71,73].
DNMTs catalyze the transfer of methyl groups to a specific part of DNA —CpG islands—
as a way of altering gene expression [71]. miRNA performs modulatory actions at the ep-
igenetic level by targeting DNMTs and histone deacetylases (HDACs) [75]. miRNA also
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has a direct impact on protein abundance via regulation at the translational level. Binding
of miRNA to 3’ untranslated regions (UTRs) of target mRNA transcripts results in gene
silencing or degradation, dependent on whether binding is imperfectly matched to the
target sequence, or complimentary [77]. The epigenetic-miRNA regulatory loop also con-
trols miRNA expression through DNA methylation, histone modification and RNA, and
aberrations to these control mechanisms are associated with pathological health states
[75,78,79]. Researchers have started to explore differential miRNA expression in hopes of
finding early biomarkers of disease [80-82].

Bovine blood sera and exosomes have been subjected to miRNA profiling, and while
282 shared miRNAs were identified, 12 miRNAs were found to be differentially expressed
between sera and exosomes [83]. Circulating miRNA has been shown to be a predictor of
early pregnancy [84,85], and exosomal miRNA an indicator of early pregnancy loss in a
cloned cattle study using somatic cell nuclear transfer (SCNT)-derived embryos [86]. The
bovine estrous cycle, oocytes and preimplantation embryos have also been studied with
regards to their specific exosomal and cell-free miRNA profiles. Subsequently, it was
found that differential miRNA expression occurs during various stages of the estrous cy-
cle and altered miRNA expression is associated with developmental competence of both
oocytes and embryos [87-90]. Collectively, these results suggest that miRNA of exosomal
and circulating origin may play an important role in regulating bovine reproduction. Cor-
relative studies between miRNA and protein abundance would provide a comprehensive
overview of the mechanisms behind systemic and local molecular regulation linked to
reproductive outcomes.

5. Proteomics of Exosomes Derived from Bodily Fluids
5.1. Mass Spectrometry

Mass spectrometry (MS) is the technique of choice for determining the abundance of
hundreds to thousands of proteins and continues to evolve through advancements in in-
strumentation, data acquisition modes and data analysis software. Its utility in protein
analysis has a long history and has been extensively reviewed elsewhere [91-94]. In brief,
methods for the effective formation of molecular ions from liquid or gas were established
in the 1980s, and subsequently this led to the development of mass analyzers that were
capable of determining the mass or structure of polypeptides with a high degree of sensi-
tivity and accuracy [95-98]. MS systems are now commonly integrated and coupled with
LC (LC-MS), which is the preferred method for analyzing samples with a high degree of
complexity [98]. Initially widely used for peptide and protein identification in data-de-
pendent acquisition (DDA) studies, MS instruments are now capable of peptide quantita-
tion by labeled, relative, or targeted (absolute quantitation) methods, termed data-inde-
pendent acquisition (DIA) [91,93,99,100].

In relation to dairy cow reproduction, MS has been utilized to perform thorough and
reproducible analyses of bovine plasma, milk, follicular fluid, and uterine flushings [101-
103]. To provide a better understanding of the signaling pathways associated with repro-
duction, exosomes isolated from milk of dairy cows have also been analyzed using a range
of MS strategies in a number of studies [16,104-106]. Additionally, charge detection mass
spectrometry (CDMS) and label-free spectral counting have been used successfully to
characterize and quantify exosomes from milk and colostrum [104,105,107], and both milk
and plasma exosomes have undergone qualitative analysis in DDA studies [4,16]. What is
currently lacking in the field is a thorough quantitative analysis of the bovine blood
plasma exosomal proteome, which may provide a better systemic snapshot of overall
health and pathways associated with fertility, and thus clues to reproductive status in
dairy cows. Table 1 summarizes what is currently known, and what remains to be estab-
lished in relation to the role of exosomes of various origin and dairy cow reproduction.
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Table 1. Summary of knowledge relating to exosomes and dairy cow reproduction.

Known Not Known Future Direction

Characterization of plasma exosomes
derived from high- and low-fertility . )

. is still a matter of contention. .

dairy cows [16]. application.

, , . . Further optimization of exosomal iso-
Gold standard” for exosome isolation . o
lation protocols specific to downstream

Characterization of bovine milk exo-
somes [16]. ) i
SWATH-MS proteomic analysis of cir-
culating exosomes in high- and low-
fertility dairy cows to confirm quanti-
tative differences and identify bi-
omarker candidates related to
good/poor reproductive outcomes.
SWATH-MS proteomic analyses of ex-
Established proteome profile of bovine Comprehensive quantitative proteomic osomes derived from these biological

Established proteome profile of plasma Quantitative proteomic profile of exo-
exosomes derived from high- and low- somal cargo in circulating bovine exo-
fertility dairy cows [4,10]. somes.

exosomes derived from milk, follicular profile of exosomes derived from bo- fluid types to obtain a more complete
fluid and uterine flushings vine milk, follicular fluid and uterine = understanding of the connection be-
[47,48,105,107,108]. flushings. tween physiological processes in-
volved in dairy cow reproduction.
Characterization of bovine endometrial
inflammation via in vitro inflamma-
tory model utilizing bovine endome-
trial epithelial (bEEL) and stromal cells Pathway analysis of potential bi-
(bCSC) [58]. Exosomes derived from
cows with uterine infection were found
to decrease PGFzx production in bEEL,
but not bCSC cell lines [51]. Exosomes
derived from cows at high- or low-risk gene and protein expression.
of metabolic dysfunction differentially

. . e . omarkers identified in protein studies
In vitro studies utilizing novel protein

. . . and ongoing in vitro experiments to
biomarkers associated with healthy/ab- §Oomg P

confirm biological function/impact of

errant reproduction. . . . .
P candidate biomarkers on eicosanoid

regulate eicosanoid gene expression in
bEEL and bCSC cell lines [50].

Exoso.me—derived l.lterine m.iRNAs Effect of mIRNA knockdown on the miRNA. kn(.)ckdown/knockou.t studies
from dairy cows are involved in blasto- .. . . to confirm involvement of miRNA on
cyst development and regulation of cy- function in relatl'on to regulation of re- the regulation of bovine reproductive

tokines and chemokines [109,110]. productive processes. processes.

Established miRNA profiles of bovine Comparative studies relating to exoso- Perform qualitative and quantitative
plasma- and milk-derived exosomes mal miRNA profiles of high- and low- analysis of exosomal miRNA in high-
[111-113]. fertility dairy cattle. and low-fertility groups.
Immune challenges are associated with Relationship between immune status Continuing studies on inflammatory
poor reproductive outcomes in dairy and poor reproductive outcomes needs mediators and their relationship to re-
cows [41,62,114,115]. further clarification. productive processes.

DDA and targeted methods of MS, while effective, can be costly and/or only applicable to a limited number of samples.
More recently, techniques such as sequential window acquisition of all theoretical mass spectra (SWATH-MS), termed
next-generation proteomics, have emerged that allow the analysis of a greater number of samples with greater quantitative
precision and impressive proteome coverage [116-118].

5.2. Next-Generation Proteomics

First described by Gillet et al. (2012), SWATH-MS is a variant of DIA that has already
been applied to a large number of proteomic studies, including the analysis of exosomal
protein cargo [116,119-121]. A major advantage of SWATH-MS approach is that quanti-
tation is conducted using fragment ions, which are collected for all ionizable peptides in
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a sample, irrespective of their abundance. This is achieved using wide precursor isolation
windows, which cover the expected mass range of all precursor ions. This effectively elim-
inates a bias in quantitation that other proteomics strategies have typically suffered from
and permits a larger number of proteins across larger cohorts of samples to be analyzed
with fewer missing values [117,118]. In its original implementation introduced by Gillet
and colleagues, the highly complex nature of SWATH-MS data is dealt with using spectral
libraries, however more recently, algorithms for library-free analysis have been developed
[119,122,123].

Compared to other quantitative proteomics methods, the ease at which data is ac-
quired is also a significant advantage, as once the precursor isolation scheme is set and
method optimized for a particular sample type, analysis of different samples of the same
type can be performed using the same method. A collaborative study looking at repro-
ducibility and accuracy of SWATH-MS data detected and quantified >4000 proteins from
Human embryonic kidney 293 (HEK293) cells in a 2-h run, and this was reproducible
across multiple laboratories [124]. This allows proteomics studies to be performed on a
much larger scale than originally feasible, with a high level of reproducibility and accu-
racy similar to that of targeted methods, but without the constraints of one-time data ac-
quisition, as has been previously demonstrated [124,125]. The most promising feature of
SWATH-MS in agriculture is that the data generated is ideal for retrospective quantitative
analysis. SWATH-MS data may be exploited by remining them for new insights as ge-
nomic databases improve or as new compositional questions arise such as the ones de-
rived from epigenetics analysis.

5.3. Current Challenges

Irrespective of MS approach employed, the analysis will largely depend on sample
processing prior to MS. Highly abundant exosome proteins could compromise quantita-
tion of low abundant cargo proteins of reproductive tissue origin and thus of biomarker
potential. Enrichment of exosome populations of interest are therefore key to a successful
outcome. The current methods of exosome purification involve sequential centrifugation,
ultrafiltration, and size-exclusion chromatography, although there is currently no ‘gold-
standard’ for exosome isolation [126-130]. These strategies, however, do not enrich for
specific populations of exosomes that may be carrying the information specific to com-
promised fertility in cattle and further enrichment may be required [35]. This becomes
even more critical when analyzing exosomes from bodily fluids and, in particular, from
blood plasma, where the presence of several highly abundant plasma proteins such as
albumin, globulins and fibrinogen may limit the overall number of exosome proteins de-
tected in the study [131]. Furthermore, in the case of multistep enrichment, reproducibility
of exosome preparation will have a significant impact on the ability of MS-based methods
to reflect a true link between protein abundance and a biological phenomenon under
study.

6. Conclusions

Suboptimal fertility in dairy cows has been attributed to acquired conditions such as
poor uterine health, the adaptation to the transition period, and maternal-embryonic
crosstalk in early pregnancy. Fertility status in dairy cows may also be determined at a
much earlier timepoint due to factors stemming from genetic variants, which manifests in
vivo as alterations to signaling pathways related to reproduction. Whether the fertility is
a result of an acquired condition or inherited, the body responds in-kind by releasing ex-
osomes that contain bioactive cargo that may provide a clue to cattle fertility [17,50,51].
Exosome research is a rapidly developing area of investigation for diagnostic and prog-
nostic purposes. The qualitative and quantitative difference between exosomal cargo as-
sociated with different physiological conditions is determined using numerous ‘omics’
technologies and quantitative MS is at the forefront of this research. Specifically, a next-
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generation proteomics approach that relies on SWATH data acquisition to explore bi-
omarkers of fertility on exosomes isolated and enriched from bovine blood plasma is cur-
rently being undertaken (unpublished data). Future research will aim to build on this con-
cept through the study of miRNA on cellular function and signaling pathways related to
fertility status of the animal, in hopes of developing targeted therapeutics to improve re-
productive performance in cattle.
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