SUPPLEMENTARY MATERIALS

Deciphering the role of Wnt and Rho signaling pathway in iPSC-derived ARVC cardiomyocytes by *in silico* mathematical modeling

Elvira Immacolata Parrotta¹⁺, Anna Procopio ²⁺, Stefania Scalise ²⁺, Claudia Esposito ², Giovanni Nicoletta ², Gianluca Santamaria ^{2,3}, Maria Teresa De Angelis ^{2,3}, Tatjana Dorn ³, Alessandra Moretti ^{3,5}, Karl-Ludwig Laugwitz ^{3,5}, Francesco Montefusco⁴, Carlo Cosentino ^{*, 2}, and Giovanni Cuda ^{*, 2}.

Content

Wnt Canonical Pathway Model (WCP)-(Table S1, S2, S3, System a)

Rho-kinase pathway model (RKP)-(Tables S4, S5, S6, S7, System b)

Integration of Wnt/ β-catenin and the RhoA-ROCK pathways-(Tables S8, S9, S10, System c)

List of primers

References

Supplementary Data

In this section we provide an in-depth description of the ODE-based mathematical model and of all its species, as well as the differential reactions in which each species is involved.

Model of Wnt Canonical Pathway (WCP)

In **Table S1** are reported all the species introduced in the extended Lee's model [1]. In particular, **Table S1** provides information about the full name, abbreviation used in the ODE system, and the initial conditions set in the model. **Table S2** shown all the reaction of the extended WCP model.

Species	Compartment	Туре	Concentration
	_		[nmol/l]
Dshi	cytoplasm (c)	reactions	100
Dsha	cytoplasm (c)	reactions	0
APC_Axin_GSK3β	cytoplasm (c)	reactions	0
APC_Axin	cytoplasm (c)	reactions	0
GSK3β	cytoplasm (c)	reactions	50
APC	cytoplasm (c)	reactions	100
Axin	cytoplasm (c)	reactions	0
fAPC_fAxin_GSK3β	cytoplasm (c)	reactions	0
β-catenin{c}	cytoplasm (c)	reactions	0
β-catenin_fAPC_fAxin_	cytoplasm (c)	reactions	0
GSK3β			
<i>f</i> β-catenin_ <i>f</i> APC_ <i>f</i> Axin_	cytoplasm (c)	reactions	0
GSK3β			
β-catenin{n}	nucleus (n)	reactions	0
<i>f</i> β-catenin	cytoplasm (c)	reactions	0
TCF	nucleus (n)	reactions	0
β-catenin_TCF	nucleus (n)	reactions	0
β-catenin_APC	cytoplasm (c)	reactions	0
plakoglobin_TCF	nucleus (n)	reactions	0
gPPAR	nucleus (n)	reactions	0
gTCF	nucleus (n)	reactions	0

PPAR	nucleus (n)	reactions	0
gAxin	nucleus (n)	reactions	0
Wnt	cytoplasm (c)	fixed	0
plakoglobin	nucleus (n)	reactions	0÷500

Table S1. Species and conditions. Overview of the dependent variables defined in the extended WCP model. The complex between two species is indicated with "_". The prefix "g" refers to the mRNA relative to each species, transcribed from the specific gene. The prefix "f" refers to the phosphorylated species. The "type" of reaction indicates the concentration relative to a given species determined either though a set of reactions, or by a fixed value. Same species present in two different compartments is considered mathematically distinct ({c} for cytoplasmatic species and {n} for nuclear ones). Concentrations are reported as [nmol/l].

Reaction	Function
Dshi \rightarrow Dsha; Wnt	Dsh Activation (canonical Wnt)
Dsha → Dshi	Dsh Inactivation
APC_Axin_ GSK3β -> APC_Axin + GSK3β;	Destruction core inactivation via Dsha
Dsha	
$APC_Axin_GSK3\beta = fAPC_fAxin_GSK3\beta$	(De) Phosphorilation Destruction core
$APC_Axin + GSK3\beta = APC_Axin_GSK3\beta$	Destruction core Formation
$Axin + APC = APC_Axin$	Destruction core Formation
β -catenin{c} + <i>f</i> APC_ <i>f</i> Axin_ GSK3 β = β -	β-catenin binding destruction core
catenin_fAPC_fAxin_ GSK3β	
$β$ -catenin_fAPC_fAxin_ GSK3 $β \rightarrow = fβ$ -	Phosphorilation β-catenin
catenin_fAPC_fAxin_ GSK3β	
$f\beta$ -catenin_ $fAPC_fAxin_GSK3\beta \rightarrow f\beta$ -catenin +	Release of phosphorylated β-catenin
fAPC_fAxin_GSK3β	
$_{f\beta}$ -catenin \rightarrow	Phosphorylated β-catenin degradation
$\rightarrow \beta$ -catenin{c}	Synthesis β-catenin
β -catenin{c} \rightarrow	Indipendent Wnt β -catenin degradation
→ gAxin; β-catenin_TCF plakoglobin_TCF	gAxin expression
$Axin \rightarrow APC$	Axin degradation
β -catenin{c} = β -catenin{n}	β-catenin Transport
β -catenin{n} + TCF = β -catenin_TCF	β-catenin binding TCF
β -catenin{c} + APC = β -catenin_APC	β-catenin binding APC
\rightarrow gTCF; β -catenin_TCF plakoglobin_TCF	gTCF expression

gTCF →	gTCF degradation
Plakoglobin + TCF = plakoglobin_TCF	Plakoglobin binding TCF
\rightarrow TCF; gTCF	TCF synthesis
TCF →	TCF degradation
\rightarrow gPPAR; β -catenin_TCF plakoglobin_TCF	gPPAR expression
gPPAR →	gPPAR degradation
gAxin →	gAxin degradation
→ Axin; gAxin	Axin synthesis
→PPAR; gPPAR	PPAR synthesis
PPAR →	PPAR degradation

Table S2. Reactions in the extended WCP model. In **bold** are reported the reactions add to the original Lee's model.

Reaction	Parameter	Value
Dsh activation	k 1	0.182 [l nmol ⁻¹ min ⁻¹]
Dsh inactivation	k2	0.0182 [min ⁻¹]
Desctruction core inactivation via Dsha	k3	0.05 [l nmol-1 min-1]
Destruction core formation	k 4	0.0909 [l nmol ⁻¹ min ⁻¹]
	k 5	0.909 [min ⁻¹]
Destruction core formation – APC/Axin	k 6	1 [l nmol-1 min-1]
	k7	50 [min ⁻¹]
Destruction core (De) phosphorylation	k 8	0.267 [min ⁻¹]
	k9	0.133 [min ⁻¹]
β – <i>catenin</i> binding destruction core	k 10	1 [l nmol-1 min-1]
	k 11	120 [min ⁻¹]
β – <i>catenin</i> phosphorylation	k 12	206 [min ⁻¹]
β – <i>catenin</i> binding APC	k 13	1 [l nmol ⁻¹ min ⁻¹]
	k 14	1200 [min ⁻¹]
Axin degradation	k 15	0.33 [min ⁻¹]
	k 16	98 [nmol l-1]
β – <i>catenin</i> synthesis	v	0.423 [nmol min ⁻¹ l ⁻¹]
Indipendent Wnt β -catenin degradation	k 17	0.000257
β – <i>catenin</i> transport	k 18	0.182 [min ⁻¹]
	k 19	0.055 [min ⁻¹]
Phosphorylated β-catenin degradation	k20	0.417 [min ⁻¹]
Release of phosphorylated β – <i>catenin</i>	k21	206 [min-1]
β-catenin binding TCF	k22	1 [l nmol ⁻¹ min ⁻¹]
	k23	30 [min ⁻¹]
Plakoglobin binding TCF	k24	1 [l nmol-1 min-1]
	k25	30 [min ⁻¹]

TCF synthesis	k26	1 [min ⁻¹]
TCF degradation	k27	0.084 [min ⁻¹]
gPPAR synthesis	V0s	0.00884 [nmol min ⁻¹ l ⁻¹]
	k _{1s}	0
	kas	23
	ns	3
	k _{2s}	0.00884
	kbs	23
	k _{3s}	0
	k _{4s}	1
	k _{5s}	1
	k _{6s}	0
gPPAR degradation	k28	0.01 [min ⁻¹]
gTCF synthesis	V0s	0.0061 [nmol min ⁻¹ l ⁻¹]
	k _{1s}	0.0361
	kas	23
	ns	3
	k _{2s}	0
	kbs	23
	k _{3s}	0
	k _{4s}	1
	k 5s	1
	k _{6s}	0
gTCF degradation	k29	0.01 [min ⁻¹]
gAxin synthesis	V0s	0.0061 [nmol min ⁻¹ l ⁻¹]
	k _{1s}	0.0361
	kas	23
	ns	3
	k _{2s}	0
	kbs	23
	k _{3s}	0
	k _{4s}	1
	k 5s	1
	k _{6s}	0
gAxin degradation	k30	0.01 [min ⁻¹]
PPAR synthesis	k 31	1 [min ⁻¹]
PPAR degradation	k32	0.084 [min ⁻¹]

Table S3. Overview of all the parameters and their values, for the extended WCP model.

Below are reported all the equations for the WCP extended model. Especially, each ODE describes the variation, over time, of the species concentrations [S] reported in **Table S1**. All the parameter values are reported in **Table S3**.

 $[Dsha]V_c = V_c(k_1[Dshi][Wnt]) - V_c(k_2[Dsha])$

 $[D\dot{s}hi]V_c = -V_c(k_1[Dshi][Wnt]) + V_c(k_2[Dsha])$

 $\left[APC_Axin\right]V_c = V_c(k_3[APC_Axin_GSK3\beta][Dsha]) - V_c(k_4[APC_Axin][GSK3\beta] - k_5[APC_Axin_GSK3\beta]) + V_c(k_6[Axin][APC] - k_7[APC_Axin]) \right]$

 $[GSK3\beta]V_c = V_c(k_3[APC_Axin_GSK3\beta][Dsha]) - V_c(k_4[APC_Axin][GSK3\beta] - k_5[APC_Axin_GSK3\beta])$

 $\begin{bmatrix} APC_Axin_GSK3\beta \end{bmatrix} V_c = V_c(k_4[APC_Axin][GSK3\beta] - k_5[APC_Axin_GSK3\beta]) - V_c(k_8[APC_Axin_GSK3\beta] - k_9[fAPC_fAxin_GSK3\beta]) + V_c(k_3[APC_Axin_GSK3\beta][Dsha]) \end{bmatrix}$

 $\left[fAPC_fAxin_GSK3\beta \right] V_c = V_c(k_8[APC_Axin_GSK3\beta] - k_9[fAPC_fAxin_GSK3\beta]) - V_c(k_{10}[\beta - catenin\{C\}][fAPC_fAxin_GSK3\beta] - k_{11}[\beta - catenin_fAPC_fAxin_GSK3\beta]) + V_c(k_{12}[f\beta - catenin_fAPC_fAxin_GSK3\beta])$

 $[A\dot{P}C]V_{c} = -V_{c}(k_{13}[\beta - catenin\{c\}][APC] - k_{14}[\beta - cateni_APC]) - V_{c}(k_{6}[Axin][APC] - k_{7}[APC_Axin])$

 $[A\dot{x}in]V_{c} = -V_{c}\left(\frac{k_{15}[Axin][APC]}{k_{16}+[APC]}\right) + V_{c}\left(([gAxin], 1)\right) - V_{c}(k_{6}[Axin][APC] - k_{7}[APC_Axin])$

 $\left[\beta - catenin\{c\}\right]V_c = -V_c(k_{10}[\beta - catenin\{c\}][fAPC_fAxin_GSK3\beta] - k_{11}[\beta - catenin_fAPC_fAxin_GSK3\beta]) + V_cv - V_c(k_{17}[\beta - catenin\{c\}]) - (k_{18}V_c[\beta - catenin\{c\}] - k_{19}V_n[\beta - catenin\{n\}]) - V_c(k_{13}[\beta - catenin\{c\}][APC] - k_{14}[\beta - catenin_APC])$

 $\left[\beta - catenin_f A\dot{P}C_f Axin_G SK3\beta\right]V_c = V_c(k_{10}[\beta - catenin\{c\}][fAPC_f Axin_G SK3\beta] - k_{11}[\beta - catenin_f APC_f Axin_G SK3\beta]) - V_c(k_{12}[\beta - catenin_f APC_f Axin_G SK3\beta]) \right]$

 $[f\beta - catenin]V_c = V_c(k_{12}[\beta - catenin_fAPC_fAxin_GSK3\beta]) - V_c(k_{20}[f\beta - catenin])$

 $[f\beta - catenin_f APC_f Axin_GSK3\beta]V_c = V_c(k_{11}[\beta - catenin_f APC_f Axin_GSK3\beta]) - V_c(k_{21}[f\beta - catenin_f APC_f Axin_GSK3\beta])$

 $[\beta - catenin_TCF]V_n = V_n(k_{22}[\beta - catenin\{n\}][TCF]) - k_{23}[\beta - catenin_TCF])$

 $[\beta - catenin_APC]V_c = V_c(k_{13}[\beta - catenin\{c\}][APC]) - k_{14}[\beta - catenin_APC])$

 $[\beta - catenin\{n\}]V_n = (k_{18}V_c[\beta - catenin\{c\}] - k_{19}V_n[\beta - catenin\{n\}]) - V_c(k_{22}[\beta - catenin\{n\}][TCF] - k_{23}[\beta - catenin_TCF])$

 $[T\dot{C}F]V_n = -V_n(k_{22}[\beta - catenin\{n\}][TCF] - k_{23}[\beta - catenin_{TCF}]) - V_n(k_{24}[plokoglobin][TCF] - k_{25}[plakoglobin_TCF]) + V_n(k_{26}[gTCF]) - V_n(k_{27}[TCF])$

 $[gP\dot{P}AR]V_{n} = V_{c}\left(\frac{\frac{vos^{*}\left(1+\left(\frac{[plakoglobin.TCF]}{kbs}\right)^{ns}\right)}{1+\left(\frac{[plakoglobin.TCF]}{kbs}\right)^{ns}+\left(\frac{[p-catenin.TCF]}{kas}\right)^{ns}\right)} - V_{n}(k_{28}[gPPAR])$ $[plakoglobin.TCF]V_{n} = V_{n}(k_{24}[plakoglobin][TCF] - k_{25}[plakoglobin.TCF])$

 $[plakoglobin]V_n = -V_n(k_{24}[plakoglobin][TCF] - k_{25}[plakoglobin_TCF])$

$$\begin{split} \left[gTCF\right]V_n &= V_n \left(\frac{\left(v_{0s} + k_{1s} \left(\frac{\left[\beta - catenin, TCF\right]}{k_{as}}\right)^{n_s}\right)}{1 + \left(\frac{\left[plakoglobin, TCF\right]}{k_{bs}}\right)^{n_s} + \left(\frac{\left[\beta - catenin, TCF\right]}{k_{as}}\right)^{n_s}}\right) - V_n(k_{29}[gTCF]) \\ \left[g\dot{A}xin\right]V_n &= V_n \left(\frac{\left(v_{0s} + k_{1s} \left(\frac{\left[\beta - catenin, TCF\right]}{k_{as}}\right)^{n_s}\right)}{1 + \left(\frac{\left[plakoglobin, TCF\right]}{k_{bs}}\right)^{n_s} + \left(\frac{\left[\beta - catenin, TCF\right]}{k_{bs}}\right)^{n_s}}\right) - V_n(k_{30}[gAxin]) \end{split}$$

 $[P\dot{PAR}]V_n = V_n(k_{31}[gPPAR]) - V_n(k_{32}[PPAR])$

System a. ODE equations in WCP extended model.

Rho-kinase pathway model (RKP)

Since no model for Rho-kinase pathway is available, we started with the identification of the reaction scheme to be included in the model definition phase.

As already discussed, the information regarding the reaction and the respective parameters for some mechanisms, such as phosphorylation and de-phosphorylation of RhoA protein and Rho-Kinase activation, were taken from literature. For all other reactions, for which no quantitative reference was found in literature, were described through simple mass-action kinetics, while their parameters were obtained through a fitting phase, keep in the physiological ranges reported in **Table S4**.

Parameter	Description	Realistic Range	Applied Range
k	Half-maximal activation	10-3-10	10-3-10
	coefficient		
Н	Half-life in intracellular	1-10 ⁴ min (for mRNA or	5-100 min
	environment	protein)	
n	Hill-coefficient	1-50 (highest measured is	1-10
		35)	
α	Saturability coefficient for an	1-10	1-10
	enhancer		
transfer rates	How much reactions occurs	10-3-10	10-3-10
	per unit time		
transform rates	For cleavage,	10-3-10	10-3-10
	phosphorylation, etc		

Table S4. Physiological range of kinetic parameters [2, 3].

Species and reactions considered for the model of Rho pathway are listed in**Tables S5** and **S6**, respectively.

Species	Compartment	Туре	Concentration [nmol/l]
RhoaGDP	cytoplasm (c)	reactions	120
RhoaGTP	cytoplasm (c)	reactions	0
RhoGEF	cytoplasm (c)	reactions	100
RhoGAP	cytoplasm (c)	reactions	0
ROCK	cytoplasm (c)	reactions	680
pROCK	cytoplasm (c)	reactions	0
ncDsha	cytoplasm (c)	reactions	0
ncDshi	cytoplasm (c)	reactions	100
Wnt5b	cytoplasm (c)	fixed	0
Daam1a	cytoplasm (c)	reactions	0
Daam1i	cytoplasm (c)	reactions	50
fActin	cytoplasm (c)	reactions	100
gActin	cytoplasm (c)	reactions	0
MKL1{c}	cytoplasm (c)	reactions	1
gActin_MKL1	cytoplasm (c)	reactions	0
MKL1{n}	nucleus (n)	reactions	0
gPPAR	nucleus (n)	reactions	0
PPAR	nucleus (n)	reactions	0

Table S5. Overview of the dependent variables defined in the RKP model. The complex between two species is indicated with "_". The prefix "g" refers to the mRNA relative to each species, transcribed from the specific gene. The prefix "f" refers to the phosphorylated species. The "type" of reaction indicates the concentration relative to a given species determined either though a set of reactions, or by a fixed value. Same species present in two different compartments is considered mathematically distinct ({c} for cytoplasmatic species and {n} for nuclear ones). Concentrations are reported as [nmol/l].

Reaction	Function
RhoaGDP \rightarrow RhoaGTP; RhoGEF	(De) Phosphorilation
RhoaGTP \rightarrow RhoaGDP; RhoGAP	(De) Phosphorilation
ROCK \rightarrow pROCK; RhoaGTP	(De) Phosphorilation
$pROCK \rightarrow ROCK$	Henri-Michaelis-Menten (irreversible)
ncDshi + Wnt5b → ncDsha	Mass action (irreversible)

ncDsha \rightarrow ncDshi	Mass action (irreversible)
Daam1i → Daam1a; ncDsha	Rate law for Daam1 Activation
Daam1a → Daam1i	Mass action (irreversible)
RhoaGDP \rightarrow RhoaGTP; Daam1a	(De) Phosphorilation
RhoaGTP → RhoaGDP	Mass action (irreversible)
$fActin \rightarrow gActin$	Mass action (irreversible)
$gActin \rightarrow fActin; pROCK$	Rate law for Actin filaments Formation
$gActin + MKL1{c} = gActin$	Mass action (reversible)
$MKL1{c} = MKL1{n}$	Transport
\rightarrow gPPAR; MKL1{n}	Gene regulation
$gPPAR \rightarrow$	Mass action (irreversible)
→ PPAR; gPPAR	Translation
PPAR →	Mass action (irreversible)

Table S6. Reactions used to model the Rho-kinase pathway. The majority of reactions are expressed as mass action. Daam1 activation and conversion of Actin (from g-Actin to f-Actin and *vice-versa*) are two customized function. ncDsh*a* stands for noncanonical active Dishevelled. The majority of the reactions are expressed as reversible or irreversible mass action laws.

Reaction	Parameter	Value
Activation RhoA and ROCK and inactivation	k	0.06 [min ⁻¹]
RhoA	km	100 [nmol l-1]
RhoA-GTP inactivation	kri	0.0262 [min ⁻¹]
Inactivation ROCK	k2	0.6 [nmol min ⁻¹ l ⁻¹]
N.C. Dsh activation	k3	0.182 [l nmol ⁻¹ min ⁻¹]
N.C. Dsh inactivation	\mathbf{k}_4	0.0182 [min ⁻¹]
Daam1 activation	k 5	0.05 [l nmol ⁻¹ min ⁻¹]
Daam1 inactivation	k 6	0.262 [min ⁻¹]
Actin filaments degradation	kact	0.1 [min ⁻¹]
Actin filaments formation	kactf	0.1 [l nmol ⁻¹ min ⁻¹]
MKL1 binding	k7	0.1 [l nmol ⁻¹ min ⁻¹]
	k 8	0.01 [min ⁻¹]
MKL1 transport	k9	0.182 [min ⁻¹]
	k 10	0.055 [min ⁻¹]
gPPAR synthesis	V 0	0.005 [nmol min ⁻¹ l ⁻¹]
	ka	5 [nmol l-1]
gPPAR degradation	k 11	0.01 [min ⁻¹]
PPAR synthesis	k12	1 [min ⁻¹]
PPAR degradation	k 13	0.084 [min ⁻¹]

Table S7. Names and values of the parameters in the Rho-kinase pathway.

Below are reported all the equations used to model the Rho-kinase pathway. All the parameter values are reported in **Table S7**.

$$[Rhoa\dot{G}DP]V_{c} = -V_{c}\frac{k[RhoGEF][RhoaGDP]}{km+[RhoaGDP]} + V_{c}\frac{k[RhoGAP][RhoaGTP]}{km+[RhoaGTP]} - V_{c}\frac{k[Daam1a][RhoaGDP]}{km+[RhoaGDP]} + V_{c}(k_{ri}[RhoaGTP])$$
(b.1)

$$[RhoaGTP]V_{c} = V_{c} \frac{k[RhoGEF][RhoaGDP]}{km + [RhoaGDP]} - V_{c} \frac{k[RhoGAP][RhoaGTP]}{km + [RhoaGTP]} + V_{c} \frac{k[Daam1a][RhoaGDP]}{km + [RhoaGDP]} - V_{c} (k_{ri}[RhoaGTP])$$
(b.2)

$$[RO\dot{C}K]V_c = -V_c \frac{k[RhoaGTP][ROCK]}{km+[ROCK]} + V_c \frac{k_2[pROCK]}{km+[pROCK]}$$
(b.3)

$$[pROCK]V_c = V_c \frac{k[RhoaGTP][ROCK]}{km + [ROCK]} - V_c \frac{k_2[pROCK]}{km + [pROCK]}$$
(b.4)

$$[ncDsha]V_c = V_c(k_3[ncDshi][Wnt5b]) - V_c(k_4[ncDsha])$$
(b.5)

$$[ncDshi]V_c = -V_c(k_3[ncDshi][Wnt5b]) + V_c(k_4[ncDsha])$$
(b.6)

$$[Daam1a]V_c = V_c(k_5[Daam1i][ncDsha]) - V_c(k_6[Daam1a])$$
(b.7)

$$[Daam1i]V_c = -V_c(k_5[Daam1i][ncDsha]) + V_c(k_6[Daam1a])$$
(b.8)

$$[fActin]V_c = -V_c(k_{act}[fActin]) + V_c(k_{actf}[gActin][pROCK])$$
(b.9)

$$[gActin]V_c = V_c(k_{act}[fActin]) - V_c(k_{actf}[gActin][pROCK]) - V_c(k_7[gActin][MKL1{c}]) - k_8[gActin_MKL1])$$
(b.10)

$$[MKL\dot{1}\{c\}]V_{c} = -V_{c}(k_{7}[gActin][MKL1\{c\}] - k_{8}[gActin_MKL1]) -V_{c}(k_{9}[MKL1\{c\}] + V_{n}(k_{10}[MKL1\{n\}]))$$
(b.11)

$$[gActin_MKL1]V_c = V_c(k_7[gActin][MKL1\{c\}] - k_8[gActin_MKL1])$$
(b.12)

$$[MKL1]V_n = V_c(k_9[MKL1\{c\}]) - V_n(k_{10}[MKL1\{n\}])$$
(b.13)

$$[gPP\dot{A}R]V_n = V_n \frac{v_0}{1 + [MKL1\{n\}/k_a]} - V_n(k_{11}[gPPAR])$$
(b.14)

$$[PP\dot{A}R]V_n = V_n(k_{12}[gPPAR]) - V_n(k_{13}[PPAR])$$
(b.15)

System b. ODE equations (b.1 - b.15) defined to model the Rho-kinase pathway.

Integrative model of Wnt/β-catenin and RhoA-ROCK pathways.

Finally, species and reactions added or changed in the WCP-RKP model are listed in **Tables S8** and **S9**, respectively.

Species	Compartment	Туре	Concentration [nmol/l]
plakoglobin{c}	cytoplasm (c)	reactions	0
plakoglobin{n}	nucleus (n)	reactions	0
Dplakoglobin	cytoplasm (c)	reactions	100
Siah2i	cytoplasm (c)	reactions	100
Siaha	cytoplasm (c)	reactions	0
<i>f</i> β-catenin	cytoplasm (c)	reactions	0
gTCF	nucleus (n)	reactions	0
gAxin	nucleus (n)	reactions	0

Table S8. Overview of all the variables that have been added or changed in the WCP-RKP final model. The complex between two species is indicated with "_". The prefix "g" refers to the mRNA relative to each species, transcribed from the specific gene. The prefix "f" refers to the phosphorylated species. The "type" of reaction indicates the concentration relative to a given species determined either though a set of reactions, or by a fixed value. Same species present in two different compartments is considered mathematically distinct ({c} for cytoplasmatic species and {n} for nuclear ones). *Dplakoglobin* species refers to the desmosomal plakoglobin. Concentrations are reported as [nmol/l].

Reaction	Function
plakoglobin{c} \rightarrow Dplakoglobin; pROCK	Activation with modifier
plakoglobin{c} \rightarrow plakoglobin{n}	Transport
Siah2i → Siah2a; Wnt5b	Activation with modifier
Siah2a → Siah2i	Mass action (irreversible)
Siah2a + APC = Siah2a_APC	Mass action (reversible)
β -catenin{c} $\rightarrow f\beta$ -catenin; Siah2a_APC	(De) Phosphorilation
Dplakoglobin \rightarrow plakoglobin{c}	Mass action (irreversible)

Table S9. Reactions used to model the WCP-RKP cross-talk.

Reaction	Parameter	Value
Activation/inactivation	k1	0.182 [l nmol ⁻¹ min ⁻¹]
Dsh (c. Wnt)	k2	0.0182 [min ⁻¹]
Activation/inactivation	k3	0.182 [l nmol ⁻¹ min ⁻¹]
Dsh (n.c. Wnt)	k4	0.0182 [min ⁻¹]
pROCK stabilizes the	k 5	0.1
desmosome		
Desmosomal plakoglobin	k ₆	0.01 [min ⁻¹]
Plakoglobin transport	k7	0.182 [min ⁻¹]
	k8	0.055 [min ⁻¹]
Plakoglobin binding TCF	k9	1 [l nmol ⁻¹ min ⁻¹]
	k10	30 [min ⁻¹]
β – <i>catenin</i> binding APC	k11	1 [l nmol ⁻¹ min ⁻¹]
	k12	1200 [min ⁻¹]
Interaction between Siah2	k13	1 [l nmol ⁻¹ min ⁻¹]
and APC	k14	30 [min ⁻¹]
Destruction core	k15	1 [l nmol ⁻¹ min ⁻¹]
formation	k16	50 [min ⁻¹]
Siah2 activation	k17	0.1 [l nmol ⁻¹ min ⁻¹]
Siah2 inactivation	k18	0.1 [min ⁻¹]

Table S10. Names and values of the parameters in the WCP-RKP cross-talk mechanism.

The mechanism of crosstalk required the addition of new differential equations in the developed mathematical system, as well as the modification of some previously ones, reported in the following **System c**. All the parameter values are reported in **Table S10**.

$\begin{split} [Ds\dot{h}\iota]V_c &= -V_c(k_1[Dshi][Wnt]) + V_c(k_2[cDsha]) - V_c(k_3[Dshi][Wnt5b]) \\ &+ V_c(k_4[ncDsha]) \end{split}$	(c.1)
$[Dplakoglobin]V_{c} = V_{c}(k_{5}[plakoglobin\{c\}][pROCK]) - V_{c}(k_{6}[Dplakoglobin])$	(c.2)
$ [plakoglobin{c}]V_{c} = -V_{c}(k_{5}[plakoglobin{c}]pROCK]]) - V_{c}(k_{7}[plakoglobin{c}]) + V_{n}(k_{8}[plakoglobin{n}]) + V_{c}(k_{6}[Dplakoglobin]) $	(c.3)
$ [plakoglobin{n}]V_n = -V_n(k_9[plakoglobin{n}][TCF]) + V_n(k_{10}[plakoglobin_TCF]) \\ + V_c(k_7[plakoglobin{c}]) - V_n(k_8[plakoglobin{n}]) $	(c.4)
$\begin{split} [AP\dot{C}]V_{c} &= -V_{c}(k_{11}[\beta - catenin\{c\}][APC]) + V_{c}(k_{12}[\beta - catenin_APC]) \\ &- V_{c}(k_{13}[Siah2a][APC]) + V_{c}(k_{14}[Siah2a_APC]) - V_{c}(k_{15}[Axin][APC]) \\ &+ V_{c}(k_{16}[APC_Axin]) \end{split}$	(c.5)

$[Siah2a]V_{c} = V_{c}(k_{17}[Siah2i][Wnt5b]) - V_{c}(k_{18}[Siah2a]) - V_{c}(k_{13}[Siah2a][APC])$	
$+V_c(k_{14}[Siah2a_APC])$	(c.6)

 $[Siah2i]V_c = -V_c(k_{17}[Siah2a][Wnt5b]) + V_c(k_{18}[Siah2a])$ (c.7)

 $[Siah2a_APC]V_c = V_c(k_{13}[Siah2a][APC]) - V_c(k_{14}[Siah2a_APC])$ (c.8)

System c. ODE equations (c.1 - c.8) added to model the mechanism of crosstalk between the two pathways.

Table S11. Primers used for qRT-PCR

Gene	Primer forward	Primer reverse
GAPDH	TCCTCTGACTTCAACAGCGA	GGGTCTTACTCCTTGGAGGC
PPARγ	TGGCAATTGAATGTCGTGTC	GGAAGAAACCCTTGCATCCT
CEBPa	ACTTGGGGGCTTGGAACCTAA	GACCCACGACCTAGCTTTCT

References

- [1] **Heinrich R, Kirschner MW, Lee E, et al.** The Roles of APC and Axin Derived from Experimental and Theoretical Analysis of the Wnt Pathway 2003; 1; 116–32.
- [2] **von Dassow G, Meir E, Munro EM OG**. The segment polarity network is a robust developmental module. *Nature* 2000; 188–92.
- [3] Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, Mayer C, Miller J, Monier A, Salamov A, Young J, Aguilar M, Claverie JM, Frickenhaus S, Gonzalez K, Herman EK, Lin YC, Napier J, Ogata H, Sarno AF, Shmutz J, Schroeder D, de Vargas C, Verret F, von GI. Pan genome of the phytoplankton Emiliania underpins its global distribution. *Nature* 2013; DOI: doi: 10.1038/nature12221.