

Figure S1. Warts on apple shoots induced by *Botryosphaeria dothidea*. (A) Warts on a naturally infected apple branch. NW: newly formed wart; OW: old wart from previous seasons; and L: lenticel. (B) Wart on shoots formed 30 days after inoculation. W: wart; L: lenticel. (C) Histostructure of periderm of a mock-inoculated apple shoot. E, epidermis (the transparent layer); PP, primary phellem (in blue color), PG, phellogen (cork cambium); PD, phelloderm; and C, cortex. (D) Hstostructure of a wart formed on inoculated apple shoot. E, epidermis (the transparent layer); PP, primary phellem (in blue color), SP, newly formed phellem (in blue color); PG, phellogen; PD, phelloderm; and C: cortex. Bar=50 µm.

Figure S2. Expression pattern of cutinase gene Bdo_10846 . Expression level of cutinase Bdo_10846 at 0, 1, 2, 3, 4 wpi in apple shoots. Data were average and standard deviation of three replicates. Statistical significance was analyzed with one-way analysis of variance (ANOVA) and Duncan's test, different letters indicate significant difference (p < 0.05). Columns and bars represent means and standard errors for three replicates, respectively.

Figure S3. Homologous recombination strategy and verification of the Bdo_10846 knockout transformants. (**A**) Homologous recombination strategy and primers used for verifying the Bdo_10846 knockout transformants. (**B**) PCR and southern-blot analysis of *Bdo_10846* knockout transformants (ΔBdo_10846 -3 and ΔBdo_10846 -6). About 1 kb PCR products of upstream (with P1 and P2) and downstream (with P3 and P4) were amplified. The open reading frame fragment (ORF) were absent in the PCR product (with P5 and P6). The 500 bp hph gene fragment was used as probe in southern-blot analysis.

Figure S4. Mycelial growth and sporulation of *Bdo_10846* knockout transformants and WT strains. (**A**) Colonies and conidia morphology of WT, two *Bdo_10846* knockout transformants, and two complementary transformants, Bar = 10 μ m. (**B**–**E**) Statistical results of colony diameters, conidial production, conidial length-width ratio, and conidial germination rate. Data were averages (and standard errors) of values from two independent experiments. Statistical significance was analyzed with one-way analysis of variance (ANOVA) and Duncan's test, no significant difference was detected (*p* < 0.05).

Figure S5. The mycelial growth and the cutinase activities of Bdo_10846 knockout transformants in medium with cutin as carbon source. (**A**) Growth of WT and transformants (two Bdo_10846 knockout transformants ΔBdo_10846 -3, ΔBdo_10846 -6 and two complementary transformants C-1, C-3) in cutin broth for 10 days. (**B**) Mycelium wet weight. (**C–D**) Cutinase activity in medium supernatant assayed using ϱ -nitrophenyl butyrate. Yellow color depth represented the cutinase activity. Data were averages (and standard errors) of two independent experiments. Statistical significance was analyzed with one-way analysis of variance (ANOVA) and Duncan's test, and different letters indicate significant difference (p < 0.05).

Gene ID	SP	Cleavage Site	Protein Length	Conserved Domain				
				From	То	E-Value	Bit Score	Predicted Function
Bdo_01641	Y	17 and 18	228	40	225	9.07E-44	144	Cutinase
Bdo_01702	Y	18 and 19	220	38	206	2.70E-45	148	Cutinase
Bdo_03157	Y	19 and 20	236	29	234	1.69E-32	115	Cutinase
Bdo_03766	Y	18 and 19	323	52	225	2.50E-52	169	Cutinase
Bdo_04428	Y	19 and 20	208	37	205	3.28E-48	155	Cutinase/Esterase
Bdo_04657	Y	16 and 17	606	418	603	1.73E-45	158	Cutinase
Bdo_04821	Y	17 and 18	234	35	226	1.37E-33	118	Cutinase
Bdo_05778	Y	19 and 20	225	28	217	3.58E-34	120	Cutinase
Bdo_08566	Y	19 and 20	212	38	206	2.17E-46	150	Cutinase/Esterase
Bdo_10693	Y	18 and 19	283	54	189	5.42E-43	144	Cutinase
Bdo_10846	Y	18 and 19	228	53	223	1.24E-55	174	Cutinase
Bdo_12612	Y	18 and 19	234	56	231	4.15E-54	171	Cutinase
Bdo_13750	Y	18 and 19	239	39	236	6.77E-47	153	Cutinase

Table S1. Information of the predicted 13 cutinases in Botryosphaeria dothidea.

Table S2. Information of genes involved in suberin synthesis process.

Organism	ID	Gene	Protein	Function		
Malue domestica	mdn0000233110	MdLFAD	Long-chain fatty alcohol dehydrogen- Long-chain fatty acid metabolic process (Legay			
iviuius uomesticu	<i>mup0000233110</i>		ase family	et al., 2015)		
Nicotiana ben- thamiana	mdn0000228252	MdMYB93	MVB Transcription factor	Regulator of the suberin synthesis (Legay et		
	mup0000228232		with transcription factor	al., 2016)		
	mdm0000212405	MdFCoAT	Feruloyl-CoA acyl-transferase family	Regulating the peridermal water permeability		
	map0000312 1 03		protein	(Legay et al., 2016)		
	NIb=5tr6203422	NbFAR3	Fatty acyl reductases	Fatty-acyl-CoA reductase (alcohol-forming) ac-		
	11003110203422		Tatty acyl reductases	tivity (Kosma et al., 2014)		
	Nbn5tr6232718	NbGPAT	Clycerol phosphate acyl transferase	Glycerol-3-phosphate O-acyltransferase activ-		
	1000000202710		Chyceror phosphate acyr transferase	ity (Beisson et al., 2007)		
	Nlbz:5tr6216569	NbGDSL	CDSI -ostarasa	O-acyltransferase activity lipase activity		
	1100300210309		GD3L-esterase	(Girard et al., 2012)		

Gene	Primers	Sequence		
	YG 405-F	TGGTGACGAGCAGTTACATGAGGTC		
MaFCoAI	YG 405-R	CAGCCAAAGTCAGTTGTGTGGAAACT		
MALEAD	YG 110-F	GCTGTGGACAATTTACTCATCTGCTCA		
MULFAD	YG 110-R	TGGATTCACACCAACTGCAGTCGG		
MANAVROZ	YG 252-F	GCTGGATATTCAAGACCCTACTGCAC		
11111111033	YG 252-R	TCTGGAGCTTGATCATTAACCATGTCC		
MACADDU	GAPDH-F	GCAAAGAAGGTTATCATCTCTGCCCC		
MuGAFDII	GAPDH-R	GGTGCAACTAGCATTGGAAAGAATGTGG		
MANIDD1	MdNPR1-F	CATTGCCCATGCGGAGACATCTGA		
IVIUNT KI	MdNPR1-R	GAGCAATGAGGGAAGTAGCATCTACC		
MADR1	MdPR1-F	GGCGACTGCAATCTCGTGCACT		
Mur Ki	MdPR1-R	GACTCATAACTGTAGTCGGCTTTCTC		
	MdPDF1.2-F	AGCCACGACAATTGCCTCCAGG		
Iviur DF1.2	MdPDF1.2-R	GATGATGGGACCACTGCTTGCG		
Pda 10016	YG 10846-F	TCGTCGGAGGTGGATATAGTCAAG		
<i>Du0_10840</i>	YG 10846-R	TTCAGCTTCTCCTGCGGAAGAC		
Rdo Actin	YG ACTIN-F	CAACTGGGACGACATGGAGAAGATTTG		
Duo_Actin	YG ACTIN-R	GATCTGGGTCATCTTCTCACGGTTG		
$NIb \Gamma \Gamma 1 \sim$	NbEF-F	CTGCCAGCTTTACCTCCCAAGTCA		
INUEF1-A	NBEF-R	CCAGAACGCCTGTCGATCTTGGT		
NILDD1	NbPR1-F	GACGACCAGGTAGCAGCCTATG		
NUFKI	NbPR1-R	CAACAGCCTTAGCAGCCGTCATG		
NILNIDD1	NbNPR1-F	TGCAGCAGACGATGTAATGGTGGT		
INDINEKI	NbNPR1-R	CTTGTAGACCAAGTTCTGCTCGTG		
	NbPDF1.2-F	GTTACTTCTAGCATTGCTTGTCATGGC		
NOPDF1.2	NbPDF1.2-R	CGGTGGCACAGTTGCTATCTCTTG		
NILFADO	NbFAR3-F	TACCTTCAACCCAACCAGGA		
N0FAK3	NbFAR3-R	TTATGGATGGCCAAACACCT		
NLODAT	NbGPAT-F	TCATGCAACAACAGCTAGGG		
NØGFAI	NbGPAT-R	ACGTGGCTTCTACTGGCAAC		
NILCOCI	NbGDSL-F	TTTGCACATGTTCCTGGAGA		
INUGDSL	NbGDSL-R	TTGTCACTCACCCAGCTGAT		

Table S3. Primers used for qRT-PCR.

Primer Name	Primer Sequence (5'-3')
	Gene Knockout Plasmid Construction
10846up-F	CTTGCAAGTCACATGGCTTACAAAGT
10846up-R	ACCGGTCACTGTACAGAGCTCACGTTCGAATTGAGAATGACGGGGAAAGAT
10846down-F	GGATATAAGATCGTTGGTGTCGGTCAATACGCGACTTTCGTTTGCT
10846down-R	CTGAAAGACGGTGAATATGCAGTGT
10846nest-F	GGAAGACACACCAAAGACGTTGAACTC
10846nest-R	CGAAAGGAGCTTGGCGCATTCATC
Hyg-F	CGTGAGCTCTGTACAGTGACCGGT
Hyg-R	CGACACCAACGATCTTATATCCAGATTCG
	Complementary Plasmid Construction
10846HB-F	GACCTGCAGGCATGCAAGCTTTGCATGGATACCGTTTCAGATTACTGC
10846HB-R	GACCATGATTACGCCAAGCTTTCTGACTCGCCTTCAACCAAC
	PCR Verification of Gene Knockout Transformants
P1	TATAGCTGCGGAGTAAAGATTCCAAGT
P2	AATCATCCACTGCACCTCAGAGC
P3	ACCGCGGGATCCACTTAACGTTAC
P4	AATCATCCACTGCACCTCAGAGC
P5	GTCTCCGTGCTCTTTGCTAGCTT
P6	TGCGATCAGCCAGGAAGGACGA
	Probe Labeling
HYG Probe-F	CTCCCGATTCCGGAAGTGCTTGA
HYG Probe-R	CAACCACGGCCTCCAGAAGAAGATGTT
	<i>Bdo_10846</i> Overexpressing
GFP-F	ATCGATACCGTCGACCTCGAGATGGTGAGCAAGGGCGAGGAG
GFP-R	GGCCTTAGCATGCGAAGATCTTTACTTGTACAGCTCGTCCATGCC
H3P-F	AAGCGCGTTGGATTAGAGGTCGACAGGGCAAGCGCAAGATCATTTGTC
H3P-R	CTTGCTCACCATCTCGAGGTCGACaagcttGCAGAAGTTGTGTGTGGGTCGGAAA
10846OE-F	CACAACTTCTGCAAGaagcttATGAGGGTCACTGCGACTATCG
10846OE-R	CATCTCGAGGTCGACaagcttCTGAGCCGCCCTGATGCGATC
	Prokaryotic Expression of Bdo_10846
pHAT10846-F	CACCATCACCATCACTCCATGTCTCCCATCAATGTTGAAGTCCGC
pHAT10846-R	AGAGGGCCCGGATCCCTCGAGCTACTGAGCCGCCCTGATGCG

Table S4. Primers used for plasmid construction and transformants verification.