Supplementary Information

Prokaryotic solute/sodium symporters: versatile functions and mechanisms of a transporter family

Tania Henriquez ¹, Larissa Wirtz ¹, Dan Su ¹ and Heinrich Jung ^{1,*}

- ¹ Microbiology, Dept. Biology 1, Ludwig Maximilians University Munich, D-82152 Martinsried, Germany
- * Correspondence: hjung@lmu.de; Tel.: +49-89-218074630

	ncTMD-1 cTMD1a	
VcSglT PmSiaT EcPUTP	MSNIEHGL <u>SFIDIMVFAIYVAIIIGVGLW</u> VSRDKKGTQKSTEDYFLAGKSLP <u>WWAVGASL</u> MQLHDFG <u>FINYAVLFGYLAAMLLVGVYFS</u> KRQKTADDYFRGGGRVP <u>G</u> WAAGVSV MAI <u>STPMLVTFCVYIFGMILIGFIAW</u> RSTKNFDDYILGG R SLGPF <u>VTALSA</u> *: :: :*. : *. :**: .* : : *	60 54 51
	<u>cTMD1b</u> <u>cTMD2</u>	
VcSglT PmSiaT EcPUTP	IAANISAEQFIGMSGSGYSIGLAIASYEWMSAITLIIVGKYFLPIFIEKGIYTFATTLSSITFMSIPAKAYTSDWTFASYEWMSAITLIIVGKYFLPIFIEKGIYTGASDMSGWLLMGLPGAVFLSGISESWIAIGLTLGAWINWKLVAGRLRVHTEYNNNALT*::*.:::::::::::::::::::::::::::::::::	113 107 109
	cTMD3 cTMD4	
VcSglT PmSiaT EcPUTP	IPEFVEKRFNKKLKTILAVFWISLYIFVNLTSVLYLGGLALETILGIPLMYSILGLAL AYEYLEARFDVRSRLFASLS-FMLFHIGRVAIITYLTVLALRPFMGIDPVVLIVLISL LPDYFTGRFEDKSRILRIISALVILLFFTIYCASGIVAGARLFESTFGMSYETALWAGAA ::. **: : : : : : : : : : : : : : : : :	171 164 169
	<u>cTMD5</u>	
VcSglT PmSiaT EcPUTP	FALVYSIYGGLSAVVWTDVIQVFFLVLGGFMTTYMAV-SFIGGTDGWFAGVSKMVDAAPGLCIIYTWMGGIEGVIWTDVIQGLLLSGGAVLIFIMICFKVDGGISEIFTTTAQADKATILYTFIGGFLAVSWTDTVQASLMIFALILTPVIVISV-GGFGDSLEVIKQKSIE::*:**:.:*:**:::*:**:::*:**:::*:**:::*:**:::*:**:::*:::*:	230 220 225
	cTMD6a cTMD6b	
VcSglT PmSiaT EcPUTP	HFEMILDQSNPQYMNLPGIAVLIGGLWVANLYYWGFNQYIIQRTLAAKSVSEAQKGIVFA FFPTTQWRWSWTDST <u>IPVLMIGFLFANIQQ</u> FTASQDVVQRYIVTDSIKETKRTLITN NVDMLKGLNFVAIISLMGWGLGYFGQ-PHILARFMAADSHHSIVHA * :: : : : : : : : : : : : : : : : : :	290 277 270
	cTMD7	
VcSglT PmSiaT EcPUTP	AFLKLIVPFLVVLPGIAAYVITSDPQLMASLGDIAATNLPSAANADKAY-PWLTQF AKLVAIIPIFFFAIGSALFVYYQQNPSLLPAGFNTGGILPLFIVTE RRISMTWMILCLAGAVAVGFFGIAYFNDHPALAGAVNQNAERVFIELAQIL : : * * : *:	345 323 321
	<u>cTMD8</u>	
VcSglT PmSiaT EcPUTP	LPVGVKGVVFAALAAAIVSSLASMLNSTATIFTMDIYKEYISPDSGDHKLVNVGRTAAVV MPIGIAGLIIAAIFAAQSSISSSLNSISSCFNSDIYTRLSKSSPSPEQKMKVAKLVIIV FNPWIAGILLSAILAAVMSTLSCQLLVCSSAITEDLYKAFLRKHASQKELVWVGRVMVLV : : *::::*: ** *::: *: :: :: :: ::: :: :	405 383 381
	· · · · · · · · · · · · · · · · · · ·	
VcSglT PmSiaT EcPUTP	ALIIACLIAPMLGGIGQAFQYIQEYTGLVSPGILAVFLLGLFWKKTTSKGAIIGV AGIFSSLAAIWLVLSDEAEIWDAFNSLIGLMGGPMTGLFMLGIFVKRANAGSAVVGI VALVAIALAANPENRVLGLVSYAWAGFGAAFGPVVLFSVMWSRMTRNGALAGM * :*: : : :::::::::::::::::::::	460 440 434
	ncTMD11 ncTMD12	
VcSglT PmSiaT EcPUTP	VASIPFALFLK-FMPLS-MPFMDQMLYTLLFTMVVIAFTSLSTSINDD IVSIIAVLAAR-YGSDLNFFFYGVIGSMSVVIAGTI IIGALTVIVWKQFGWLGLYEIIPGFIFGSIGIVVFSLLGKAPSAAMQKRFAEADAHYHSA 	506 481 494
VcSglT PmSiaT EcPUTP	DPKGISVTSSMFVTDRSFNIAAYGIMIVLAVLYTLFW 543 PAKQLSLDDSETSEN	

Supplementary Figure S1. Amino acid sequence alignment of the SSS family transporters SGLT of *V. parahaemolyticus* (vSGLT), SiaT of *P. mirabilis* (PmSiaT) and PutP of *E. coli* (EcPutP). The alignment was performed with Clustal Omega [1]. Amino acid sequences forming TMDs are underlined. TMDs are numbered as described in Figure 2a. Amino acids highlighted in red coordinate sodium at the Na2 site, while amino acids in orange belong to the recently described Na3 site of PmSiaT. Amino acids labeled in blue constitute the central substrate binding site. Amino acids highlighted in blue and *italic* interact with the substrate via water molecules. Amino acids highlighted in brown form the outer "thin" hydrophobic gate. For PutP, amino acids of particular functional significance are highlighted in **bold** (compare also Table 2). Information was taken from the following references: vSGLT [2,3], PmSiaT [4], EcPutP [5-9].

Function	PutP	vSGLT	SiaT
Na2 site	cTMD1: A53, M56	cTMD1: A62, I65	cTMD1: A56, L59
	cTMD8: A337, S340,	cTMD8: A361, S364,	cTMD8: A339, S342,
	T341	S365	S343
Na3 site	cTMD5: D187 (?)	no experimental	cTMD5: D182
	cTMD8: S340 (?),	evidence	cTMD8: S342, S345
	C344 (?),		S346
	Q345 (?)		
central substrate	cTMD1: S54, S57 (?)	cTMD1: Q69	cTMD1: T58, S60, T63
binding site	cTMD6: Y248, P252 (?)	cTMD2: E88, S91	cTMD2: F78, Q82
	cTMD8: C344, M369 (?)	cTMD6: N260	cTMD3: R135
		cTMD7: K294	cTMD6: N247, Q250
		cTMD10: Q428	
2 nd substrate	cTMD1: S57, W59 (?)	cTMD1: S66 (?)	no experimental
binding site ^b	cTMD6: W244, Y248 (?)	cTMD6: Y269, R273 (?)	evidence
	cTMD10: L398, S402 (?)	cTMD8: S365, S368 (?)	

Suplementary Table S1. Amino acids involved in sodium and substrate binding in PutP, vSGLT and SiaT^a

^aThe data of the sodium and the central substrate binding sites of vSGLT and PmSiaT were taken from the analyses of respective crystal structures [4,10]. For PutP, the amino acids proposed to be involved in sodium and substrate binding were identified by amino acid replacements in combination with comprehensive analyses of transport kinetics, ligand affinities and site directed labeling approaches [5-8]. The location of a 2nd substrate binding site in PutP and vSGLT was predicted based on computational analyses in combination with amino acid replacements, substrate binding and transport studies [11]. ^bOf note: Structural alignments between LeuT and vSGLT revealed that the crystallographically identified galactose-binding site in vSGLT [10] is located in a more extracellular location relative to the central substrate-binding site in LeuT. Therefore, the existence of an additional galactose-binding site in vSGLT was suggested and experimentally tested that aligns to the central binding site of LeuT [11]. Following this logic, the amino acids of vSGLT listed in the table under "2nd substrate binding site" constitute the central binding site while the amino acids listed under "central binding site" form a more external binding site.

Number in Figure 5	Isolates (Organisms/SMART ID)		
1	Candidatus	Nitrosocaldus	
	cavascurensis/ <u>A0A2K5ARA0_9ARCH</u> (A0A2K5A)	RA0)	
2	Pseudomonas stutzeri/ <u>A0A0H3Z2P6_PSEST</u> (A0A	.0H3Z2P6)	
3	Pseudomonas fluorescens Q2-87/J2EGW4_PSEFL (J	[2EGW4)	
4	Pseudomonas corrugata/ <u>A0A1B3C9J6_9PSED</u> (A0.	A1B3C9J6)	
5	Actinospica acidiphila/ <u>UPI00052494D7</u>		
6	Streptomyces griseorubens/ <u>UPI00056BF26D</u>		
7	Streptomyces albus/ <u>UPI000689E04F</u>		
8	Streptomyces gilvosporeus/ <u>A0A1V0TJU0_9ACTN</u> (A0A1V0TJU)	0)	

Supplementary Table S2. Information of the isolates from the SMART database used for Figure 5.

References

- Madeira, F.; Park, Y.m.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D., et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids Research* 2019, 47, W636-W641, doi:10.1093/nar/gkz268.
- 2. Watanabe, A.; Choe, S.; Chaptal, V.; Rosenberg, J.M.; Wright, E.M.; Grabe, M.; Abramson, J. The mechanism of sodium and substrate release from the binding pocket of vSGLT. *Nature* **2010**, *468*, 988-991, doi:10.1038/nature09580.
- 3. Faham, S.; Watanabe, A.; Besserer, G.M.; Cascio, D.; Specht, A.; Hirayama, B.A.; Wright, E.M.; Abramson, J. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na⁺/sugar symport. *Science* **2008**, *321*, 810-814, doi:10.1126/science.1160406.
- Wahlgren, W.Y.; Dunevall, E.; North, R.A.; Paz, A.; Scalise, M.; Bisignano, P.; Bengtsson-Palme, J.; Goyal, P.; Claesson, E.; Caing-Carlsson, R., et al. Substrate-bound outward-open structure of a Na⁺-coupled sialic acid symporter reveals a new Na⁺ site. *Nat Commun* 2018, *9*, 1753, doi:10.1038/s41467-018-04045-7.
- 5. Hilger, D.; Böhm, M.; Hackmann, A.; Jung, H. Role of Ser-340 and Thr-341 in transmembrane domain IX of the Na+/proline transporter PutP of *Escherichia coli* in ligand binding and transport. *Journal of Biological Chemistry* **2008**, *283*, 4921-4929, doi:10.1074/jbc.M706741200.
- 6. Quick, M.; Jung, H. A conserved aspartate residue, Asp187, is important for Na⁺-dependent proline binding and transport by the Na⁺/proline transporter of *Escherichia coli*. *Biochemistry* **1998**, *37*, 13800-13806, doi:10.1021/bi980562j.
- 7. Pirch, T.; Quick, M.; Nietschke, M.; Langkamp, M.; Jung, H. Sites important for Na⁺ and substrate binding in the Na⁺/proline transporter of *Escherichia coli*, a member of the Na⁺/solute symporter family. *J Biol Chem* **2002**, *277*, 8790-8796, doi:10.1074/jbc.M111008200.
- 8. Olkhova, E.; Raba, M.; Bracher, S.; Hilger, D.; Jung, H. Homology model of the Na⁺/proline transporter PutP of *Escherichia coli* and its functional implications. *J Mol Biol* **2011**, 406, 59-74, doi:10.1016/j.jmb.2010.11.045.

- 9. Bracher, S.; Schmidt, C.C.; Dittmer, S.I.; Jung, H. Core transmembrane domain 6 plays a pivotal role in the transport cycle of the sodium/proline symporter PutP. *The Journal of biological chemistry* **2016**, *291*, 26208-26215, doi:10.1074/jbc.M116.753103.
- 10. Faham, S.; Watanabe, A.; Besserer, G.M.; Cascio, D.; Specht, A.; Hirayama, B.A.; Wright, E.M.; Abramson, J. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na⁺/sugar symport. *Science* **2008**, *321*, 810-814.
- Li, Z.; Lee, A.S.; Bracher, S.; Jung, H.; Paz, A.; Kumar, J.P.; Abramson, J.; Quick, M.; Shi, L. Identification of a second substrate-binding site in solute-sodium symporters. *J Biol Chem* 2015, 290, 127-141, doi:10.1074/jbc.M114.584383.