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Abstract: Steroid hormones are associated in depth to cellular signaling, inflammatory immune
responses, and reproductive functions, and their metabolism alterations incur various diseases.
In particular, quantitative profiling of steroids in plasma of patients with gastric cancer can provide
a vast information to understand development of gastric cancer, since both sex hormones and
glucocorticoids might be correlated with the pathological mechanisms of gastric cancer. Here, we
developed a gas chromatography-tandem mass spectrometry-dynamic multiple reaction monitoring
(GC-MS/MS-dMRM) method combined with solid-phase extraction (SPE) and microwave-assisted
derivatization (MAD) to determine 20 endogenous steroids in human plasma. In this study, MAD
conditions were optimized with respect to irradiation power and time. The SPE enabled effective
cleanup and extraction for profiling of steroid hormones in human plasma samples. The MAD
could improve laborious and time-consuming derivatization procedure, since dielectric heating
using microwave directly increase molecular energy of reactants by penetrating through medium.
Furthermore, dMRM method provided more sensitive determination of 20 steroids, compared to
traditional MRM detection. The limits of quantification of steroids were below 1.125 ng/mL and
determination coefficients of calibration curves were higher than 0.9925. Overall precision and
accuracy results were below 19.93% and within ±17.04%, respectively. The developed method
provided sufficient detection sensitivities and reliable quantification results. The established method
was successfully applied to profile steroid metabolism pathways in plasma of patients with chronic
superficial gastritis (CSG), intestinal metaplasia (IM), and gastric cancer. Statistical significances of
steroid plasma levels between gastric disorder groups were investigated. In conclusion, this method
provided comprehensive profiling of 20 steroids in human plasma samples and will be helpful
to discover potential biomarkers for the development of gastric cancer and to further understand
metabolic syndrome.

Keywords: endogenous steroids; human plasma; solid-phase extraction; microwave-assisted deriva-
tization; GC-MS/MS-dMRM; profiling analysis; gastric cancer

1. Introduction

Steroid hormones are generally biosynthesized from cholesterol in the adrenal glands,
gonads, brain, placenta, and adipose tissues, and are circulated via bloodstream in the
human body [1]. It is well known that steroids are deeply involved in most physiological
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activities such as cellular signaling, sexual activity, reproductive functions, immune re-
sponses, and homeostasis [2,3]. The metabolism cascades of steroids are mainly regulated
by two major enzymes (i.e., cytochrome P450 (CYP) and hydroxysteroid dehydrogenase
(HSD)) (Figure 1) [4]. Various physiological diseases including congenital adrenal hyper-
plasia, hypertension, and cancer can be correlated with dysregulation of these enzymes,
which lead to alterations of steroid metabolism pathways. In particular, several enzymes
(such as CYP19A1, HSD3B1, and steroid sulfotransferase 2B1b] are involved in progres-
sion of gastric cancer [5–7]. In addition, since gastric cancer has been predominantly
prevalent in male patients, it is speculated that sex steroid hormones play a crucial role
in development of gastric cancer [8]. Nevertheless, it is still unclear pathological relation
between gastric cancer and steroid hormones. Therefore, quantitative profiling of steroids
in biological samples can provide a vast information of uncertain pathological mechanisms
of gastric cancer.
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Since mass spectrometry (MS) could provide high detection selectivity and sensitivity,
analytical methods based on MS combined with chromatographic separations have been
widely employed to determine endogenous steroid metabolites in biological samples [9–11].
Although liquid chromatography (LC)-MS approaches have been extensively used due
to applicability of simple and easy sample preparation, gas chromatography (GC)-MS
methods could provide better chromatographic resolution and ionization reproducibility.
Hence, the GC-MS methods are considered as “gold standard” in steroid profiling [12,13].
Moreover, dynamic multiple reaction monitoring (dMRM) method using tandem MS can
improve identification and quantification of trace level metabolites in biological samples,
due to selective detection of target analytes within retention time windows.

Nonetheless, GC-MS approaches should be employed along with fine sample prepara-
tion including extraction, purification, and chemical derivatization, which is laborious and
time-consuming. For instance, protein precipitation, liquid-liquid extraction, solid-phase
extraction (SPE), and supported liquid extraction (SLE) methods have been performed
to extract steroid hormones from biological samples prior to GC-MS analysis [14–19].
Among them, SPE packed with C18 sorbents could provide effective cleanup, extrac-
tion, and even concentration for profiling of endogenous steroids in biological samples.
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In addition, chemical derivatization should be performed to improve thermal stability,
volatility, and chromatographic performance of steroid hormones [4]. To effectively deriva-
tize steroids, several derivatization methods were compared in terms of derivatization
reagents, reaction time, and heating conditions (i.e., conventional block heating, sonication,
and microwave) [20,21]. Among heating techniques, microwave-assisted derivatization
(MAD) was proved as the most efficient derivatization method [21], since microwave
can directly increase reaction energy of analytes and derivatization reagents by dielectric
heating.

According to previous studies, steroid concentration levels in biological samples have
provided insights to better understand pathophysiological mechanisms in various diseases.
For instance, urinary steroid signatures using hierarchically clustered heat map analysis
could be used for diagnosis of benign prostatic hyperplasia [22]. In addition, by urinary
steroid profiling, it was reported that increased androgen and glucocorticoid levels might
be a characteristic marker for adrenocortical malignant [23]. Interestingly, since the 17β-
estradiol/estrone ratio in cancerous breast tissue was substantially higher than the ratio
in benign breast tissues, sex steroid hormone measurement in breast tissue can be used
as assessment indicator [24]. Additionally, steroid plasma levels in cancer patients can be
utilized to evaluate anticancer drug efficacy [25,26]. Therefore, steroid profiling results of
biological samples will be helpful to find potential biomarkers for various diseases [27].

Herein, we developed a GC-MS/MS-dMRM method combined with SPE and MAD to
profile 20 endogenous steroids in human plasma. The developed analytical method was
applied to 66 plasma samples of patients with chronic superficial gastritis (CSG, n = 20),
intestinal metaplasia (IM, n = 13), and gastric cancer (n = 33) to find potential biomarkers
for gastric cancer. Obtained quantified values of gastric disorder groups were analyzed by
significance analysis. This method provides comprehensive profiling of 20 endogenous
steroids in human plasma and will be a promising tool to discover diagnostic biomarkers
of gastric cancer. Furthermore, this study is expected to provide insights to understand
pathological mechanisms of gastric cancer and other steroidal metabolic disorders.

2. Results and Discussion
2.1. SPE and Microwave-Assisted Derivatization (MAD) Procedure

To extract endogenous steroids and reduce interference materials from complex bi-
ological samples, an SPE method was widely employed as an effective sample cleanup
method [28–30]. Therefore, in this study, the SPE cartridge packed with C18 sorbents was
used to extract 20 steroids in human plasma samples. The SPE protocol was performed
according to a manufacturer’s instruction and a previously developed method [28] with
slight modification. In conclusion, overall recoveries of endogenous steroids in plasma
samples were shown similarly with previous reports (87–101%).

For sensitive analysis of steroids in biological samples, it is essential to employ deriva-
tization of steroids to obtain better volatility, peak separation, and detection sensitivity.
On chemical structures of steroids, ketone groups do not have to be derivatized to introduce
a GC-MS, while hydroxyl groups should be protected to improve volatility and thermal
stability [31]. For this reason, silylation reactions, such as trimethylsilylation (TMS), have
been predominantly employed to derivatize hydroxyl groups of steroids. In preliminary
test, several representative reagents for derivatization of hydroxyls were evaluated by
derivatization yields (Figure 2). Among them, since MSTFA:NH4I:DTE (500:4:2, v/v/v)
mixture provided high yields of steroid derivatives, the reagent mixture was chosen for
further optimization of derivatization conditions.
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androstenedione; PROG: progesterone).

Similarly, derivatization protocols have been developed to obtain better sensitivities
and thermal stabilities of endogenous steroids. For example, microwave-assisted deriva-
tization (MAD), sonication-assisted derivatization (SAD), and traditional heating block
derivatization were assessed by comparing derivatization yields [21]. A MAD method
provided increased relative response factor and reduced reaction time compared to thermal
block heating and SAD, due to the use of dielectric heating. Moreover, for SAD, although
heating using water bath increased response values compared to that using thermal block,
no difference was observed between water bath heating with/without sonication. For this
reason, we utilized MAD to derivatize targeted 20 endogenous steroids in human plasma.

A MAD reaction through dielectric heating could easily convert molecule into its
activated state via microwave penetration [32]. In commercial microwave ovens using 2.45
GHz, the temperature increase of reactants is mainly influenced by microwave power and
irradiation time. Therefore, a MAD protocol was optimized with respect to microwave
power and irradiation time. To investigate optimized MAD conditions, six representa-
tive analytes (DHEAS, AN, adione, E2, PROG, and F) of 20 endogenous steroids were
selected according to structural characteristics. Microwave power and irradiation time
were evaluated by comparing relative response values in the range of 100–600 W and 1–5
min, respectively. As shown in Figure 3, six steroid derivatives were shown the highest
relative response values, when microwave power and irradiation time were 300 W and
1 min, respectively. According to increase of irradiation time, relative response values of
analytes were decreased. In addition, microwave power around 300 W exhibited similar
results. Moreover, under optimized MAD conditions, a MAD method was compared with
traditional heating method using thermal block. Six representative steroid derivatives
showed a nearly identical relative response when the MAD method was compared with
thermal block heating for 20 min (Figure S1). Consequently, the MAD method was efficient
nearly 20 times, compared to traditional heating methods using thermal block.
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2.2. GC-MS/MS-dMRM

Generally, an MRM method has been widely used to determine trace level of endoge-
nous metabolites in biological samples. Using abundant and specific precursor-product
ion transitions, MRM mode enables selective and sensitive determination of endogenous
steroids in complicated biological samples without any serious effects of matrix contam-
inants [33]. Nevertheless, traditional MRM method has been suffered from its relatively
low metabolite coverage and throughput capacity [34]. Via scanning every transition near
the expected retention time of chromatographic run, scheduled strategy of MRM (namely
dynamic MRM) could provide further increase of detection sensitivity and throughput [35].
Therefore, in this study, the dMRM method using GC-MS/MS was utilized to sensitively
detect endogenous steroids in human plasma samples.

Through investigation of EI-MS spectra and MS/MS spectra for steroid derivatives,
MRM transitions based on sensitive and reproducible MS/MS fragment ions were selected
and further collision energy was optimized (Table S1). Furthermore, to effectively detect
MRM transitions of target steroids, dMRM method was employed. Since dMRM methods
can selectively detect target MRM transitions only near their retention time windows,
dMRM provided better detection sensitivity for endogenous steroids compared to tradi-
tional MRM. As shown in Figure 4, detection sensitivity of most steroids was increased
almost 10 times, when MRM chromatograms using dMRM mode were compared with that
using traditional MRM. In conclusion, the dMRM method provided better detection results
compared to traditional MRM method.

2.3. Analysis of Human Plasma with CSG, IM, and Gastric Cancer

Using the developed method, 20 endogenous steroids in 66 human plasma sam-
ples were determined. For reliable quantification and confirmation results, MRM chro-
matograms of all target steroids and isotope labeled ISs were reconstructed, as shown in
Figure 5. Individual MRM chromatogram for all analytes showed that 20 target steroids
were sensitively detected without any severe interferences. Peak area ratios of endogenous
steroids to corresponding ISs were investigated to quantify 20 steroids in human plasma
and used to find metabolic alterations in steroid metabolic pathways. Most endogenous
steroids could be quantified using this method. Calculated concentration levels and the
p-values of target steroids in human plasma were summarized in Table 1. The p-values of
target steroid plasma levels between groups were analyzed using R 4.0.3 (R Core Team,
Vienna, Austria).
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Figure 5. MRM chromatograms of 20 steroids and 5 isotopically labeled internal standards in human
plasma sample. (AN: androsterone; DHEA: dehydroepiandrosterone; A-diol: androstenediol; 7α-
OH-DHEA: 7α-hydroxydehydroepiandrosterone; DHEAS: dehydroepiandrosterone sulfate; A-dione:
androstenedione; DHT: dihydrotestosterone; T: testosterone; E1: estrone; E2: 17β-estradiol; E3:
estriol; CHOL: cholesterol; 7α-OH-CHOL: 7α-hydroxycholesterol; PREG: pregnenolone; PROG:
progesterone; 17α-OH-PROG: 17α-hydroxyprogesterone; 17α-OH-PREG: 17α-hydroxypregnenolone;
21-DF: 21-deoxycortisol; E: cortisone; F: cortisol; T-d5: testosterone-2,2,4,6,6-d5; E2-d5: 17β-estradiol-
2,4,16,16,17-d5; CHOL-d6: cholesterol-2,2,3,4,4,6-d6; PROG-d9: progesterone-2,2,4,6,6,17α,21,21,21-d9;
F-d4: cortisol-9,11,12,12-d4).
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Table 1. Concentrations and p-values of 20 steroids in human plasma samples.

Number Name CSG
(ng/mL) IM (ng/mL) GC (ng/mL) p-Values *

1 DHEAS 200.031 ±
228.170

186.637 ±
145.415

144.972 ±
167.46 0.2108

2 AN 0.800 ± 0.01 0.800 ± 0.006 0.803 ± 0.014 0.9960
3 DHEA 0.568 ± 0.019 0.565 ± 0.015 0.562 ± 0.012 0.4073
4 A-diol 0.535 ± 0.062 0.554 ± 0.103 0.587 ± 0.340 0.6514

5 7α-OH-
DHEA 0.414 ± 0.045 0.542 ± 0.163 0.442 ± 0.067 0.9361

6 E1 0.937 ± 0.002 0.937 ± 0.001 0.937 ± 0.001 0.7711
7 DHT 0.224 ± 0.003 0.225 ± 0.002 0.224 ± 0.004 0.1146
8 A-dione 0.216 ± 0.014 0.214 ± 0.005 0.214 ± 0.006 0.2579
9 E2 1.533 ± 0.005 1.531 ± 0.002 1.532 ± 0.002 0.0397

10 T 0.312 ± 0.010 0.313 ± 0.008 0.317 ± 0.025 0.1522
11 PREG 1.688 ± 1.896 1.228 ± 0.671 1.034 ± 0.232 0.2030

12 E3 0.306 ±
0.00048

0.306 ±
0.00026

0.306 ±
0.0004 0.9436

13 PROG 1.677 ± 1.511 40.625 ±
125.020 1.628 ± 1.845 0.9954

14 17α-OH-
PREG 0.348 ± 0.256 0.228 ± 0.053 0.269 ± 0.131 0.6539

15 17α-OH-
PROG 2.344 ± 2.768 0.228 ± 0.053 1.284 ± 1.450 0.9679

16 7α-OH-
CHOL 0.680 ± 0.492 0.591 ± 0.046 0.634 ± 0.348 0.3760

17 CHOL 0.088 ± 0.010 0.085 ± 0.008 0.082 ± 0.012 0.4055
18 21-DF <LOQ 0.030 ± 0.001 0.031 ± 0.002 0.2637

19 E 35.925 ±
47.760

10.399 ±
9.193

42.649 ±
58.608 0.1724

20 F 29.913 ±
50.956

13.460 ±
11.376

34.821 ±
41.423 0.2630

* The p-values were determined with a Kruskal–Wallis test. (DHEAS: dehydroepiandrosterone sul-
fate; AN: androsterone; DHEA: dehydroepiandrosterone; A-diol: androstenediol; 7α-OH-DHEA: 7α-
hydroxydehydroepiandrosterone; E1: estrone; DHT: dihydrotestosterone; A-dione: androstenedione; E2:
17β-estradiol; T: testosterone; PREG: pregnenolone; E3: estriol; PROG: progesterone; 17α-OH-PREG: 17α-
hydroxypregnenolone; 17α-OH-PROG: 17α-hydroxyprogesterone; 7α-OH-CHOL: 7α-hydroxycholesterol; CHOL:
cholesterol; 21-DF: 21-deoxycortisol; E: cortisone; F: cortisol).

Using steroid concentration levels in plasma samples, we investigated to find appro-
priate biomarkers determining state of gastric disorders (such as CSG, IM, and gastric
cancer). As shown in Figure 6A, based on concentrations of target steroids from plasma
samples, E2 levels in plasma samples showed a significant difference between three gastric
disorder groups. Among these groups, a statistical difference of E2 levels between IM
and gastric cancer was confirmed via post hoc test. According to previous studies, it was
reported that E2 inhibits gastric disorders including gastric cancer and Helicobacter pylori-
induced pathology [36–38]. In this study, E2 plasma levels of IM group were suppressed
compared to CSG and gastric cancer groups. We speculated that patients with IM (known
as earlier stage of gastric cancer) are lost or losing their controlling capability of E2 against
gastric cancer. Meanwhile, interestingly, E2 concentrations of gastric cancer patients were
significantly higher than that of IM patients. This result carefully suggested that increased
E2 plasma levels of gastric cancer patients might be associated with response against the
gastric cancer tissues.
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Moreover, the step-by-step metabolism state in steroid metabolic pathways were
also investigated by analyzing concentration ratios of products to precursors, since the
precursor-product metabolism state can reflect activity and/or expressions of metabolism
enzymes relating to steroid metabolism [39]. In this study, results for significance analysis of
precursor-product ratios were summarized in Table 2. As shown in Figure 6B,C, metabolism
pathways related to CYP11B1 and HSD17B were significantly different between gastric
disorder groups. Interestingly, HSD17B might be also associated with gastric cancer,
since it was reported that HSD17B could be related to cancerous gastric mucosa [40,41].
Nevertheless, other steroid metabolism pathways related to CYP11B1 and HSD17B (such
as F/17α-OH-PROG and A-diol/DHEA) were not shown significant differences between
gastric disorder groups. In-depth studies on other multiple metabolism states and related
enzymatic activity should be employed, since CYP11B1 and HSD17B have also catalytic
activity in several steroid metabolism pathways.

Nonetheless, this method could provide reliable quantification results of 20 endoge-
nous steroid hormones in human plasma samples. Moreover, this study demonstrated that
gastric cancer might be sensitive to estrogen and associated with estrogen-related enzymes.
In conclusion, this study suggested analytical method to profile endogenous steroids in
human plasma and to find potential biomarkers for gastric disorders.
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Table 2. p-values of concentration ratios of plasma steroids from patients with CSG, IM, and gastric
cancer.

Enzymes 1 p-Values 2
p-Values 3

CSG:IM CSG:Gastric
Cancer

IM:Gastric
Cancer

CYP7A1
(7α-OH-

CHOL/CHOL)
0.9611 0.7737 0.9627 0.8322

CYP11A1
(PREG/CHOL) 0.6121 0.3109 0.0596 0.583

HSD3B1
(PROG/PREG) 0.3408 0.2037 0.2042 0.8167

CYP17A1
(17α-OH-

PROG/PROG)
0.3094 0.2937 0.9204 0.1100

CYP17A1
(17α-OH-

PREG/PREG)
0.8078 0.8394 0.5061 0.8357

CYP11B1,
CYP21A2

(F/17α-OH-
PROG)

0.0854 0.6451 0.1457 0.0370

HSD11B1,2
(E/F) 0.1599 0.0936 0.4948 0.1074

CYP11B1
(21-DF/17α-OH-

PREG)
0.0463 0.606 0.0546 0.0393

CYP17A1
(DHEA/17α-
OH-PREG)

0.7316 0.5730 0.7642 0.4568

CYP7A1
(7α-OH-

DHEA/DHEA)
0.8481 0.8250 0.8051 0.5179

SULT2A1, STS
(DHEAS/DHEA) 0.6698 0.7575 0.3868 0.6873

AKR1C4
(AN/DHEA) 0.4075 0.2653 0.9348 0.2090

HSD17B
(A-diol/DHEA) 0.7932 0.5730 0.5789 0.8548

HSD3B
(T/A-diol) 0.4422 0.2936 0.3028 0.6170

SRD5A2
(DHT/T) 0.2404 0.8683 0.2366 0.1213

HSD3B (A-
dione/DHEA) 0.7530 0.4282 0.5695 0.9903

CYP19A1
(E1/A-dione) 0.6811 0.6584 0.7068 0.3864

CYP19A1 (E2/T) 0.0871 0.0235 0.4608 0.1128

HSD17B (E3/E2) 0.0290 0.0213 0.5300 0.0168
1: Abbreviations of enzymes: CYP, cytochrome P450; HSD, hydroxysteroid dehydrogenase; SULT, sulfotransferase;
AKR, aldo-keto reductase; SRD, steroid-5α-reductase; 2: The p-values were determined with a Kruskal–Wallis
test; 3: The p-values were determined with a Mann–Whitney U test.
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3. Materials and Methods
3.1. Chemicals and Materials

Most of authentic standards (21-deoxycortisol (21-DF), androstenedione (A-dione), estrone
(E1), 17β-estradiol (E2), progesterone (PROG), dihydrotestosterone (DHT), cholesterol (CHOL),
cortisol (F), cortisone (E), androsterone (AN), estriol (E3), 17α-hydroxypregnenolone (17α-OH-
PREG), and 17α-hydroxyprogesterone (17α-OH-PROG)) and chemicals (ammonium iodide
(NH4I), dithioerythritol (DTE), pyridine, trifluoroacetic acid (TFA), and methyl tert-butyl ether
(MTBE)) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Dehydroepiandrosterone
sulfate (DHEAS), dehydroepiandrosterone (DHEA), and pregnenolone (PREG) were obtained
from Avanti Polar Lipids (Alabaster, AL, USA). Androstenediol (A-diol), 7α-hydroxycholesterol
(7α-OH-CHOL), and 7α-hydroxy DHEA (7α-OH-DHEA) were supplied from Steraloids (New-
port, RI, USA). Testosterone (T) and dichloromethane were purchased from Junsei (Tokyo,
Japan). Five isotopically labeled authentic steroids (testosterone-2,2,4,6,6-d5, cholesterol-2,2,3,4,4,6-
d6, 17β-estradiol-2,4,16,16,17-d5, cortisol-9,11,12,12-d4, and progesterone-2,2,4,6,6,17α, 21,21,21-
d9) were obtained from C/D/N Isotopes (Pointe-Claire, QC, Canada). As the trimethylsilyl
(TMS) derivatization reagents, N-methyl-N-trifluorotrimethylsilylacetamide (MSTFA) and N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS) were pur-
chased from Macherey-Nagel (Duren, Germany) and Supelco Chemical (Bellefonte, PA, USA),
respectively. All organic solvents for sample preparation reagents such as ethyl acetate (EA),
acetonitrile (ACN), and methanol (MeOH) were supplied from J.T. Baker (Rockford, IL, USA).
De-ionized water (DW) was produced using Millipore Direct-Q3 purification system from the
Millipore Corporation (Billerica, MA, USA). All chemicals used in this study were analytical
grade or HPLC grade.

3.2. Preparation of Human Plasma

A total of 66 patients with different stages of gastric diseases (chronic superficial
gastritis (CSG, n = 20), intestinal metaplasia (IM, n = 13), and gastric cancer (n = 33)) were
enrolled in this study. All blood samples were collected through routine clinical test and
categorized according to their gastric diseases. Collected human plasma samples were
immediately frozen in liquid nitrogen and stored in deep freezer at –80 ◦C until analysis.
All of sample information is summarized in Table S2. All experimental procedures in
this study were approved by the ethical committee of Severance Hospital, Seoul, Korea
(4-2013-0880).

3.3. Solid-Phase Extraction (SPE) Procedure

Overall solid-phase extraction procedures were performed according to manufac-
turer’s instruction with slight modification. Two hundred microliter of collected plasma
were transferred into 2 mL centrifuge tube, followed by addition of 5 µL of internal stan-
dard (IS) solutions (1 µg/mL). Then, plasma samples were diluted with 800 µL of 0.2 M
acetate buffer at pH 5.2. SPE cartridges filled with C18 sorbent (Agilent, Santa Clara, CA,
USA), which were sequentially pre-conditioned with 1 mL of MeOH and 1 mL of DW. After
sample loading, the SPE cartridges were washed with 1 mL of DW, followed by dryness
under vacuum (–30 kPa). Finally, all target steroids were eluted from dried SPE sorbents
using 1 mL of EA.

3.4. Microwave-Assisted Derivatization (MAD) Procedure

Sample solution eluted from SPE cartridges was dried under gentle stream of nitrogen
gas to remove trace water. The silylation reagents mixture (MSTFA:NH4I:DTE, 500:4:2,
v/v/v) was added into dried sample vials. Then, sample vials were transferred to commercial
microwave oven (Samsung Electronics, Seoul, Korea), which is able to manually control
irradiation power and time. For silylation of 20 target steroids, derivatization reactions were
performed under optimized irradiation power and time: 300 W and 60 s. After microwave-
assisted derivatization (MAD), sample vials were transferred to auto-sampler and sample
aliquots (2 µL) were injected into GC-MS/MS.
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3.5. GC-MS/MS-MRM Conditions

GC-MS/MS analyses were employed by an Agilent 7890B gas chromatograph com-
bined with an Agilent 7000C triple quadrupole mass spectrometer (Agilent, Palo Alto, CA,
USA). Sample aliquot (2 µL) was injected into the injection port heated at 280 ◦C with split
mode (5:1). An HP-ULTRA1 capillary column (17 m × 0.2 mm i.d., 0.11 µm film thickness)
was installed to separate 20 target steroids. As a carrier gas, helium gas (99.999%) was set
at a flow rate of 0.8 mL/min. The oven temperature was initially 150 ◦C, ramped to 230 ◦C
at 20 ◦C/min and held for 2 min, increased to 250 ◦C at 2 ◦C/min and held for 2 min, and
then finally elevated to 310 ◦C at 30 ◦C/min and held for 2 min. For dynamic multiple re-
action monitoring (dMRM) detection, characteristic ions and retention times of 20 steroids,
as silylated derivatives, were investigated with full scan mode (m/z 70–750). The mass
spectrometric conditions were set as follows: electron ionization (EI) energy at 70 eV, ion
source temperature at 230 ◦C, and analyzers temperature at 150 ◦C. High-purity nitrogen
gas was used as collision-activated dissociation gas, and set at flow rate of 1.5 mL/min.
The optimized dMRM parameters were summarized in Table S1.

3.6. Method Validation

The developed GC-MS/MS method combined with SPE and MAD was validated
in terms of limits of detection (LODs) and quantification (LOQs), linearity, precision,
and accuracy. In this study, the use of five isotopically labeled ISs enabled alleviation
of unfavorable results such as loss of steroids during sample pretreatment and variable
detection sensitivity. The LODs and LOQs were defined as concentration levels over signal-
to-noise (S/N) ratio at 3 and lowest concentrations satisfied with acceptable precision
and accuracy, respectively. Calibration curves for 20 steroids were constructed with eight
different concentration points. The determination coefficients (r2) were investigated over
calibration ranges for all target analytes. The intra- and inter-day assay was employed to
determine precision and accuracy of the developed analytical method with low, medium,
and high concentrations in five replicates. All validation results demonstrated that the
developed method is reliable and accurate for 20 endogenous steroids in human plasma
samples. Overall validation data was summarized in Table S3.

4. Conclusions

In this study, an SPE-MAD-GC-MS/MS-dMRM method was developed to profile
20 endogenous steroid hormones in human plasma. Under the optimized conditions
respect to irradiation power and time, the MAD method could provide highly sensitive
determination of target steroids. Two hundred microliter of plasma sample was sufficient
to determine target analytes using C18-SPE cleanup. Moreover, dMRM method could
yield high detection sensitivity of target steroids compared to traditional MRM method.
The established method was successfully applied to human plasma with CSG (n = 20), IM
(n = 13), or gastric cancer (n = 33). According to the profiling results for steroids, significant
difference of E2 plasma levels between gastric disorder groups were identified. Moreover,
by investigation of step-by-step metabolism state, it was demonstrated that metabolism
pathways related to CYP11B1 and HSD17B were significantly altered between gastric
disorder groups. Interestingly, E2 and HSD17B could be related to cancerous diseases.
Therefore, this method is expected to be a useful method to investigate metabolic alterations
of steroid metabolism pathways in human plasma and would be helpful to understand
pathogenic mechanisms of gastric disorders and discover potential biomarkers for gastric
disorders.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/4/1872/s1. Figure S1. Comparison of relative response for 6 steroid derivatives using MAD
and traditional thermal block heating; Table S1. List of dMRM transitions and parameters for steroid
analysis; Table S2. Summary of information for enrolled patients with different gastric disorders;
Table S3. Summary of method validation results for 20 steroid hormones.

https://www.mdpi.com/1422-0067/22/4/1872/s1
https://www.mdpi.com/1422-0067/22/4/1872/s1
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