

Figure S1. The effect of temporal variation in methionine input (Metin: μ M/hr) (**A**) on rate of the sum of all S-Adenosylmethionine mediated methyltransferase reactions (V_{METH}), the reaction rates of cystathionine β -synthase (V_{CBS}), betaine-homocysteine methyltransferase (V_{BMHT}), and of methionine synthase (V_{MTR}) when BHMT is expressed and active, as in the liver (**B**), or when BHMT is not expressed/active, as in the bovine ovary (**C**). Simulations are based on the mathematical model described by Reed et al.[12], where 5-methyltetrahydofolate (the substrate for methionine synthase (MTR)) is held constant. In this model, BHMT was inactivated by setting V_{max} to zero (Equation 1). Simulations were generated using the software package Matlab and its inbuilt solver for stiff differential equations (ode15s):

https://www.mathworks.com/products/matlab.html.

$$V_{BHMT} = \left(\delta_1^{BHMT} - \delta_2^{BHMT} \left([SAM] + [SAH] - \delta_3^{BHMT} \right) \right) \left(\frac{V_{max}^{BHMT} [Hcy]}{K_m^{BHMT} + [Hcy]} \right) \quad (Equation 1)$$

In Equation 1 V_{BHMT} = net rate of production by betaine-homocysteine methyltransferase; [Hcy] = homocysteine concentration; [SAM] S-adenosylmethionine concentration; [SAH] S-adenosylhomocysteine concentration; V_{max}^{BHMT} = maximum rate of enzyme reaction; K_m^{BHMT} = Michaelis constant; and δ_1^{BHMT} , δ_2^{BHMT} , δ_3^{BHMT} are constant parameter values used by Reed et al. (2004) [12].

The model predicts that, in cell types where BHMT is expressed, major changes in the system in response to fluctuating methionine input (Metin) are limited to the rates of transulfuration of homocysteine (V_{CBS}) and remethylation of homocysteine to methionine; the methylation rate (V_{MET}) remains virtually unaltered. In contrast, in cell types where BHMT is not expressed, the methylation rate (V_{MET}) is predicted to fluctuate with methionine input (Metin).

Cell culture	Methionine (µM)	Embryo culture	Methionine (µM)
Lebovitz L-15	502.6	InVitroCare IVC1	0.0
Waymouth's 752/1 MB	335.1	InVitroCare IVC3	100.0
DMEM	201.1	Origio ISM1	89.0
IMDM	201.1	Origio BA	54.0
TCM199	100.5	Vitrolife G-1™	0.0
MEM	100.5	Vitrolife G-2™	63.0
RPMI-1460	100.5	Sage QACM	0.0
Williams' E	100.5	Sage QABM	56.0
McCoy's 5A	100.0	Cook SICM	4.0
BME	50.3	Cook SIBM	43.0
MDCB	30.0	Irvine CSC	53.0
Ham's F-10	30.0	IVFOnline Global	51.0
Ham's F-12	30.0		
NCTC-109	29.8		

Table S1. Methionine concentration in commercially available cell, oocyte maturation and embryo culture media. Adapted from source(s): Sigma Aldrich (<u>https://www.sigmaaldrich.com</u>) [24, 25].

Abbreviation(s): BA, BlastAssist; BME, Basal Medium Eagle; CSC, Continuous Single Culture; DMEM, Dulbecco's Modified Eagle's Medium; IMDM, Iscove's Modified Dulbecco's Medium; ISM1, Innovative Sequential Media 1; MEM, Minimum Essential Medium; QABM, Quinn's Advantage Blastocyst Medium; QACM, Quinn's Advantage Cleavage Medium; RPMI, Roswell Park Memorial Institute Medium; SIBM, Sydney IVF Blastocyst Media; SICM, Sydney IVF Cleavage Media; TCM199, Tissue Culture Medium 199

Figure S2. Relative (to *ACTB*) transcript expression (means \pm SEM) for two steroidogenic enzymes (17 α -hydroxylase and aromatase) to confirm purity of bovine theca- and granulosacell populations respectively for use in 1C transcript analyses. Similar confirmatory quality checks were performed for ovine and porcine theca and granulosa cells (data not shown). See Table S2a for details of qPCR.

Table S2a. List of primers and Taqman probes and Accession numbers used for detection of 1C genes in somatic cells, oocytes and embryos from the four species studied.

Gene	Primers and probe (5'-3')	NCBI accession no.
BOVINE AND	<u>D OVINE</u>	
BHMT		
FP	AGAGAAAATATCCGGGCAGAAAG	NM 001011679
RP	TCACACCCCTGCTACCAAA	Bos Taurus
Probe	FAM-AATGAAGCCGCTTGTGACATTGCCC-TAMRA	
<u>MAT1A</u>		
FP	ACGGTGCGGTCATCCCTAT	NM_001046497
RP	CCAGCGTTATGTCTTCGTTGTG	Bos Taurus
Probe	FAM-CCATACCGTCGTCATCTCCGTGCA-TAMRA	
<u>MAT2A</u>		
FP	AGTGCCCAAAAAGCTTAAATATTGA	NM_001101131
RP	CTTTCCCGCAGAGCTTGAGG	Bos Taurus
Probe	FAM-TGTTAGCCTTTTTTCCCCAGACTTGTTGG-TAMRA	
<u>ACTB</u>		
FP	TGTGCGTGACATCAAGGAGAA	AF129289
RP	CGCAGTGGCCATCTCCTG	Ovis aries
Probe	FAM-CTGCTACGTGGCCCTGGACTTCGA-TAMRA	
<u>CYP17A1</u>		
FP	TCATCTCGCCATCGCCATCGTTAAGCT	NM_001009483
RP	CGGGCTAGCATCTCACCTACA	Ovis aries
Probe	FAM-TTGCCCTTTGGAGCCGGACCC-TAMRA	
<u>CYP19A1</u>		
FP	TGGGTTGCCATTGCCTTC	NM_001123000
RP	GGACAGTAAGGAGCTGGAGTGAG	Ovis aries
Probe	FAM-CCGTTGGAAAAGACAAGTCACCAGCAA-TAMRA	
PORCINE		
<u>BHMT</u>		
FP	CCTCAGAGCCGGATCGAAT	U53421
RP	CCCCTGTTCTCCAGCTTGTC	Sus scrofa
Probe	FAM-TCATGCAGACCTTCACCTTCTATGCCAGT-TAMRA	
<u>MAT1A</u>		
FP	TGCAGTACACAGGACAATGG	XM_001925608
RP	GCACGGAGATGACGATGGT	Sus scrofa
Probe	FAM-CCGTCATCCCCGTGCGCA-TAMRA	
<u>MAT2A</u>		

FP	AGTGCCCAAAAAGCTTAAATATTGA*	NM_001101131
RP	CTTTCCCGCAGAGCTTGAGG*	Bos Taurus
Probe	FAM-TGTTAGCCTTTTTTCCCCAGACTTGTTGG-TAMRA*	
<u>ACTB</u>		
FP	TGTGCGTGACATCAAGGAGAA	AF129289
RP	CGCAGTGGCCATCTCCTG	Ovis aries
Probe	FAM-CTGCTACGTGGCCCTGGACTTCGA-TAMRA	
<u>CYP17A1</u>		
FP	TGGCCCAGACCACAATTTAAA	NM_214428
RP	CCCAAAGATGTCCGCAACA	Sus scrofa
Probe	FAM-CTGCTTTCAGACAGACACATGCTCGCC-TAMRA	
<u>CYP19A1</u>		
FP	TCGTGCATAAAGTCCAGGGTTA	NM_214431
RP	CTGTACAGCCAAGAAATCTTAAAGAAGA	Sus scrofa
Probe	FAM-CATGGCAAGCTCTCCTTCTCAAACCAGA-TAMRA	
<u>HUMAN</u>		
<u>BHMT</u>		
FP	TGTGGAGCACCCAGAAGCA	NM_001713
RP	GAAGGTCTGCATGACGTTTGAG	Homo sapiens
Probe	FAM- CGCCAGCTTCATCGAGAGTTCCTCAG-TAMRA	
<u>MAT1A</u>		
FP	GGCTATGCTACCGACGAGACA	NM_000429
RP	CGGGCGTTGAGCTTGTG	Homo sapiens
Probe	FAM- AGTGCATGCCCCTCACCATCATCCT-TAMRA	
MAT2A		
FP		NM_005911
RP		Homo sapiens
Probe	FAM-AIGGCACIIIGCCIIGGIIACGCCC-IAMRA	
ACIB		NNA 001101
KP Ducho		Homo sapiens
Probe	FAM-AICAGAICAIIGCICCICCIGAGCGC-IAMIKA	
RAL		
	TECENCENENTEER	NIM 0208E0 Dattus
		NIVI_050650 Rattus
RP Droho		norvegicus
	FAIVI- AAATACOCCAOAOAOOCCTACAACCTO-TAIVIRA	
FD	GTTCAGTACGTGCAGGATAATGGT	NM 012860 Rattus
RD	TTEGTIGTGTGCACAGAGAGAG	norvegicus
Prohe		norvegicus
MAT2A		
FP	CATCCAGATAAGATTTGTGACCAAA	NM 134351
RP	AGCAACAGTTTCACAAGCCACTT	Rattus norvegicus
Probe	FAM-CCTTGATGCACACCTTCAGCAGGACC -TAMRA	
ACTB		
FP	TCTGTGTGGATTGGTGGCTCTA	NM 031144 Rattus
RP	CTGCTTGCTGATCCACATCTG	norvegicus
Probe	FAM- CCTGGCCTCACTGTCCACCTTCCA-TAMRA	0

Table S2b. List of SYBR Green primers and accession numbers used for detection of the lineage-specific marker in bovine blastocysts (*GATA3*) and associated reference genes, together with *IGF2R* and *AIRN* transcripts.

	Gene		Primer sequence (5'-3')	Product (bp)	NCBI accession no.
	GATA3	FP	AACATCGACGGTCAAGGCAA	217	NM 001076804 1
	UAIAS	RP	GGTGGATGGACGTCTTGGAG	217	1111_001070004.1
	VIA/11A 7	FP	GATATCTGCAATGATGTACTGTCTCTTTT	107	NINA 174014 0
	TVUTAL	RP	CGGTAGTAGTCTCCTTTCATTTTCAA	107	NIVI_174814.2
	TRD	FP	GAATATAATCCCAAGCGTTTTGCT	102	NINA 001075742 1
	IDF	RP	TGGCTCCTGTGCACACCAT	105	NN_001075742.1
	H2AE7	FP	GCAGGAAATGCATCGAAAGAC	126	NIM 17/809 2
	112412	RP	AATGACACCACCAGCAATT	120	NWI_174005.2
	R2M	FP	ATCCAGCGTCCTCCAAAGATTC	132	NM 173893
	DEIN	RP	CTCCCCATTCTTCAGCAAATCG	102	1111_1/3033
	IGF2R	FP	GCAGCCTGTATACCCATCCC	152	NM 174352.2
		RP	ATCAAACACGTACCCGCTGT	102	1111_17 1002.2
	AIRN	FP	GTGATCAACCTGGATTGCTGC	185	NR 104052.1
		RP	AAGCCTGGGATTCTGACTGG		
A. IVI	V media		B. IVF media	с	. IVC media
60-			50-		60-
501					
ξ ⁵⁰			$\widehat{\mathbf{z}}^{40}$	(W	50-
) 40 9			 ⊎ 30-	e (r	40
je 30-				nin :	30
÷ 20-			iệ 20	ithic .	20
ž ₁₀			≚ ₁₀	Me	10
ĘO					
	10	50		-	10 50
	Formula	tion (µM)	Formulation (µM)		Formulation (µM

Figure S3. Embryo production media concentrations of methionine confirmed by HPLC analysis. *In vitro* maturation media (A); *in vitro* fertilisation media (B); *in vitro* culture media (C).

Figure S4. Immunodissection of primary cell lineages in Day 8 bovine blastocysts by the method of Tutt et al. [82]. Transmission microscopy shows isolation of inner-cell mass (ICM) and trophectoderm (TE) (A). Relative expression of TE marker, *GATA3*, in separately pooled ICM and TE cell samples following dissection (B). Validation conducted over five replicates and data presented as mean ± SEM.

Table S3. Top 5 enriched Gene Ontology (GO) terms and KEGG pathways ranked by number of differentially methylated genes of interest (GOI). Abbreviation(s): GOI, genes of interest; FDR, false discovery rate; ICM, inner cell mass; TE, trophectoderm. Venn diagram: pathways enriched in ICM (red circle); pathways enriched in TE (blue circle); pathways enriched in ICM and TE (purple intersection).

bta04014 Ras signalling

bta05166 HTLV-I infection

Inner-cell mass ICM (<i>n</i> =15)	GOI	FDR (q-value)
GO:0016787 Hydrolase activity	18	0.0417
GO:0008233 Peptidase activity	9	0.0186
GO:0008234 Cysteine-type peptidase activity	5	0.0033
GO:0004175 Endopeptidase activity	4	0.0052
GO:0008201 Heparin binding	4	0.0110

Trophectoderm TE (<i>n</i> =17)	GOI	FDR (q-value)
GO:0004672 Protein kinase activity	15	0.0392
GO:0004713 Protein tyrosine kinase activity	4	0.0447
GO:0004402 Histone acetyltransferase activity	3	0.0106
GO:0004714 Receptor protein tyrosine kinase	3	0.0279
GO:0022849 Glutamate-gated ion channel activity	2	0.0001

ICM and TE	G	DI	Fl (q-v	DR alue)
(n=11)	ICM	TE	ICM	TE
GO:0016301 Kinase activity	9	12	0.0291	0.0412
GO:0030165 PDZ domain binding	2	3	0.0225	0.0171
GO:0008081 Phosphoric diester hydrolase	2	3	0.0432	0.0351
GO:0015485 Cholesterol binding	3	2	0.0033	0.0478
GO:0005078 MAP-kinase scaffold	2	2	0.0002	0.0007

Inner-cell mass ICM (<i>n</i> =15)	GO I	FDR (q-value)
bta00562 Inositol phosphate metabolism	3	0.0349
bta04152 AMPK signalling pathway	3	0.0457
bta04136 Autophagy – other	2	0.0349
bta00513 N-Glycan biosynthesis	2	0.0361
bta03050 Proteosome	2	0.0361
Trophectoderm TE (<i>n</i> =17)	GOI	FDR (q-value)
bta05200 Pathways in cancer bta04151 PI3K-Akt signalling	13 10	0.0072 0.0078

ICM and TE	G	DI	FDR (q-value)				
(11-22)	ICM	TE	ICM	TE			
bta01100 Metabolic pathways	17	25	0.0457	0.0157			
bta05205 Proteoglycans in cancer	6	10	0.0348	0.0010			
bta04360 Axon guidance	4	6	0.0449	0.0112			
bta04140 Autophagy – animal	4	5	0.0351	0.0133			
bta04390 Hippo signalling pathway	4	5	0.0361	0.0161			

0.0065

0.0065

8

8

IJMS Supplementary Information

Table S4. Genes of interest (GOI) with the highest number of differentially methylated sites (DMS) selected from each Gene Ontology (GO) term and KEGG Pathway.

	Pathways enriched in ICM	Differ	entially methylated GOI	Ср	Gs	Prom	oter	Exe	on	Intr	on	C	GI	Sho	ore
BP	GO:0006508 Proteolysis	PMPCA	Peptidase, mitochondrial processing alpha subunit	4	8	1		22	2	2	7	24	4	20)
СС	GO:0005829 Cytosol	NELFA	Negative elongation factor complex member A	5	D	1		15		35		31		10	
MF	GO:0016787 Hydrolase	PLCL2	Phospholipase C like 2	9	2	C)	9		8	5	3	В	19	
KEGG	bta00562 Inositol phosphate metabolism	PLCG1	Phospholipase C gamma 1	2	4	C		6		1	8	1	C	5	
	Pathways enriched in TE	Differ	rentially methylated GOI	Ср	Gs	Prom	oter	Exc	on	Intr	on	C	GI	Sho	ore
BP	GO:0035556 Signal transduction	PLCL2	Phospholipase C like 2	11	8	C)	6		11	2	51		16	
СС	GO:0005856 Cytoskeleton	FARP1	FERM, ARH/RhoGEF and pleckstrin domain protein 1	4	9	1		3		46		5		17	
MF	GO:0004672 Protein kinase	IGF1R	Insulin like growth factor 1 receptor	6	1	1		19	9	57		29		11	
KEGG	bta05200 Pathways in cancer	WNT7A	Wnt family member 7A	6	9	C)	3	57		7	16		31	
Path	ways enriched in ICM and TE	Differ	rentially methylated GOI	Ср	Gs	Prom	oter	Exe	on	Intr	on	C	GI	Sho	ore
				ICM	ΤE	ICM	ΤE	ICM	ΤE	ICM	ΤE	ICM	ΤE	ICM	ΤE
BP	GO:0016310 Phosphorylation	TOLLIP	Toll interacting protein	70	83	4	4	32	31	38	47	23	39	34	34
СС	GO:0005770 Late endosome	IGF2R	Insulin like growth factor 2 receptor	25	51	0	11	7	5	18	46	8	32	10	12
MF	GO:0016301 Kinase activity	PRKAR1 B	Protein kinase cAMP- dependent type 1 subunit β	56	81	0	1	6	15	53	75	35	45	16	32
KEGG	bta01100 Metabolic pathways	DBH	Dopamine β-hydroxylase	131	146	5	9	22	24	103	115	38	55	50	61

Abbreviation(s): BP, Biological Process; CC, Cellular Component; CGI, CpG island; ICM, inner cell mass; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, Molecular Function; TE, trophectoderm. † DMS distribution across genomic regions show an excess of annotation due to overlapping genes and inaccurate annotation of promoter regions in Bos taurus genome (Bta.ARS-UCD1.2, April 2018).

				Imprinted ger	nes			
Chr	Gene		Chr	Gene		Chr	Gene	
4	PEG10	9	18	PEG3/USP29	3	21	RTL1	Ŷ
4	PON3	3	18	ITUP1	4	21	PERK10/MEG8	3
4	MEST	Ŷ	18	PEG3	Ŷ	29	CDKN1C	?
6	NAP1L5	ę	18	ZIM2	3	29	H19	8
9	IGF2R	8	21	GTL2/MEG3	3	29	IGF2	Ŷ
9	PLAGL1	9	21	SNRPN	9	29	PHLDA2	8
13	GNAS	3	21	MEG8	3	Х	XIST	Ŷ
13	NNAT	Ŷ	21	MIRG/MEG9	3	?	MAGEL2	Ŷ
14	DGAT1	?	21	MKRN3	3	?	COPG2IT1	3
18	MIMT1	8	21	UBE3A	3	?	TSSC4	8
18	USP29	3	21	XLOC	Ŷ			

 Table S5.
 Known imprinted genes in cattle.
 Adapted from the Catalogue of Imprinted Genes (http://igc.otago.ac.nz/home.html).

Imprinted genes with differentially methylated CpGs in the current study are coloured in **blue**. Imprinted genes associated with disorders in humans (e.g. Beckwith-Wiedemann, Prader-Willi/Angelman and Silver-Russell syndromes) and large animals (Large Offspring Syndrome) are shaded in grey [59, 83]. Paternally imprinted gene (\Im), maternally imprinted gene (\Im).

Figure S5. Two clusters of CpGs were hypomethylated within DMR2 of the *IGF2R* gene in the trophectoderm (TE) lineage following bovine embryo culture in low physiological methionine (10 v 50 μ M). Bedgraphs demonstrate loss (\downarrow , hypomethylated) and gain (\uparrow , hypermethylated) of methylation at individual cytosine residues, and location of CpG clusters **(A)**. Nucleotide sequence showing the two clusters in red. Hypomethylated cytosines in **blue** and hypermethylated cytosine (position 96221634) in pink **c** (**B**).

Figure S6. Bovine *IGF2R* gene is imprinted by antisense transcript, *AIRN*. Bovine genomic region on Chromosome 9 specific to *IGF2R* and *AIRN* (**A**). Multiple sequence alignment for *Igf2r/IGF2R* intron 2 with putative transcription initiation site and consensus binding site of core promoter elements in the bovine genomic region. Nucleotide numbers refer to location on chromosomes (**B**). Abbreviation(s): AP1, activator protein 1; DPE, downstream promoter element; INR, initiation response element.

Embryo sex determination

After ZP removal, individual blastocysts were washed in PVP/PBS (0.1% w/v), transferred in 2 μ l to PCR tubes, and stored at -20°C until PCR.

Amplification reactions were conducted in a total volume of 25 µl containing 12.5 µl ImmoMix[™] Red (Bioline), 0.125 µl BSP primers, 1.25 µl SRY primers, 7.75 µl of RNase-free water and 2 µl DNA template. Positive control DNA was extracted from male bovine liver and female bovine granulosa cells. Amplification was carried out in an Eppendorf AG 22331 thermocycler (Hamburg, Germany) with an initial denaturation at 95°C for 10 min followed by 38 cycles: 95°C for 30s, 55°C for 30s, 72°C for 1 min, with a final extension at 72°C for 7 min. 10 µl of PCR products were electrophoresed on 1.6% agarose gel and stained with ethidium bromide. DNA bands were visualised under an ultraviolet illuminator.

Gene	Primer sequence (5'→3')											Product NCBI accession (bp)				ion r	10.		
SRV	FP TGAAACAAGACCAAAACCGGG 339											FU	FUI581861 1						
<u>5111</u>	R	Р	TCCA	ATGG	ACT	TGC1	CTA	CTGT	-				555		20	5010			
BSP	F	Р	TTTA	ACCT	TAGA	ACA	AAC	CGA	GGC	4			538		Rat	ttana	isuk e	et al.	[69]
	R	Р	TAC	GGAA	AGG	iaaa	GAT	GAC	CTGA	AC									[00]
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
And the second se																			-
							- and					ست					فسندو		
=		-				-						and the second	_		Constant		-		-
and a second							_												
Arrow (1997)																			-
				-															

Table S6. Primers for sex determination of bovine blastocysts

Figure S7. Bovine embryo sex distribution using the SRY/BSP-based method. Lane 1 and 20: 100 bp marker. Lane 2: Male liver +ve control; Lane 3: Female granulosa cell +ve control. Lanes 4 to 19: cleaved embryos. Lane 19: reagent control (RC).

A. Tissue/cells	Quantity	Lysis buffer (µL)		
Liver	20 mg	500		
Granulosa cells:				
Rat	1x10 ⁶ cells	50		
Bovine, ovine, porcine	3 antral follicles	200		
Theca cells:				
Bovine, ovine, porcine	3 antral follicles	200		
HepG2 cells	1x10 ⁶ cells	100		
KGN cells	1x10 ⁶ cells	100		
B. Antibodies	BHMT His			
Primary	Anti-BHMT (1 mg/mL, rabbit polyclonal) (GTX102983, Acris antibodies)	Anti-Histone H3 (0.5 mg/mL, rabbit polyclonal) (ab 1791, Abcam)		
All species	1:5000 1:50	1:100,000		
Secondary	Horseradish Peroxidae (HRP)-conjugated goat anti-rabbit IgG (A9169, Sigma Aldrich)			
All species	1:30,000	1:100,000		
Predicted size	45 kDa	15 kDa		

Table S7. Immunoblotting blotting for BHMT. Tissue/cell quantities and lysis buffer volumes (A), antibodies and antibody concentrations (B).

Lineage	ICM		TE	
Methionine (µmol/L)	50	10	50	10
Replicate				
1	64,582,554 ^a	70,125,142 ^a	83,302,871 ^a	102,310,417ª
	18,826,935 ^b	20,930,071 ^b	23,538,817 ^b	31,671,654 ^b
	(29.2) ^c	(29.8) ^c	(28.3) ^c	(31.0) ^c
2	63,884,223 ^a	82,902,050 ^a	77,140,135 ^a	83,057,058 ^ª
	18,968,032 ^b	25,559,151 ^b	21,008,778 ^b	24,657,595 ^b
	(29.7) ^c	(30.8) ^c	(27.2) ^c	(29.7) ^c
3	89,320,723 ^a	78,350,625ª	59,062,149ª	81,772,406ª
	26,120,363 ^b	22,750,802 ^b	17,074,286 ^b	23,879,134 ^b
	(29.2) ^c	(29.0) ^c	(28.9) ^c	(29.2) ^c

Table S8. Summary of Bismark Final Alignment report. Total sequence pairs read following quality trimming^a. Number of paired-alignments with unique best hit^b. Mapping efficiency (%) is a measure of the sequence pairs that map uniquely to the reference genome^c.