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Abstract: Computational prediction of Protein-Ligand Interaction (PLI) is an important step in the
modern drug discovery pipeline as it mitigates the cost, time, and resources required to screen novel
therapeutics. Deep Neural Networks (DNN) have recently shown excellent performance in PLI
prediction. However, the performance is highly dependent on protein and ligand features utilized for
the DNN model. Moreover, in current models, the deciphering of how protein features determine the
underlying principles that govern PLI is not trivial. In this work, we developed a DNN framework
named SSnet that utilizes secondary structure information of proteins extracted as the curvature
and torsion of the protein backbone to predict PLI. We demonstrate the performance of SSnet by
comparing against a variety of currently popular machine and non-Machine Learning (ML) models
using various metrics. We visualize the intermediate layers of SSnet to show a potential latent space
for proteins, in particular to extract structural elements in a protein that the model finds influential
for ligand binding, which is one of the key features of SSnet. We observed in our study that SSnet
learns information about locations in a protein where a ligand can bind, including binding sites,
allosteric sites and cryptic sites, regardless of the conformation used. We further observed that SSnet
is not biased to any specific molecular interaction and extracts the protein fold information critical
for PLI prediction. Our work forms an important gateway to the general exploration of secondary
structure-based Deep Learning (DL), which is not just confined to protein-ligand interactions, and as
such will have a large impact on protein research, while being readily accessible for de novo drug
designers as a standalone package.

Keywords: SSnet; protein-ligand interaction; drug discovery; deep learning

1. Introduction

Diverse biological processes are dictated by ligand-induced conformational changes
in target proteins. Modern medicine has harnessed the ability to control protein structure
and function through the introduction of small molecules as therapeutic interventions to
diseases. Despite the importance of Protein-Ligand Interactions (PLI) in medicine and biol-
ogy and keen insight into the multitude of factors governing ligand recognition, including
hydrogen bonding [1,2], π-interactions [3], and hydrophobicity [4], the development of
robust predictive PLI models and validation in drug discovery remains challenging.

Reliance on experimental methods to identify and confirm PLIs is time-consuming
and expensive. In contrast, computational methods can save time and resources by filtering
large compound libraries to identify smaller subsets of ligands that are likely to bind to
the protein of interest. In this manner, reliable PLI predictive algorithms can significantly
accelerate the discovery of new treatments, eliminate toxic drug candidates, and efficiently
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guide medicinal chemistry [5]. Currently, Virtual Screening (VS) is commonly used in
academia and industry as a predictive method of determining PLI. Broadly, VS can be
divided into two major categories: Ligand Based Virtual Screening (LBVS) and Structure
Based Virtual Screening (SBVS) [6]. LBVS applies sets of known ligands to a target of
interest and is, therefore, limited in its ability to find novel chemotypes. In contrast,
SBVS uses the 3D structure of a given target to screen libraries, thereby improving its
utility in identifying novel therapeutics [7]. Over the last few decades, many classical
techniques, such as force field, empirical, and knowledge-based [5] PLI predictions, have
been developed, with limited success. Often, these methods show low performance and, in
some cases, even discrepancies when compared with experimental bioactivities [8]. Even
successful methods are often limited by a requirement of high resolution protein structures
with detailed information about the binding pocket [9].

The advent of Machine Learning (ML) and Deep Learning (DL) approaches have
created a path towards solving previously challenging unsolved problems in biology and
chemistry [10–17]. Various reviews summarize the application of ML/DL in drug design
and discovery [18–22]. ML-based PLI prediction has been developed from a chemogenomic
perspective [23] that considers interactions in a unified framework from chemical space and
proteomic space. Some notable examples are: Jacob and Vert [24] used tensor-product-based
features and applied Support Vector Machines (SVM); Yamanishi et al. [25] minimized
Euclidean distances over common features derived by mapping ligands and proteins;
Wallach et al. [26] used a 3D grid for proteins along with 3D convolutional networks;
Tsubaki et al. [27] used a combination of convolutional network for proteins and graph
network for ligands; Li et al. [28] used Bayesian additive regression trees to predict PLI; and,
lastly, Lee et al. [29] applied DL with convolution neural networks on protein sequences.
While these methods provide novel insights for PLI, they do not provide a solid framework
for direct application in drug discovery.

End-to-end learning, a powerful ML/DL technique, has gained interest in recent years
since once the model is trained the users are only required to provide standard protein and
ligand descriptors as input [30]. The end-to-end learning technique involves (i) embedding
inputs to lower dimensions, (ii) formulating various neural networks depending on the
data available, and (iii) using backpropagation over the whole architecture to minimize
loss and update weights. An example of an end-to-end learning model that has achieved
high level of accuracy in PLIs prediction is GNN-CNN [27]. Tsubaki et al. [27] were able
to achieve a remarkable accuracy with only primary sequence information and without
any structural insight. However, PLI is highly dependent on the structural assembly of the
protein [1–4]. Since predicting structure of protein from the primary sequence is still an
unsolved problem, the ability of the ML/DL to understand structural elements and predict
PLI with respect to the ensemble is limited. However, current protein structure-based
ML/DL methods for PLI predictions achieve low accuracy as they suffer from three major
limitations: (i) absence of high resolution structures of protein-ligand pairs for training,
(ii) the 3D grid for the target can form a huge and sparse matrix, which hinder ML/DL
models to learn and predict PLI, and (iii) techniques are sensitive to the method employed
to represent ligand structure, diverse methods have been reported [31–34] and selection of
the optimal ligand representation can be challenging.

Strategies to overcome these limitations have largely focused on developing new
methodologies to reduce target and compound structure space to 1D representations,
thereby providing a dense framework for ML/DL to operate on a small number of input
features. Reduction of 3D protein structure information into 1D allows the machine to
efficiently learn 3D space features of the protein secondary structure, which are required for
ligand interaction. This information, when combined with the way a convolution network
considers the input space, makes the model unbiased towards the protein conformation,
thereby not being limited by the existence of high-resolution protein-ligand structures
adequate for PLI prediction. This feature can solve a major drawback for most virtual
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screening methods since only a limited portion of the proteins’ conformational space can
be crystalized.

Herein, we outline a new ML-based algorithm termed SSnet for the prediction of
PLIs. SSnet uses a 1D representation based on the curvature and torsion of the protein
backbone. Mathematically, curvature and torsion are sufficient to reasonably represent
the 3D structure of a protein [35] and, therefore, contain compact information about
its function and fold. Further, curvature and torsion are sensitive to slight changes in
the secondary structure, which are a consequence of all atom interactions, including
side-chains. These characteristics position SSnet to outperform existing methods of PLI
prediction to rapidly curate large molecular libraries to identify a subset of likely high-
affinity interactors. As outlined below, corresponding analyses are carried out to show the
robustness and versatility of our new model. We analyzed the model using the Grad-CAM
to visualize heatmaps of the activation from the neural network that maximally excite the
input features [36]. The input features can then be used to highlight on the protein 3D
structure the residues that maximally influenced the predicted score.

In the methods and rationale section, we demonstrate how the secondary structure
of proteins is used in the ML/DL framework. We discuss the representation of ligands
following the introduction of SSnet model, possible evaluation criteria, its merits and
demerits. We discuss the datasets used in this work to validate and train SSnet. In the results
section, we first select the ligand descriptor to be used in SSnet. We validate SSnet trained
on two models named: SSnet:DUD-E, a model trained on DUD-E, [37] and SSnet:BDB,
a model trained on the BDB [38] for general application. The applicability as a VS tool
is demonstrated by using enrichment factor. We further show the applicability of SSnet
for a virtual screening task through its high AUCROC and EF score, while maintaining a
lack of conformational bias allowing it to find ligands for cryptic proteins and visualize
important residues considered by SSnet. In the discussion section, we outline some key
conclusions observed from SSnet and its limitations. The conclusion section outlines a
way to incorporate SSnet into the drug-design workflow, as well as provides a future
perspective.

2. Methods and Rationale
2.1. Representation of Proteins

Protein structures exhibit a large conformational variety. Many automated and manual
sorting databases, like SCOP [39], CATH [40], DALI [41], and programs, like DSSP [42],
STRIDE [43], DEFINE [44], KAKSI [45], etc., have provided protein classifications based on
the secondary structure. However, these classifications often conflict with each other [46].
A more promising approach to determine protein fold based on secondary structure has
been introduced by Ranganathan et al. [35] and Guo and Cremer [47] coined Automated
Protein Structure Analysis (APSA). The original idea behind APSA is based on the Unified
Reaction Valley Approach (URVA) developed by Kraka et al. [48], where a reaction path
is characterized by its arc length, curvature, and torsion. Inspired by the representation
of features in APSA, we explored if and how we can utilize a similar secondary structure
characterization in ML/DL approaches for PLI prediction.

A protein can be represented by the α carbons (CA atoms) of the backbone as it defines
a unique and recognizable structure, especially for protein categorization [49]. In fact, a
significant amount of information about the protein is embedded in the secondary structure
elements, such as helices, β sheets, hairpins, coils, turns, etc. Therefore, utilization of these
parameters should retain adequate information to train a ML/DL approach.

The secondary structure information can be retrieved by a smooth curve generated by
a cubic spline fit of the CA atoms. Figure 1a shows the arc length s, scalar curvature κ, and
scalar torsion τ which define the 3D curve r(s). The scalar curvature κ is expressed as a
function of arc length s

κ(s) = |r′′(s)| (1)
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and the scalar torsion

τ(s) =
〈r′(s), r′′(s), r′′′(s)〉

|r′′(s))|2 , (2)

where | · | is the norm and 〈·〉 is the vector triple product. A protein can then be represented
by considering the curvature and torsion at the anchor points (locations of CA) forming
a 1D vector with twice the the number of amino acids [35,47]. We limit the number of
protein chains to 6 and the number of amino acids per chain as 1500 to have consistent
input size. Thus, the input size is (9000, 2), i.e., 6 × 1500 for curvature and the same for
torsion. The databases used for compiling PLI data for training and testing the models
mostly contained 6 chains or lower and 1500 amino acids or lower; therefore, 6 chains and
1500 residues already encompass a large amount of proteomic space that might influence
ligand binding. Furthermore, DNN can be optimized by having the most dense training
and testing dataset; thus, 6 chains and 1500 amino acids were used to include the largest
amount of data, while ensuring that the input is mostly dense.

Figure 1b shows the decomposition of a protein found in Conus villepinii (PDB ID—
6EFE) into scalar curvature κ and torsion τ, respectively. The residues 5 through 10 show
a near ideal α helix type secondary structure, which is represented as an oscillation of τ
with smooth κ. Similarly, the turn (residues 15 to 17) and a non-ideal α helix (residues 20
to 25) are captured in the decomposition plot via unique patterns. Because the curvature
and torsion information of the secondary structure of proteins are encoded as patterns, ML
techniques may be powerful tools to predict PLI through efficiently learned representations
of these patterns. More specifically, we hypothesize that, using convolution, varying sized
filters may be excellent pattern matching methods for discerning structure from these
decomposition plots. More analysis on protein representation is provided in the subsection
SSnet model.
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Figure 1. (a) The tangent vector t, normal vector n, and the binormal vector b of a Frenet frame at
points P1 and P2, respectively, for a curve r(s). (b) Representation of protein backbone in terms of
scalar curvature κ and torsion τ, respectively. The ideal helix, turn, and non-ideal helix is shown in
orange, cyan, and magenta, respectively. The curvature and torsion pattern captures the secondary
structure of the protein.

2.2. Representation of Ligands

A molecule can be represented by the SMILES string, which represents its various
bonds and orientations. However, the SMILES string encodes dense information making
it difficult for an algorithm to decipher and learn chemical properties. A number of al-
ternative representations for ligands have been proposed that model varying aspects of
the ligand in a more machine readable format. The hope is that ML algorithms can more
effectively use these representations for prediction. Since ligand representation is an ongo-
ing research topic, we consider four different methods: CLP [31], GNN [34], Avalon [32],
and ECF [33]. CLP was generated by the code provided by Gómez-Bombarelli et al. [31];
Avalon and ECF were generated from RDKit [50]; and GNN was implemented as proposed
by Tsubaki et al. [27], where we replace the first dense network in Figure 2 by a graph
neural network.
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Figure 2. SSnet model. The curvature and torsion pattern of a protein backbone is fed through
multiple convolution networks with varying window sizes as branch convolution. Each branch
further goes through more convolution with same window size (red, orange, green, and light blue
boxes). A global max pooling layer is implemented to get the protein vector. The ligand vector is
directly fed to the network. Each double array line implies a fully connected dense layer. The number
inside a box represents the dimension of the corresponding vector. In the case of GNN, the ligand
vector is replaced by a graph neural network as implemented by Tsubaki et al. [27].

2.3. Ssnet Model

Figure 2 shows the SSnet model developed in this work. Here, we provide a general
overview of the network, and more details about its specific design operation are given
in the later part of this section. As denoted in the left upper branch of Figure 2, after
conversion into the Frenet-Serret frame and the calculation of curvature κ and torsion τ, κ
and τ data (i.e., decomposition data) is fed into the neural network. We denote this input
as a 2D matrix (1D vector with curvature and torsion reshaped to contain curvature in one
row and torsion in the other), X(0), where each column represents a unique residue and the
rows corresponding the curvature and torsion. The first layer is a branch convolution with
varying window sizes. That is, each branch is a convolution with a filter of differing length.
We perform this operation so that patterns of varying lengths in the decomposition plot
can be recognized by the neural network. Each branch is then fed to more convolutions
of same window size. This allows the network to recognize more intricate patterns in
X(0) that might be more difficult to recognize with a single convolution. The output of
these convolutional branches are concatenated, pooled over the length of the sequence,
and fed to a fully connected dense layer. The rightmost upper branch of Figure 2 shows
a ligand vector which is generated and fed to a fully connected dense layer. The output
of this layer is typically referred to as an embedding. Intuitively, this embedding is a
reduced dimensionality representation of the protein and ligand. The outputs of the
protein embedding and the ligand embedding are then concatenated and fed to further
dense layers to predict the PLI.
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The convolutional network in this research uses filter functions over the protein vector
X(0). To define the convolution operation more intuitively, we define a reshaping operation
as follows:

c(0)i = flat
(

X(0)
row=i:i+K,∀col

)
,

where the flattening operation reshapes the row of X(0) from indices i to i + K to be a
column vector c(0)i . This process is also referred to as vectorization. The size of the filter
will then be of length K. We define the convolution operation as:

X(1)
row=i,∀col = f (W(0)

convc(0)i + b(0)
conv), (3)

where f is a function known as the rectified linear unit (ReLU), W(0)
conv is the weight matrix,

and b(0)
conv is the bias vector. This operation fills in the columns of the output of the

convolution, X(1)
row=i,∀col (also called the activation or feature map). Each row of W(0)

conv is

considered as a different filter, and each row of X(1) is the convolutional output of each of
these filters. These convolutions can be repeated such that the nth activation is computed as:

c(n)i =flat
(

X(n)
row=i:i+K,∀col

)
X(n)

row=i,∀col = f (W(n−1)
conv c(n−1)

i + b(n−1)
conv )

. (4)

We, in our SSnet model, use four different branches with filter sizes of κ = 5, 10, 15,
and 30. The final convolutional activations for layer N can be referred to as X(N)

κ , where
κ denotes the branch. The activation X(N)

κ is often referred to as the latent space because
it denotes the latent features of the input sequence. The number of columns in X(N)

κ is
dependent upon the size of the input sequence. To collapse this unknown size matrix into
a fixed size vector, we apply a maximum operation along the rows of X(N)

κ . This is typically
referred to as a Global Max Pooling layer in neural networks and is repeated R times for
each row in X(N)

κ :

dκ =


max

(
X(N)

κ,row=1,∀col

)
max

(
X(N)

κ,row=2,∀col

)
...

max
(

X(N)
κ,row=R,∀col

)

, (5)

where dκ is a length R column vector regardless of the number of columns in the latent
space X(N)

κ . This maximum operation, while important, has the effect of eliminating much
of the information in the latent space. To better understand the latent space, we can further
process X(N)

κ to understand how samples are distributed. For example, a simple operation
would be to define another column vector v that denotes the total variation in each row of
the latent space:

vκ =


max

(
X(N)

κ,row=1,∀col

)
−min

(
X(N)

κ,row=1,∀col

)
max

(
X(N)

κ,row=2,∀col

)
−min

(
X(N)

κ,row=2,∀col

)
...

max
(

X(N)
κ,row=R,∀col

)
−min

(
X(N)

κ,row=R,∀col

)

. (6)

The concatenation of vectors d and v help elucidate how the samples are distributed
in the latent space. As such, we can use these concatenated vectors as inputs to a fully
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connected dense layer which can learn to interpret the latent space. This output is referred
to as the embedding of the protein, yprot, and is computed as

yprot = f (Wprot · [dT
5 , vT

5 , dT
10, vT

10, dT
15, vT

15, dT
20, vT

20]
T + bprot), (7)

where Wprot is the learned weight matrix, and bprot is the bias vector of a fully connected
network.

The method described above is similar to a technique recently used in speech verifi-
cation systems, where the window sizes need to be dynamic because the length of audio
snippet is unknown [51,52]. In speech systems, the latent space is collapsed via mean and
standard deviation operations, and the embeddings provided for these operations are
typically referred to as D-Vectors [51] or X-Vectors [52]. In proteins, we have a similar
problem as the length of the decomposition sequence to consider the active site(s) of protein
is dynamic and of unknown sizes. By including the window sizes of 5, 10, 15, and 20
(number of residues to consider at a time), we ensure that the network is able to extract
different sized patterns from backbones of varying length.

After embedding the protein and the ligand, we concatenate the vectors together and
feed them into the final neural network branch, resulting in a prediction of binding, ŷ,
which is expected to be closer to “0” for ligands and proteins that do not bind and closer to
“1” for proteins and ligands that do bind. This final branch consists of two layers:

ŷ = σ
(

W2 · f
(

W1 · [yT
prot, yT

ligand, ]T + b1

)
+ b2

)
, (8)

where σ refers to a sigmoid function that maps the output to [0, 1]. If we denote the ground
truth binding as y, which is either 0 or 1, and denote all the parameters inside the network
as W, then the loss function for the SSnet model can be defined as binary cross entropy,
which is computed as:

l(W) = − 1
M

M

∑
i
[yi · log(ŷi) + (1− yi) · log(1− ŷi)], (9)

where M is the number of samples in the dataset. By optimizing this loss function the neural
network can learn to extract meaningful features from the protein and ligand features that
relate to binding. At first, all weights are initialized randomly and we use back propagation
to update the parameters and minimize loss. All operations defined are differentiable,
including the collapse of the latent space with Global Max Pooling such that errors in the
loss function can back propagate through the network to update all parameters, including
the convolutional operations.

The hyperparameters optimized for the model and speed of execution are provided in
Section 1 of the supporting information.

2.4. Grad-CAM Method for Heatmap Generation

A neural network generally exhibits a large number of weights to be optimized so
that complex information can be learned; however, some of this information could be
irrelevant to a prediction task. For example, consider the task of identifying if a certain
image contains a horse or not. If all horse images also contain a date information on the
image and images without horse do not contain date information, the machine will quickly
learn to detect the date rather than the goal object (a horse in this case). Therefore, it is
essential to verify what a neural network considers “influential” for classification after
training. Selvaraju et al. [36] proposed a Gradient-weighted Class Activation (Grad-CAM)-
based method to generate a heatmap which shows important points in the feature data,
based on a particular class of prediction. That is, this method uses activations inside the
neural network to understand what portions of an image are most influential for a given
classification. In the context of protein structures, this method can help to elucidate which
portions of the decomposition plot are most important for a given classification. These
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influential patterns in the decomposition plot can then be mapped to specific sub-structures
in the protein.

Grad-CAM is computed by taking the gradient weight αk for all channels in a convo-
lutional layer as

αk =
1
Z ∑

i
− δŷ

δX(N)
row=k,col=i

, (10)

where k is the row in the final convolutional layer, Z is a normalization term, X(N) is the
activation of the final convolutional layer, and ŷ is the final layer output. The heatmap S is
then computed by the weighted sum of final layer activations:

Si =
1

Smax
∑
k

αkX(N)
row=k,col=i. (11)

This heatmap S specifies the important portions in the input sequence that are most
responsible for a particular class activation. For each convolutional branch, we can apply
this procedure to understand which portions of the input decomposition sequence are
contributing the most, according to each filter size K = 5, 10, 15, 20. In this way, we can
then map the most influential portions onto locations on the backbone of the protein. To
the best of our knowledge, this procedure has never been applied to protein (or ligand)
structures because Grad-CAM has been rarely applied outside of image processing.

2.5. Evaluation Criteria

The evaluation criteria for PLI are generally presented by the area under the curve of
the receiver operating characteristics (AUCROC) [53], Boltzmann-Enhanced Discrimination
(BEDROC), and enrichment factor (EF) [54,55]. AUCROC is primarily used to measure
the accuracy of the prediction, while both BEDROC and EF measure the early enrichment
of true active ligands. To test the accuracy, the receiver operating characteristic curve,
which is the plot of true positive rate versus false positive rate, is integrated to get the
AUCROC. Thus, AUCROC greater than 0.5 suggests that the model performs better than
chance. However, AUCROC is not suited for the comparison of models regarding the
enrichment of a ranked list with true actives. This problem can be easily illustrated by
taking as example two dummy models, A and B. Model A places half of true actives as the
top ranking ligands with the other half not recognized as active, while model B randomly
ranks the true actives throughout the dataset. In both cases, the AUCROC remains the
same, while, from a practical perspective, model A is better than model B [56].

Complementary to AUCROC, EF and BEDROC allow the model to be examined
considering its ability to enrich the top ranked ligands. A large number of studies have
employed EF to test their models [57,58], and, for this reason, values for EF can be easily
obtained from the literature. In the present study, only EF is used to compare different
models to test the enrichment. EF is defined as

EFX% =
Compoundsselected/NX%

Compoundstotal/Ntotal
, (12)

where NX% is the number of ligands in the top X% of the ranked ligands. EF, thus, considers
an estimate on a random distribution for how many more actives can be found within the
early recognition threshold.

2.6. Datasets

Most state-of-the-art models for PLI predictions use human and C. elegans created by
Liu et al. [59] The positive PLIs for these datasets are considered from DrugBank 4.1 [60]
and Matador [61]. The negative PLIs were considered by using ligands for proteins that
are dissimilar to the target in query. The human dataset contains 852 unique proteins
with at least one positive or negative PLI instance. One thousand and fifty-two unique
compounds that bind to these target proteins (one-to-one, one-to-many, and many-to-many)
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account for 3369 positive interactions. Similarly, C. elegans dataset contains 1434 and 2504
unique proteins and compounds, respectively, for a total of 4000 positive interactions.
Experimental setting suggested by Tabei and Yamanishi [62] was used such that the ratio
of positive to negative interactions used for the training were 1:1, 1:3, and 1:5. A five-fold
cross validation was performed for evaluation.

Although humans and C. elegans dataset provides good benchmarking against other
ML approach for PLI prediction, it does not contain enough PLI instances for use in real
world application. Database of Useful Decoys:Enhanced (DUD-E) dataset provides a large
number of PLI instances along with computationally generated decoys as the negative PLI
instances. More specifically, DUD-E contains 22,886 positive PLIs and 1.4 million decoy
over 102 target proteins. The 102 target proteins in DUD-E were divided into 72 and 30
for training and testing, respectively. Each target proteins in DUD-E contains 224 active
ligands for each of which 50 decoys that have similar 1D physico-chemical properties,
employed to remove bias against dissimilar 2D topology. These decoys are unlikely to
bind and, therefore, were considered as negative interactions. The net total interactions
considered for training were approximately 16 thousand positive PLI and 1 million decoys
(negative PLI). In lieu of balancing data, the negative PLIs were dynamically constructed by
randomly selecting from 1 million decoys to match the number of positive in each iteration.
This trained model is termed SSnet:DUD-E. A schematic representation of the model is
shown in Figure S8.

The decoys generated computationally faces the problem of false negatives; therefore,
an experimental dataset could be more reliable for SSnet. We considered the BindingDB
(BDB) dataset, [38] which is a public, web-accessible database of measured experimental
binding affinities and contains around 1.3 million data records. We created a database by
considering the following properties for each data entry.

1. The target has PDB ID cross-referenced as 3D structure. The first annotated structure
is taken as reference PDB file.

2. The ligand has SMILES representation in the entry.
3. Record has IC50 value (a measure of strength of binding) and is either less than x

(active) or greater than y (inactive).

The values for x assessed were 10 nM, 25 nM, and 100 nM, while the values for y
assessed were x nM or 10,000 nM. The preliminary analysis showed that x = 100 nM and
y = 10,000 nM provides the best balance between AUCROC and EF1% for PLI prediction
and as such, this dataset was termed as SSnet:BDB (Figure S11). The dataset contains
4806 unique proteins, and 539,799 (358,023 active and 198,225 inactive) unique PLIs. The
dataset was divided similar to DUD-E dataset: 52 proteins for testing and 4754 proteins
for training the model. In order to avoid biases due to over-fitting to specific targets, the
4754 proteins considered for training set have less than 75% sequence similarity to the
targets in test sets from both DUD-E and BDB datasets. This allows us to confidently
test the SSnet:BDB in DUD-E test set. However, the same leniency cannot be applied for
SSnet:DUD-E due to its limited target size.

To access an independent dataset, we utilized maximum unbiased validation (MUV)
dataset created by Rogers and Hahn [33]. The MUV dataset is generated from PubChem
bioactivity by considering actives that are maximally separated in chemical space to avoid
over-representation of physiochemical features. For each target in the MUV dataset, a set
of decoys was generated with the aim of avoiding analog bias and artificial enrichment.
We trimmed the 9 targets as used by Ragoza et al. [63] for valid comparison that contains
30 actives and 15,000 decoys for each target.

3. Results

Computational methods to predict PLI are often limited by a lack of accurate 3D
structures of the regulatory conformation of a target of interest, or by time-consuming
calculations of diverse protein and ligand conformations. Thus, there is a need for a
predictive PLI platform that is both rapid and able to function independent of the target
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protein conformation. Towards this aim, we have employed an ML/DL-based approach
(SSnet) based on the curvature and torsion of a protein backbone to develop a predictive
PLI algorithm capable of screening 1-billion+ compounds in a manner of days. Specifically,
SSnet requires only 18 min for computation of one million PLIs to a target using GPU
(NVIDIA P100 based on Pascal architecture) accelerated node with Intel Xeon E5-2695v4
2.1 GHz 18-core Broadwell processors and 30 min for ten thousand compounds without
GPU acceleration. Herein, we first compare SSnet on various computational datasets, such
as humans, C.elegans, and DUD-E. Then, we benchmark SSnet by training on completely
experimental dataset BDB and compared against state-of-the-art ML/DL PLI algorithms.
Lastly, to demonstrate the utility and accuracy of SSnet, we employ the Grad-CAM visual-
ization approach to extract structural features most important to ligand recognition and
binding. The Grad-CAM approach both validates the SSnet approach but can also function
as a guide to couple ML-based PLI prediction to downstream analysis using traditional
docking-based approaches. Grad-CAM analysis reveals that SSnet can accurately identify
regulatory binding sites within protein targets of interest. Importantly, the ability of SSnet
to identify these sites is independent of protein conformation and is able to identify cryptic
and allosteric sites without prior information of their regulatory roles. In this manner,
we demonstrate that SSnet mitigates many of the limitations of alternative predictive PLI
approaches, while retaining high accuracy and speed.

3.1. Selection of Ligand Representation

A key bottleneck in development of PLI prediction is the selection of the optimal repre-
sentation of ligand structure. Several methods of reducing ligand representation to ML/DL
methods have been developed. Gómez-Bombarelli et al. [31] created a model to generate
Continuous Latent Space (CLP) from sparse Simplified Molecular-Input Line-Entry System
(SMILES) strings (i.e., a string representation of a molecule) based on a variational autoen-
coder similar to word embedding [64]. Scarselli et al. [34] proposed a Graph Neural Net-
work (GNN) to describe molecules. Rogers and Hahn [33] proposed Extended-Connectivity
Fingerprints (ECF), which include the presence of substructures (and, therefore, also in-
cludes stereochemical information) to represent molecules. Riniker and Landrum [32]
proposed a fingerprint based on substructure and their similarity (Avalon). Since a vector-
ized representation of protein structure has not been implemented prior to this study, we
tested various ligand representations of ligands to find the most suitable and accurate for
SSnet. Specifically, we evaluated two traditional ligand fingerprint methods: ECF [33] and
Avalon [32], as well as two state-of-the-art ML-based descriptors: GNN [34] and CLP [31].

Table 1 shows the performance of SSnet for the human dataset (1:1 positive to negative)
and DUD-E dataset (unbalanced dataset). The GNN descriptor is based on convolution
neural networks which require ample amount of data to make sense of the spatial in-
formation provided to the model. The descriptor method might also suffer if essential
information, such as functional groups, are deeply embedded in the input data and are not
directly accessible to the network. This might be one of the reasons for a lower performance
of GNN in terms of AUCROC when compared to ECF and Avalon. CLP gives an AUCROC
score of 0.966 and 0.905 for humans and DUD-E datasets, respectively. CLP is based on
autoencoder which is trained to take an input SMILES string, converts it to a lower dimen-
sion, and reproduces the SMILES string back. In this way, CLP is able to generate a lower
dimensional vector for a given SMILES string. However, relevant information required for
the prediction of PLI might not be preserved which explains its low accuracy when used
for SSnet. ECF and Avalon have similar AUCROC scores as they both directly provide the
information of the atoms and functional groups by considering substructures of a ligand.
This implies that the backbone pattern can be best matched with fingerprints that provide
substructure and functional group information. We observe the best performance when
using ECF, particularly when considering unbalanced dataset of DUD-E.
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Table 1. Model comparison on the human and DUD-E datasets for various ligand descriptors.

Ligand Descriptor
AUCROC

Human DUD-E

Avalon 0.982 0.968
ECF 0.982 0.974
CLP 0.966 0.905

GNN 0.944 0.972

Convolutional neural networks (CNN) have to update a large number of weights and,
therefore, require a large amount of data instances (number of unique PLIs). However,
in the human and C. elegans datasets, the number of instances are insufficient, causing
SSnet to overfit (Figure S3). To overcome this problem, we ignored the convolution layer
and directly fed the proteins’ curvature and torsion to the fully connected dense layer
making it similar to ligand vector shown in Figure 2. This helps in reducing the number of
weights to be optimized and decreases the chance of overfitting. These approaches were
unnecessary for DUD-E since it contains sufficient instances of data for ML to learn. We
note that the approach of removing CNN would still provide a fair comparison of the
protein representation compared to other methods. The AUCROC scores are the highest
for both humans and DUD-E dataset of 0.982 and 0.974, respectively, with ECF, thus being
selected as the ligand descriptor for SSnet.

3.2. SSnet Compared on Computational Datasets

Evaluation of the accuracy of PLI prediction platforms can be complicated by numer-
ous factors, including but not limited to: training set bias as mentioned in the Datasets
section; lack of true negative instances (computationally-generated decoys), as is the case
for DUD-E, humans and C. elegans datasets; and, poor comparison metric for end-user,
specifically AUCROC which measures overall accuracy without any information pertaining
to usability. To provide a clear demonstration of usability, both AUCROC and EF, have been
employed to evaluate algorithm accuracy, as well as usability. To alleviate any potential bias
in SSnet optimization, we trained SSnet on the same dataset as found in the existing litera-
ture for direct comparison against models compared. We also retrained the state-of-the-art
existing model: GNN-CNN on a larger dataset DUD-E to obtain direct comparisons.

We compared SSnet with PLI specific methods: BLM [65], RLS-avg and RLS-Kron [66],
KBMF2K-classifier, KBMF2K-regression [67], and GNN-CNN [27] with the same exper-
imental setting as Liu et al. [59] as shown in Figure 3. It is important to note that BLM,
RLS-avg, RLS-Kron, KBMF2K-classifier, and KBMF2K-regression are modeled on proper-
ties, such as the chemical structure similarity matrix, protein sequence similarity matrix,
and PLI matrix. Despite such pre-organized inputs, SSnet was able to outperform in terms
of AUCROC (Figure 3). On the other hand, the GNN-CNN model uses a graph neural
network for ligands and convolutional neural network for protein sequences. The applica-
bility range of GNN-CNN is superior as it requires only sequence information for a protein
compared to SSnet which requires 3D information. However, since the input description of
GNN-CNN model limits the model’s capability to extract crucial information embedded in
the secondary structure, SSnet outperforms GNN-CNN as demonstrated in Figure 3.

Table 2 shows the comparison of various traditional ML models on the human and
C. elegans datasets. SSnet outperforms other models in both balanced (1:1) and unbalanced
(1:3, as well as 1:5) datasets. This suggests that SSnet is robust and is able to generalize
information about the protein and ligand pairs.
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Figure 3. Model comparison on various Protein-Ligand Interaction (PLI)-specific methods with area
under the curve of the receiver operating characteristics (AUCROC). The red color represents SSnet
trained on humans dataset, and cyan color for C.elegans, respectively.

Table 2. Data comparison (AUCROC) on balanced and unbalanced datasets.

Dataset k-NN RF L2 SVM GNN-CNN SSnet

humans (1:1) 0.860 0.940 0.911 0.910 0.970 0.984
humans (1:3) 0.904 0.954 0.920 0.942 0.950 0.978
humans (1:5) 0.913 0.967 0.920 0.951 0.970 0.976

C. elegans (1:1) 0.858 0.902 0.892 0.894 0.978 0.984
C. elegans (1:3) 0.892 0.926 0.896 0.901 0.971 0.983
C. elegans (1:5) 0.897 0.928 0.906 0.907 0.971 0.983

Note: k-nearest neighbour (k-NN), random forest (RF), L2-logistic (L2), and SVM results were obtained by
Liu et al. [59].

SSnet was trained with the DUD-E dataset, referred as SSnet:DUD-E. The AUCROC
is shown in Figure 4 compared against smina, AtomNet, 3D-CNN, and GNN-CNN. The
training dataset contains around 16,000 actives and 1 Million computationally generated
decoys. Since we cannot test SSnet against non-ML approaches fairly when trained on
a small and limited dataset of humans and C. elegans, DUD-E provides a much fairer
dataset for SSnet to compete with the traditional approaches. However, DUD-E dataset is
not balanced, and, to tackle this issue, we trained the model by dynamically constructing
balanced datasets. This was achieved by selecting all the actives and randomly selecting
equal number of decoys for each iteration. A schematic representation of the model is
shown in Figure S8. This procedure helps mitigate any bias that SSnet might have towards
a subset of inactives.

AU
C
R
O
C

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Vina Smina AtomNet 3D-CNN GNN-CNN SSnet

Figure 4. Model comparison of various non-Machine and Machine Learning (ML) methods
for the DUD-E dataset. The AUCROC score for the methods mentioned are derived from the
literature [26,27,63]. SSnet here is trained on the DUD-E dataset.
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We compared SSnet:DUD-E with vina [68] and smina [69] as traditional docking
methods and Atomnet [26], 3D-CNN [63], and GNN-CNN [27] as some of the highest
performing ML models. Figure 4 shows that SSnet:DUD-E outperforms in the average
AUCROC score when trained on DUD-E dataset against the most common VS meth-
ods available. Similarly, we also compared ML approaches reported for DUD-E dataset.
SSnet:DUD-E outperforms Atomnet, 3D-CNN, and GNN-CNN despite using 1D represen-
tation of protein structure. Atomnet is an ML model that considers vectorized versions
of 1 Å 3D grids as input vectors for a protein-ligand complex (Note: Atomnet requires
3D information of protein-ligand complexes.). A DNN framework is built based on 3D
convolutional layers to predict binary PLI. Similar to Atomnet, 3D-CNN also takes fixed
size 3D grid (24 Å) from the centre of the binding site (requires protein-ligand complex)
as input which is converted to density distribution around the centre of each atom. These
information are then fed to a convolutional neural network to predict PLI. Atomnet and
3D-CNN are based on all atoms in the protein ligand complex. Although a satisfactory
information is provided to the model, the large number of input features create noise which
makes binary prediction of PLI challenging. With limited amount of information, SSnet
was able to outperform all these models in terms of AUCROC with an average score of
0.974. These results suggest that curvature and torsion information accumulates compact
information for PLI prediction tasks. The learning curve of loss over epochs is shown as
Figure S7a.

As GNN-CNN is currently the best performing ML/DL for PLI prediction, we com-
pared AUCROC of SSnet by training GNN-CNN (GNN-CNN:DUD-E) following the proto-
col outlined by Tsubaki et al. [27] on the same dataset as SSnet. Vina and 3D-CNN results
were obtained by Ragoza et al. [63], and the results for the four methods are tabulated
in Table S6. On the DUD-E test set, SSnet:DUD-E performs the best with average AU-
CROC of 0.97, closely followed by GNN-CNN with 0.96 (Table S6). However, there has
been criticism against ML models trained on DUD-E dataset regarding overfitting to the
dataset. One of the key criticism of the DUD-E test set is that models trained on DUD-E
can easily distinguish active and inactive ligands based on physiochemical properties
[70]. For example, Sieg et al. [71] reported that the distributions of MW beyond 500 Da
between actives and decoys in DUD-E were mismatched. Further studies have shown
that the actives and decoys against the same target can be easily differentiated based on
fingerprint [71–74]. To avoid falling into the pitfalls outlined above, we have tackled these
issues by validating the DUD-E trained model using an external dataset. The aim is to
show that the features learned by SSnet are not a direct outcome of differences in ligand
fingerprints between active and decoys. SSnet:DUD-E is better than GNN-CNN:DUD-E
with an average AUCROC of 0.67 versus 0.60 of GNN-CNN:DUD-E (Table S8).

Rogers and Hahn [33] generated maximum unbiased validation (MUV) dataset from
PubChem bioactivity by considering actives that are maximally separated in chemical
space to avoid over-representation of physiochemical features. For each target in the MUV
dataset, a set of decoys was generated with the aim of avoiding analog bias and artificial
enrichment, two primary causes of overly optimistic predictions in virtual screening. The
overall performance across all the targets is essentially random for all methods. The poor
performance of various methods over MUV can be attributed to the way MUV creates
actives and decoys. Figure S9 shows that SSnet:DUD-E performs equivalent or slightly
better than random chance, which is equivalent to or better than the other methods shown.
Thus, further discussion of SSnet:DUD-E performance on MUV does not provide any
valuable insight.

Table S7 shows the performance of SSnet:DUD-E compared to vina, 3D-CNN, and
GNN-CNN using the DUD-E test set. The average EF1% over the 21 DUD-E targets were
34, 39, and 41 for 3D-CNN, SSnet:DUD-E, and GNN-CNN:DUD-E, respectively, for the
methods trained on DUD-E dataset. The average EF1% for smina is 8. As an external
dataset validation for DUD-E trained model, BDB test set was used, as shown in Table S8.
MUV represents a gold standard for independent validation of PLI prediction. However,
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for the reasons outlined above, MUV is be an extremely challenging dataset. Similarly to
the MUV data described in the section above, we observe all methods perform poorly on
MUV (Tables S3–S5).

3.3. Benchmarking SSnet

BDB is a database of PLIs with reported experimental values for PLI in terms of IC50,
EC50, ki, or kd. As BDB has large number of PLI instances with annotated experimental
values, SSnet can be trained on this dataset while still being able to maximize its learning
potential. BDB contains approximately 5000 protein targets, exposing SSnet to a larger
portion of the proteomic space and allowing full utilization of convolution network. We
benchmark against GNN-CNN, which has outperformed not only the partial information
(sequence, etc.)-based model but 3D descriptor models, as well, to predict PLI. We retrained
and tested GNN-CNN (GNN-CNN:BDB) with the same training/testing used for SSnet
(SSnet:BDB). The hyperparameters for GNN-CNN are provided in Section 2 of the support-
ing information. The comparison will give a direct example of whether using secondary
structure features improves PLIs prediction over sequence-based features.

Figure 5a shows the comparison of ROC curves for prediction of all PLIs in the test set
of BDB dataset. SSnet:BDB outperforms GNN-CNN:BDB in terms of AUCROC. Moreover,
the ROC curve for SSnet dominates the curve for GNN-CNN:BDB, which supports a
conclusion that SSnet is more reliable across all detection thresholds. To test our hypothesis,
we performed McNemar test on resultant outputs on the BDB test set from SSnet and
GNN-CNN. The McNemar test statistic observed was 2729.878, and the corresponding p
value was 0.0. The test signifies that SSnet outputs are significantly different than that of
GNN-CNN. Figure 5b shows the average AUCROC on the test set of BDB. The learning
curve of loss over epochs is shown as Figure S7b. SSnet:BDB, when tested on the BDB
test set, has the highest average AUCROC of 0.91, which is followed by 0.85 for GNN-
CNN:BDB (Table S8). The scores were based on test set within BDB; thus, an independent
validation is required to comment on generalizability of the model. We used the DUD-E
dataset for this purpose. We eliminated any potential bias from the protein similarity of
the test set from DUD-E in the SSnet:BDB training dataset by removing all targets with
sequence similarity greater than 75%.
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Figure 5. (a) ROC plot for the prediction of PLIs using micro-averaging. (b) Box and whisker plot for
AUCROC for each individual target in the test set of of BindingDB (BDB).

SSnet:BDB tested on DUD-E has an average AUCROC of 0.81, while GNN-CNN:BDB
has 0.79 (Table S6). SSnet:BDB still performs poorly on MUV dataset equivalent to ran-
dom chance (Figure S9). As SSnet:BDB is based on experimental data, we compared our
models with the traditional methods on DUD-E targets. Figure 6a shows the AUCROC
of SSnet:BDB compared to the best AUCROC from smina, vina, and edock, three freely
available traditional virtual screening and docking methods. SSnet consistently has high
AUCROC compared to the best scores of smina, vina, and edock [57]. Figure 6b shows
that SSnet:BDB, when tested on the DUD-E dataset, has better performance than random
chance (AUCROC greater than 0.5) 94% of the time, with a mean AUCROC 0.78 ± 0.15.
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Figure 6. Independent test set DUD-E dataset for BDB model. All targets with more than 75%
similarity in DUD-E dataset were removed from BDB model. (a) AUCROC comparison on DUD-E
targets over best performer from vina, smina, or edock; (b) AUCROC comparison with vina for all
DUD-E targets.

As described in the evaluation criteria section, AUCROC is not necessarily the best
metric for PLI prediction evaluation. While high AUCROC demonstrates the ability of a
model in discerning true positives from false positives, this is only useful when selecting
drugs with scores greater than 0.5 for SSnet. This might not be feasible when selecting
drugs from extremely huge datasets, like ZINC, which has ≈1.5 billion ligands. For
screening such large databases, enrichment factor (EF) should be employed. In fact, as EF
shows the likelihood of finding true actives from the top scoring subset of the database,
it provides a more reliable metric for picking high scoring ligands. Furthermore, many
studies have shown that ranking based on either metric alone is not a sufficient indication
of performance [75–77].

Figure 7a show the EF1% of SSnet:BDB compared with the best performance achieved
via vina, smina or edock for each target derived from Reference [57]. SSnet:BDB outper-
forms the best score of the traditional VS approaches in 74% of the targets considered.
Figure 7b show that, for 90% of the targets, SSnet achieved better outcome than random
sampling of the ligands (EF score higher than 1). The average EF1% was 15 ± 11.
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Figure 7. Independent test set DUD-E dataset for BDB model. All targets with more than 75%
similarity in DUD-E dataset were removed from the BDB model. (a) EF1% comparison on DUD-
E targets over best performer from vina, smina, or edock; (b) EF1% comparison with vina for all
DUD-E targets.

SSnet, being an ML/DL model, is not immune to the pitfalls of overfitting. This
includes not only removing replicated examples but also reducing observations with
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significant similarities. Prior to comparison with advance methods, we made sure to
remove possible overlap between BDB and DUD-E dataset using the following protocol:

• Check for ligand similarity by comparing Tanimoto Coefficient (TC) score [78] for
each ligand in the BDB train dataset to all ligands of the DUD-E dataset.

• Check for fold similarity by comparing TM Score [79,80] for proteins in the DUD-E
dataset to all protein of the BDB train dataset.

The TC score is a measure of molecular similarity [78] that compares a distance
between the molecular fingerprints and provides a score in the range (0–1] (1 being exactly
same). Since we used ECF as the ligand representation, the TC score was determined
by considering ECF as fingerprint. Table S9 shows ligand similarity of the BDB train
dataset to all ligands of DUD-E dataset. We observed that 99.98% of the BDB ligands
have maximum TC score of less than 0.85 (for each ligand in the BDB train dataset, TC
scores were computed for all ligands of DUD-E dataset, and the maximum TC score was
compared). The results signify that there is almost no overlap between the ligands of the
two datasets.

To compare the fold similarity between the two datasets, we used the TM score [79,80].
The TM score weights smaller distance errors stronger than larger distance errors, resulting
in a normalized score which is length-independent for random structure pairs and sensitive
to fold similarity. TM scores are in the range (0–1] and signifies similar folds for >0.5.
Table S10 shows the maximum TM score obtained for each proteins in the DUD-E dataset
from all proteins in the BDB train dataset. We observed that 52% of the DUD-E proteins
have similar folds.

Ericksen et al. [58] compiled for a set of 21 DUD-E proteins the comparison of industry
standard virtual screening methods. We observed that 11 of the DUD-E proteins have
similar folds and, thus, were removed from comparison. The methods used were AutoDock
v4.2 (AD4), DOCK v6.7, FRED v3.0.1, HYBRID v3.0.1, PLANTS v1.2, rDock v2013.1, smina
1.1.2, and Surflex-Dock (Surflex) v3.040. Except for AD4 and DOCK, which are force
field-based methods utilizing genetic algorithm and incremental construction, respectively,
other methods are empirical- and knowledge-based [58]. FRED and HYBRID are based on
exhaustive rigid docking search. PLANTS uses ant colony optimization, rDock uses genetic
algorithm, smina uses iterative local search, and Surflex uses incremental construction
by a matching algorithm. Table 3 shows AUCROC for various methods for 21 DUD-E
targets [58]. We observe large variations across different methods for the targets tested on
DUD-E dataset. No single method performed the best for all the targets [81–83]. SSnet:BDB
gives an overall superior performance, with 4 targets having the best AUCROC score.
SSnet:BDB has the highest average AUCROC of 0.81 among the methods shown followed
by both FRED and HYBRID 0.78. It is important to note that HYBRID requires and utilizes
prior knowledge of the structure of a ligand bound to the target site, which strongly limits
the applicability of this method.

Table 3. AUCROC comparision on various models.

Target AD4 DOCK6 FRED HYBRID PLANTS rDock Smina Surflex SSnet:BDB BEST
ADRB1 0.68 0.78 0.77 0.65 0.86 0.81 0.79 0.8 0.71 0.86
DRD3 0.69 0.59 0.79 0.81 0.69 0.66 0.68 0.71 0.73 0.81
ESR1 0.82 0.54 0.88 0.81 0.77 0.87 0.86 0.74 0.83 0.88
ESR2 0.77 0.48 0.89 0.89 0.69 0.8 0.79 0.68 0.82 0.89
ACE 0.78 0.72 0.8 0.84 0.84 0.62 0.61 0.76 0.89 0.89

HIVINT 0.54 0.65 0.74 0.6 0.76 0.67 0.81 0.66 0.50 0.81
ADA17 0.51 0.4 0.59 0.69 0.58 0.58 0.54 0.7 0.91 0.91

FA10 0.86 0.81 0.79 0.82 0.8 0.9 0.84 0.76 0.90 0.90
MMP13 0.67 0.6 0.77 0.87 0.71 0.67 0.67 0.76 0.96 0.96

TRY1 0.79 0.82 0.8 0.83 0.81 0.74 0.75 0.93 0.84 0.93
mean 0.71 0.64 0.78 0.78 0.75 0.73 0.73 0.75 0.81 0.88

std. dev. 0.12 0.14 0.08 0.10 0.08 0.11 0.11 0.08 0.13 0.05
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Ericksen et al. [58] further showed that consensus scoring using the aforementioned
methods can boost performance for each target. A consensus scoring is the use of data
fusion methods to obtain an improved scoring from the individual scores gathered from
various methods. Table 4 shows the scores obtained using various consensus methods
applied on AD4, DOCK6 FRED HYBRID, PLANTS, rDOCK, smina, and Surflex. The
description of the 6 consensus methods are:

• Boosting consensus score (BCS) is a gradient-based decision tree framework which is
trained on binary labels (actives and decoys) on an individual decision tree for each
target where the input is composed of docking scores obtained from each docking
method. For each target, the docking scores were provided to other off-targets for
boosting the model performance.

• Mean-variance consensus (MVC) is a parameterized function based on gaussian
distribution of the scores.

• Mean, median (Med), maximum (Max), and minimum (Min) are the statistics obtained
from normalized scores across the docking methods.

The consensus scoring does increase the performance for each target. However, SSnet
outperforms or is equivalent to the best consensus-based scoring methods for 3 targets in terms
of AUCROC. We note that the resources and time required for consensus scoring is significant.
SSnet, therefore, serves as a balance between accuracy and resources/time required.

Table 4. AUCROC comparision on consensus scores.

Target Best BCS MVC Mean Med Max Min SSnet:BDB
ADRB1 0.86 0.92 0.92 0.91 0.89 0.9 0.79 0.71
DRD3 0.81 0.81 0.75 0.79 0.78 0.74 0.73 0.73
ESR1 0.88 0.88 0.9 0.87 0.86 0.89 0.74 0.83
ESR2 0.89 0.91 0.89 0.85 0.82 0.89 0.68 0.82
ACE 0.89 0.85 0.83 0.83 0.83 0.81 0.78 0.89

HIVINT 0.81 0.81 0.82 0.82 0.8 0.8 0.68 0.50
ADA17 0.91 0.74 0.69 0.62 0.6 0.71 0.52 0.91

FA10 0.90 0.91 0.95 0.93 0.92 0.93 0.8 0.90
MMP13 0.96 0.88 0.84 0.81 0.78 0.84 0.72 0.96

TRY1 0.93 0.93 0.93 0.93 0.91 0.92 0.82 0.84
mean 0.87 0.86 0.85 0.84 0.82 0.84 0.73 0.81

std. dev. 0.04 0.06 0.08 0.09 0.09 0.08 0.09 0.13

SSnet:BDB has the mean EF1% of 17 signifying that the top 1% with active ligands
on average is 17 times more on average than random picking. SSnet:BDB mean score is
similar to most of the methods shown. Only HYBRID and FRED were found to deliver
superior performances (Table 5). Table 6 shows the EF1% obtained using various consensus
methods applied on AD4, DOCK6, FRED, HYBRID, PLANTS, rDOCK, smina, and Surflex.
Despite requiring considerably less time and resources compared to consensus methods,
SSnet:BDB has high EF1% for most of the targets.
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Table 5. EF1% comparision on various models.

Target AD4 DOCK6 FRED HYBRID PLANTS rDock Smina Surflex SSnet:BDB BEST
ADRB1 5 25 7 19 19 13 6 13 7 25
DRD3 4 1 10 10 3 1 2 3 9 10
ESR1 32 8 37 36 17 29 23 20 20 37
ESR2 21 9 40 40 12 22 20 12 19 40
ACE 14 12 18 20 24 3 3 9 15 24

HIVINT 0 11 8 10 15 7 8 5 10 15
ADA17 0 0 8 17 6 10 14 10 30 30

FA10 26 16 17 19 12 27 18 8 19 27
MMP13 12 6 18 30 15 3 4 11 29 30

TRY1 7 16 17 20 17 14 3 39 11 39
mean 12 10 18 22 14 13 10 13 17 28

std. dev. 11 7 12 10 6 10 8 10 8 10

Table 6. EF1% comparison on consensus scores.

Target Best BCS MVC Mean Med Max Min SSnet:BDB
ADRB1 25 31 27 28 24 21 19 7
DRD3 10 13 7 12 11 4 11 9
ESR1 37 38 37 34 34 32 16 20
ESR2 40 35 34 31 28 26 9 19
ACE 24 33 30 30 26 19 13 15

HIVINT 15 19 21 17 11 13 10 10
ADA17 30 19 17 16 17 11 4 30

FA10 27 26 30 33 30 23 19 19
MMP13 30 34 25 26 24 20 18 29

TRY1 39 33 31 28 27 24 18 11
mean 30 28 26 26 23 19 14 17

std. dev. 8 8 9 8 8 8 5 8

3.4. Applicability of SSnet
3.4.1. Latent Space for Proteins

The validation of SSnet demonstrates its reliability. Furthermore, we see that SSnet
learns beyond the biases that plague many ML approaches to PLI. Thus, understanding
the underlying features learned by SSnet is also of vital importance. To decipher the
inner workings of SSnet, we unraveled the global max pooling layer (GMP), shown in
Figure 2, using the t-distributed Stochastic Neighbor Embedding (t-SNE). To embed high-
dimensional data into low dimension, t-SNE retains similarity information between data
points. This allows similar data points in the high dimensional space to form clusters in
the lower dimension.

Using SSnet:DUD-E, we tested the proteins in the test set of DUD-E dataset (# of unique
proteins = 30) and considered all of their ligand interactions. The results demonstrate that
t-SNE clearly distinguishes all proteins (# of clusters = 30), as seen in Figure S7. SSnet:DUD-
E had no prior information about the proteins as they were excluded from the training
set. The fact that t-SNE clearly distinguishes all the protein suggests that the information
gathered by the convolution layers are not general (such as α helix or β sheet-type patterns)
but are specific to PLI. Based on these results, we conclude that our model is able to create
a latent space which encodes important information about the bioactivity of the protein.
Furthermore, since the model was trained to predict the activity of a protein based on
several ligands, such latent space will encode important information about its binding
site and, therefore, can be a powerful tool to compare proteins based on their activity.
To identify the protein features that SSnet considers, we performed Grad-CAM analysis
described in the section below.
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3.4.2. Visualization of Heatmap Using Grad-CAM

ML/DL models have large number of weights that are optimized to learn complex
information; therefore, it is important to investigate which input features are critical for the
learning process of the model. In most of the previous studies [27], a neural attention layer
is added to the network to understand the important pathways in the feature space that
get higher attention relative to others. However, the information learned from a neural
attention layer could be misinterpreted since it adds an additional layer, increasing the
complexity of the network. To tackle this problem, we opted for Grad-CAM, since it can
provide an insight into the activated pathways without adding complexity to the network.
These activated pathways can then be traced back to the input features that are important
in predicting a particular class based on convolution outputs.

Grad-CAM highlights the important residues for ligand recognition. In all cases, the
ligand forms several types of PLIs, some of which were analyzed as shown in Table 7.
Analyzing the highlighted structure from the Grad-CAM analysis, we observed that the
SSnet considers a weighted probability density of the binding sites present in a protein
(Figure S10). It is important to note that the analyzed proteins include allosteric sites, an
example of which is shown in Figure 8. The protein Prolyl-tRNA Synthetase from Plas-
modium falciparum is in complex with glyburide. Hewitt et al. [84] showed that glyburide
binds to the allosteric site of Prolyl-tRNA Synthetase. SSnet is able to highlight the region
of the protein where glyburide binds, which is not the known orthosteric binding site but
an allosteric one. This information can be used by researchers to describe bounding box for
any downstream docking application.

Figure 8. Grad-CAM visualization of heatmap for the protein Prolyl-tRNA Synthetase. The heatmap
is a rainbow mapping with violet as the lowest and red as the highest value.

Table 7. Percentage of detected residues by SSnet.

Cutoff
( in Å )

Truly Detected
Residue

Covalently
Involved

Electrostatically
Involved

Hydrogen Bond
Involved Metal Ligand

0 50.4 38.1 51.2 45.1 67.2
4 69.0 57.9 70.0 64.8 82.5
6 81.7 78.5 80.1 80.3 88.6
8 89.1 93.2 88.3 88.0 93.0

# of annotated
residues 11936 354 2867 3436 1665

The interaction between proteins and ligands can be mediated through both covalent
and non-covalent interactions. Furthermore, various non-covalent interactions that partici-
pate in PLIs, including but not limited to hydrogen bonding, Van der Waals interaction, and
electrostatic interaction, have been identified. To decipher if SSnet is learning general infor-
mation critical for PLI, we conducted a test on The Catalytic Site Atlas (CSA) database [85].
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The CSA database contains enzyme active sites and annotated catalytic residues. The
entries are either hand-annotated which are derived from literature or homologous entries
based on sequence similarity. Proteins with problematic structures, such as extremely large
structures (more than 2500 residues per chain) or missing a large chunk of residues (more
than 30 missing residues), were removed. This resulted in 577 unique proteins and 11,936
unique annotated residues.

From the Grad-CAM highlighted structures, we identified the residues that maximally
influenced PLI prediction for SSnet. These residues were then cross-referenced to CSA.
Table 7 shows the percentage of residues detected by SSnet in close proximity at various
cutoff lengths for each annotated residue. At 0 Å cutoff distance, SSnet correctly detected
50% of the annotated residues. Specifically, 38, 45, 51, and 67% of annotated interactions
that involve covalent bond, hydrogen bond, electrostatic interaction, and metal ligand,
respectively, were identified from the complete set. We observed 89% of the annotated
residues within 8 Å of the highlighted region. It is important to note that these annotated
residues envelop various binding sites, such as allosteric, cryptic, catalytic, etc. The overall
trend for individual interaction follows similar to all annotated residue detection. The result
shows that SSnet extracts fold information required for PLIs while remaining unbiased
towards any particular type of interaction. PLIs predicted are a consequence of multiple
factors deeply embedded in the fold of the protein. To further investigate how SSnet
processes protein folds information, we tested the applicability of SSnet to identify PLI
independent of the structure conformation.

3.4.3. Ssnet Is Conformation Blind

The binding of a ligand perturbs the secondary structure and can cause significant
differences from the original unbound protein structure. We investigated the ability of
SSnet in predicting ligand binding based on an unbound protein structure. We divulged
our focus on answering two key questions:

• Can SSnet predict the same results using an unbound protein structure or a different
conformation of the same protein?

• Can SSnet detect cryptic sites based on unbound protein structures?

To address the first question, Table 8 shows the results of binding site prediction when
different protein conformations of 9 randomly selected targets from the test set of DUD-E
dataset. Each target was screened through 45,609 randomly selected ligands from DUD-E
dataset. The first and second columns denote the PDB ID for a protein ligand complex
(PLC) in the DUD-E dataset and PDB ID of a different conformation (DC) of the same
protein, respectively. The first five rows have DC with the same protein in PLC bound with
a different ligand, and the remaining are apo proteins (unbound proteins) of the PLCs. The
presence of a ligand changes the secondary structure of the protein; therefore, we observe a
range of root-mean-squared-distance (RMSD) from 0.175 to 0.666 between a PLC-DC pair.
The prediction results for each PLC-DC pair in predicting actives and inactives are almost
the same with maximum error of 0.03%. To analyze further, we looked into the probability
scores obtained for each ligand.

Figure S12 shows the correlation of SSnet scores for two conformations of same
proteins plotted against each other. The plots demonstrate the conformational blindness of
SSnet. Conformational blindness of SSnet can be attributed to the convolution network
learning the fold patterns required for PLI. This success highlights the robustness of
representing the proteins in terms of torsion and curvature. Torsion and curvature are
sufficient in representing subtle changes in the local fold. This further suggests that SSnet
is able to predict similar results for a given protein regardless its specific conformation.
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Table 8. Comparison on performance of SSnet on different conformations of a protein.

PLC a DC b State c RMSD d Actives Inactives Error e

PLC DC PLC DC

1B9V 1B9S Bound 0.267 22,518 22,518 23,091 22,518 0.00%
1C8K 8GPB Bound 0.279 22,505 22,498 23,104 23,111 0.03%
1MV9 1MVC Bound 0.175 22,434 22,436 23,175 23,173 0.01%
1Q4X 2J4A Bound 0.463 22,507 22,509 23,102 23,100 0.01%
1QW6 1QWC Bound 0.237 22,507 22,509 23,102 23,100 0.01%
1BCD 2FNM Unbound 0.270 22,518 22,518 23,091 23,091 0.00%
1H00 4EK3 Unbound 0.178 22,518 22,518 23,091 23,091 0.00%
1J4H 5HT1 Unbound 0.666 22,518 22,518 23,091 23,091 0.00%

1KVO 1MF4 Unbound 0.565 22,517 22,521 23,092 23,088 0.01%
a Protein-ligand complex from test set of DUD-E dataset; b Different conformation of PLC; c Bound refers to DC
with a different ligand and unbound refers to DC with no ligand; d Root-mean-squared distance between PLC
and DC; e Percentage error in predicting actives.

Some proteins have binding sites that are not easily detectable. These proteins, termed
cryptic proteins, have binding sites that are present in a protein-ligand complex crystal
structures but not necessarily in the apo protein crystal structures [86]. The change in
conformation upon ligand binding is a dynamic phenomenon and has been widely reported
in the literature [87].

Figure 9 shows cryptic sites for 3 different proteins taken from CryptoSite set [88].
Figure 9 shows the bound (proteins with heatmap) and unbound (grey) proteins. The result
from Grad-CAM analysis of these proteins are highlighted with blue having the lowest
and red having the highest influence on the PLI prediction. Furthermore, we notice that
SSnet score was not as strongly influenced by the residues as is the case for the proteins
shown in Figure 8. This is visually observed by higher abundance of intermediate colors
(yellow-green) in the cryptic sites (Figure 9, compared to mostly red or blue in Figure 8.
Figure 9a shows the unbound-bound pair of a cAMP-dependent protein kinase. The
unbound structure of this protein (PDB-ID 2GFC) has an activation loop that protrudes into
the active site, occluding the binding pocket. SSnet is able to predict that the ligand will
bind strongly to this protein and highlights location closer to the actual binding site on the
unbound structure, even though in the latter the binding site is occluded. Retrieving such
information is of critical importance as these sites are practically impossible to detect using
classical VS methods as they rely on the particular protein structure used for the calculation.
Figure 9b shows the bound-unbound pair for Tyrosine kinase domain of hepatocyte growth
factor receptor C-MET from Homo sapiens (PDB ID 3F82 and 1R1W, respectively).

As the ligand binds at flexible regions in the protein, we observe large conformation
changes that result in the formation of a pocket for ligand binding. This example shows that
the predicted binding is a consequence of each individual chain, considered independently.
Thus, the applicability of SSnet can be expanded for predicting PLIs that involve multiple
protein chains.

Grad-CAM analysis, as well as conformation independence of PLI prediction, shows
that SSnet learns crucial details of the input features required for predicting PLI. The torsion
and curvature of the protein structure effectively describe the features required for PLI
while remaining compact, as it is a vectorized format of the complex protein structure.
The ability of SSnet to predict PLIs regardless of the crystal conformation showcases the
versatile nature of the model. Grad-CAM analysis of the PLI prediction enhances the result
of the screening as it can be quickly paired with pre-existing docking tools that require
rigid bounding box for accurate posing and subsequent docking.
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Figure 9. Heatmap generated from unbound protein for cryptic sites. The heatmap is a rainbow
mapping with violet as the lowest and red as the highest value. The grey color shows bound protein
with ligand.

4. Discussion

With our analysis, it seems that protein folds play one of the key factor in PLI. This is
highlighted by the high accuracy of SSnet and the grad-CAM analysis, where we observed
that regions near the binding pocket were most influential for the prediction task (89%
accurate withing 8 Å of a residue), signifying fold dependency of a ligand. It is important
to note that SSnet had no prior information about the binding pocket. The claim that a
molecule should have lower than 500 db as molecular weight to be drug-like [89] further
shows the dependency of ligands on protein folds. Concerning the complex involvement
of ligands in PLIs, a hypothesis that a protein fold holds information about the potential
interactions that might be induced, though the protein side chains in the binding pocket
can be inferred. However, SSnet being blind to conformation limits its capability to account
for mutations resulting to the same fold but significant difference in binding affinity. Thus,
SSnet should be treated as a firsthand screening tool to cull millions of drug-like molecules
and not as an exact binding affinity prediction method. Further validation utilizing high
accuracy docking methods, molecular dynamics simulations, or experimental validation
would be of critical importance.

5. Conclusions

The study of PLI is an important field for progress in pharmaceutical industry and
potentially extended to any biological applications. The limitations of the existing tools for
predicting PLI, however, has stalled the progress in these fields. PLI computations suffer
from large compute times as accurate PLI prediction require accounting of large number
of physicochemical properties. Furthermore, biases arise for the ML-based PLI prediction
tools due to imbalances in the representation of these physicochemical properties in the
training dataset. On the other hand, classical methods rely on stochastic optimizations,
such as Monte-Carlo or genetic algorithm type approaches, to generate the poses for
the ligands and subsequently minimize the bound structures. These approaches require
precise 3D conformation and have much higher computing times. SSnet does not show
biases in physicochemical properties and necessity of accurate 3D conformation while
requiring significantly less computing time. This is achieved by utilization of secondary
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structure information in the form of curvature and torsion of the protein backbone. The ML
model employed enables fast computation once the model is trained as once the weights
are fixed, prediction is result of multiple subsequent matrix transformation. The CNN
framework employed enables SSnet to learn PLI patterns across wide range of residue
interactions, encrypted into the torsion and curvature of the protein backbone. The overall
architecture of SSnet, therefore, works in tandem to eliminate biases that plague many
other ML approaches, while retaining the speed.

SSnet outperforms several notable ML algorithms in terms of AUCROC when trained
and tested on humans and C. elegans dataset. Furthermore, SSnet outperforms the state-of-
the-art ML approach GNN-CNN in terms of AUCROC and EF1% when using both models
trained on DUD-E and BDB datasets. This comparison holds true even when both the
models were tested on independent test sets. Moreover, SSnet:BDB performs better if not
equivalent to the classical methods in terms of both AUCROC and EF, while being orders
of magnitude faster than any of the traditional VS approaches.

The SSnet model utilizes secondary structure information of the protein and, since
it only processes CA atoms, it does not necessarily require high resolution structural
information. The analysis done on bound-unbound proteins show that SSnet can predict
similar results even with different conformations of the protein, including cryptic sites.
SSnet requires a single conformation to predict whether a ligand is active or not, even if
the protein-ligand complex has different tertiary structure. Grad-CAM analysis not only
addressed the validity of SSnet learning appropriate details from the input features but
also provides the user an intuitive visualization of potential binding site for PLI.

SSnet can be coupled with traditional VS/docking algorithm as pre-screen to filter
ligands. Moreover, Grad-CAM analysis showed that SSnet is able to provide accurate pre-
diction of ligand binding sites: active, allosteric, and cryptic sites. As most of VS/docking
algorithms necessitate prior knowledge of the binding site, this information can be used
to trim ligand search space and determine the box placement. Such information is not
retrievable by most of the other VS methods for PLIs prediction. Furthermore, a standalone
package has been provided for Linux, Windows, and OS-X, making it readily available to
users at all levels of computational expertise and not just users familiar with programming.
These features of SSnet allow it to be seamlessly integrated into existing VS workflow,
where SSnet can be used to cull large databases to a small size and determine the bounding
box for subsequent docking algorithms.

The top scoring docked poses can then be used directly in experimental setup or
further analysis using techniques, like Molecular Dynamics, to study the PLI.

Our study suggests that end-to-end learning models based on the secondary structure
of proteins have great potential in bioinformatics, which is not just confined to protein
ligand prediction and can be extended to various biological studies, such as protein-protein
interaction, protein-DNA interaction, protein-RNA interactions, etc. Inspired by the t-SNE
results for the last layer in protein embedding, we propose a possible latent space for
proteins that encodes important information about the protein bioactivity, and further
exploration could result in a metric to compare proteins based on their bioactivity. We leave
these explorations of both the SSnet model and the underlying latent space for future work.

To ensure replicability of both model generation, as well as model validation, all
scripts developed and implemented in this work are provided through GitHub (https:
//github.com/ekraka/SSnet) under MIT License without any restrictions or liability.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/3/1392/s1, Figure S1: SSnet model. The curvature and torsion pattern of a protein backbone
is fed through multiple convolution networks with varying window sizes as branch convolution.
Each branch further goes through more convolution with same window size (red, orange, green,
and light blue boxes). A global max pooling layer is implemented to get the protein vector. The
ligand vector is directly fed to the network. Each double array line implies a fully connected dense
layer. The number inside a box represents the dimension of the corresponding vector., Figure S2:
SSnet model overview. The SMILES string and the PDB file for ligand and protein, respectively,

https://github.com/ekraka/SSnet
https://github.com/ekraka/SSnet
https://www.mdpi.com/1422-0067/22/3/1392/s1
https://www.mdpi.com/1422-0067/22/3/1392/s1
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is fed to the model which is converted to ligand vector and protein vector, respectively. The two
vectors are then concatenated and fed to further networks for PLI predictions; Figure S3: SSnet
model overfits when convolution neural network is applied to smaller datasets, such as human
or C. elegans; Figure S4: Receiver operating characteristics for the predictions on DUD-E dataset;
Figure S5: Receiver operating characteristics for the predictions on BindingDB dataset; Figure S6:
t-SNE plot for all the proteins (30) in the test set of DUD-E dataset. Each cluster is distinguishable
with others and denotes a protein. Note that the SSnet model had no information about these proteins
as they were in the test set and is yet able to distinguish them; Figure S7: SSnet model training
loss over (a) DUD-E dataset and (b) BindingDB dataset; Figure S8: Dynamic model optimization
for SSnet:DUD-E; Figure S9: Various model performance on maximum unbiased validation (MUV)
targets for AUCROC; Figure S10: Grad-CAM visualization of the heatmap for nine different proteins
with their PDB ID. The heatmap is a rainbow mapping with violet as the lowest and red as the highest
value. The ligand and other small molecules are shown in grey; Figure S11: SSnet:BDB performance
when various cutoff for IC50 is applied and tested 102 targets of DUD-E dataset. The mean score for
AUCROC are 0.77, 0.76, and 0.73 for 100, 25, and 10 nM cutoff, respectively. The mean score for EF1%
are 15, 16, and 10 for 100, 25, and 10 nM cutoff, respectively; Figure S12: Relation of SSnet scores
when different conformations of the same protein are used. The black line shows y = x line; Table S1:
Model comparison on the DUD-E dataset for various ligand descriptors; Table S2: MUV data details;
Table S3: EF0.5% comparison on MUV dataset; Table S4: EF1% comparison on MUV dataset; Table S5:
EF5% comparison on MUV dataset; Table S6: AUCROC comparison on DUD-E test set; Table S7:
EF1% comparison on DUD-E test set; Table S8: AUCROC comparison on the BDB test set; Table S9:
Ligand similarity for BDB train dataset to DUD-E dataset; Table S10: Protein fold similarity from
BDB train dataset to DUD-E dataset.
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