

Fig. S1. MBF1 sequence alignment and phylogenetic analysis. (A) Alignment of the MBF1 proteins. The MBF1 proteins from different organisms, including human, *Drosophila, Arabidopsis, Dictyostelium* and *Giardia*, are analyzed by ClustalW 1.83 with all default settings. GenBank *accession* numbers for human MBF1, *Drosophila* MBF1, *Arabidopsis* MBF1, *Dictyostelium* H7, and *Giardia* MBF1 are <u>NP_003783.1</u>, <u>NP_524110.1, NP_565981.1, CAA33444.1</u>, and <u>XP_001704109.1</u>, respectively. Black boxes, gray boxes and hyphens indicate identical amino acids, conserved amino acids and gaps in the respective proteins, respectively. The predicted HTH domains and MBF1 domains of various MBF1 proteins are indicated by red and blue underlines, respectively. No MBF1 domain was predicted for *Giardia* MBF1. The predicted N terminal α helix and basic amino acids of *Giardia* MBF1 are indicated by a purple line and orange boxes, respectively. (B) Phylogenetic analysis of the MBF1 proteins. A neighbor-joining phylogenetic tree was obtained from alignment of MBF1 proteins from various organisms as described. The bootstrap values determined from 1000 trees are not shown. Values are higher than 400.

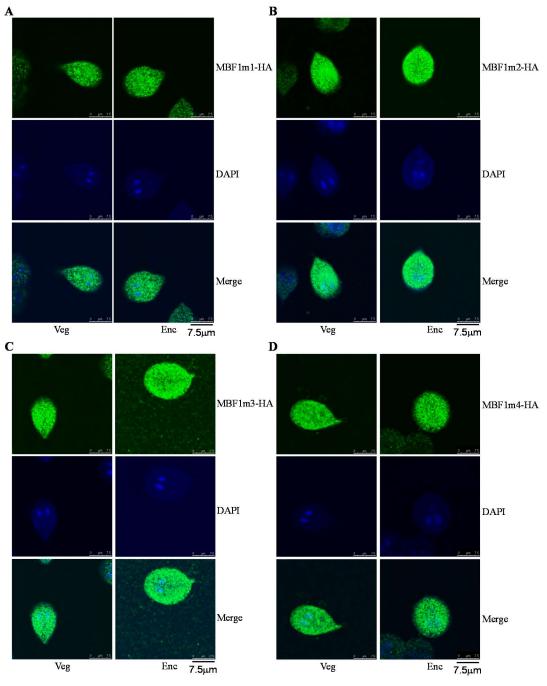


Fig. S2. Induction of *cwp1-3* and *myb2* gene expression in the MBF1-

overexpressing cell line during encystation. The 5' Δ 5N-Pac, pPMBF1, and pPMBF1m1-3 stable transfectants were cultured in encystation medium for 24h and then subjected to quantitative real-time RT-PCR analysis using primers specific for *mbf1-ha*, *mbf1*, *cwp1*, *cwp2*, *myb2*, *ran*, and 18S ribosomal RNA genes, respectively, as described in Fig. 3C.

Fig. S3. Immunofluorescence analysis of MBF1m1-4 distribution. The

pPMBF1m1-4 stable transfectants were cultured and then subjected to immunofluorescence analysis as described in Fig. 2E. The upper panels show the localization of the HA-tagged MBF1m1-4. The middle panels show the DAPI staining of cell nuclei. The bottom panels show the merged images.

Figure S	4								r	n4	
	10	20	30	40	50	⁶⁰ m	2 70	ml	80	⁹⁰ m3	100
MBF1 DPM DSC GOR4 HNNC PHD Predator SIMPA96 SOFM Sec.Cons.	MSEYRDYVRYKK ochhhheehocoo occochheecoo occocheecoo occhhhhheecoo occhhhhheecoo hthhhhhhocoo hthhhhhhocoo cococeeeecoo hthhhhhhocoo			ectchhhhhi ecchhhhhhi eccchhhhi eccchhhhi eccchhhhi eccchhhhi eccchhhhi	למממממממממממ המממממממממ המממממממממ הממממממ	AKGMNRKQLJ hhhhhhhhhh hhhhhhhhhh hhhccchhhhi hhccchhhhi hccchhhhi hccchhhhi hccchhhhi	DAAYIKE Ibhbhbh Ibhbhbh Ibhhhbh Ibhhhbh Ibhhhbh Ibhbhbh Ibhbhbh	SQLAAWES hhhhhhhh hhhhhhhh hhhhhhhh ccceccc hhhhhhhh	hooddoo cooddo	DAVI PKLEK chhhchhhh hhhhhhhhh cchhhhhhhh hhhhhhhh	hhchhhchhhcc hcchhchhhccc hcccccccce hhcccccccc
MBF1m1 DFM DSC GOR4 HNNC PHD Predator SIMPA96 SOFM Sec.Cons	cchhheeeeectc cccccchheeccc cccccceeeeeccc ccccceeeeeecc ccccceeeeee			cectchhhhhi ceccchhhhhi cecccchhhhi cecccchhhhi cecccchhhhi ceccchhhhi ceccchhhhi	אמתמתמים: מתחמתמומי מתחמתמומי מתחמתמי מתחמתמי מתחמתמי מתחמתמי מתחמתמי מתחמתמי מתחמתמי מתחמתמי מתחמתמי מתחמתמי	hhththinn hhhhhhhhh hhhccchhhh hhccchhhh hhccchhhh hcccchhhh hcccchhhh htccchhhh	nhhhhhh nhhhhhhi nhhhhhc nhhhhhc nhhhhh nhheec nhheec			cceechhhh cchhhhhhhhh hhhhhhhhhh cchhhhhhhh	eccecectocco hhhhhhhhhhco hccccccccce hhccccccccco hhccccccccco hhccccccccco hhcccccccc
	10	20	30	40	50	60	70	8	80	90	100
MBF1m2 DFM DSC GOR4 HNNC PHD Predator SIMPA96 SOPM Sec.Cons.	MSEYRDYVVRYKKP achhheeeeetta accaseeeetta accaseeeetta accaseeeetta accaseeeetta accaseeeetta accaseeeetta accaseeeetta hthhhhhhhhotoon htthhheeeetta			cctchhhhhi ccchhhhhhi cccchhhhi ccccchhhhi ccccchhhhi cccchhhhi cccchhhhi	למממממים: וממממממים וממממממים ומממממים ומממממים וממממים וממממים וממממים וממממים וממים ומממים וממים ומממים ומממים וממים ממים	hhthecett hhnhhhhhhh hheeceece hheeceech hheeceech hheeceech hteeceece	tttetee hhhhhhh cessech cessech hheese cessech cessech	chhhhhh hhhhhh hhhhhhh hhhhhhh cCecccc hhhhhhhc hhhhhhc hhhhhhc	secces secces secces secces secces secces secces secces	cceechhhh chhhhhhhh cchhhhhhhh hhhhhhhhh	ecceeectoccc hhhhcccccccc hccccccccce hhccccccccc
MBF1m3 DFM DSC GOR4 HNNC FHD Predator SIMPA96 SOFM Sec.Cons.	10 J MSEYRDYWRYKRT Coheheececoo coccoeeeecoo coccoeeeecoo coccoeeeecoo chhhhhhhhhcoo hthhheeeecoo coccoeeeecoo			Setenhhhhh Senhhhhhh Secenhhhh Secenhhhh Secenhhhh Secenhhhh Secenhhhh	Characteristics	hhththhhh hhhhhhhhh hhhhhhhhh hh ccc hhhhh h ccc hhhhh h ccc hhhhh httcchhhhh	hhhhhhi hhhhhhi hhhhhhi hhhhhhi hhhhhhi hhhhhh	hhhhhhhc hhhhhhhc hhhhhhhc hhhhhhhc hhhhhh	GSAPIPI CCCCCCC CCCCCCCC CCCCCCCC CCCCCCCC CCCC		
MBF1m4 DPM DSC GOR4 HNNC PHD Predator SIMPA96	10 J MSEYRDYVVRYKKPT Cchhhheeeectoo cccccceeeccoo cccchhhhheeccoo cccchhhhheeccoo		teccettet cocceccec cocceccec cocceccec cocceccec cocceccec	cetchhhhhh ceechhhhhh ceecchhhhh ceecchhhhh ceeccchhh ceecchhh	hhhhhhhhh hhhhhhhhh hhhhhhhhh hhhhhhhh	hhthhhhhh hhhhhhhhh hhhhhhhhh hh <mark>ccc</mark> hhhh hhhhhhhhh h	hhhhhh hhhhhh hhhhhh hhhhhh hhhhhh hhhhh	SQLAAWES hhhhhhht hhhhhhhc hhhhhhhc hhhhhhhc hhhhhhhc hhhhhh		hhachnhhhi sechhhhhi seccchhhi sechhhhhi sechhhhhi secchhhhhi	hocohood hococococo hococococo hocoecococo hocococococo

Fig. S4. Prediction of secondary structure of MBF1 mutants. The mutated

region of MBF1m1-4 is indicated by blue boxes. The secondary structure of MBF1 and MBF1m1-4 was predicted by NPS analysis. H indicates the α -helix.

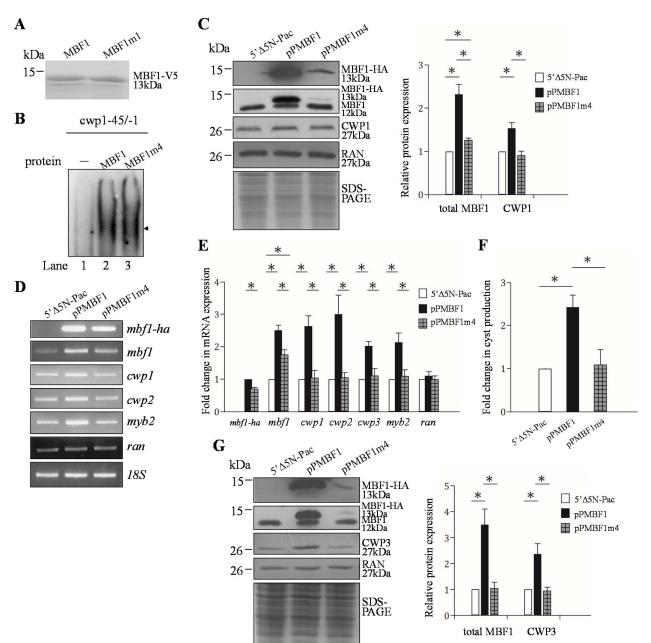


Fig. S5. Analysis of MBF1m4. (A) SDS-PAGE analysis of recombinant MBF1 and MBF1m4 proteins. MBF1 or MBF1m4 protein with a C-terminal V5 tag was purified from *E. coli* by affinity chromatography and then analyzed by SDS-PAGE and silver staining. (B) MBF1m4 has DNA-binding ability. Electrophoretic mobility shift assays were performed using purified MBF1 and MBF1m4, and cwp1-45/-1 probe. The arrowhead indicates the shifted complex. . (C) Expression of MBF1m4 decreased the level of CWP1 protein. The 5'A5N-Pac, pPMBF1, and pPMBF1m4 stable transfectants were cultured in growth medium and then subjected to SDS-PAGE and Western blot. The blot was probed by anti-HA, anti-MBF1, anti-CWP1, and anti-Ran antibodies, respectively. The intensity of bands from three Western blot assays was quantified as described in Fig. 3A. (D) RT-PCR analysis of gene expression in the MBF1- and MBF1m4- expressing cell lines. The 5'∆5N-Pac, pPMBF, and pPMBF1m4 stable transfectants were cultured in growth medium and then subjected to RT-PCR analysis using primers specific for *mbf1-ha*, *mbf1*, *cwp1*, *cwp2*, *myb2*, and 18S ribosomal RNA genes, respectively. (E) Quantitative real-time PCR analysis of gene expression in the MBF1- and MBF1m4- expressing cell lines. Real-time PCR was performed using primers specific for *mbf1-ha*, *mbf1*, *cwp1*, *cwp2*, *cwp3*, *myb2*, ran, and 18S ribosomal RNA genes, respectively, as described in Fig. 3C. (F) Expression of MBF1m4 decreased the level of cyst generation. The $5'\Delta 5$ N-Pac, pPMBF1, and pPMBF1m4 stable transfectants were cultured in growth medium and then subjected to cyst count as described under "Materials and Methods" and Fig. 3D. (G) Expression of MBF1m4 decreased the level of CWP3 protein during encystation. The 5'A5N-Pac, pPMBF1, and pPMBF1m4 stable transfectants were cultured in encystation medium for 24h and then subjected to SDS-PAGE and Western blot. The blot was probed by anti-HA, anti-MBF1, anti-CWP3, and anti-Ran

antibodies, respectively. The intensity of bands from three Western blot assays was quantified as described in Fig. 3A.

ATGGGCACCGAGTACAAGCCCACGGTGCGCCTCGCCACCGCGACGACGTCCCCCGGGCCG TACGCACCCTCGCCGCCGCGTTCGCCGACTACCCCGCCACGCGCCACACCGTCGACCCGGA CCGCCACATCGAGCGGGTCACCGAGCTGCAAGAACTCTTCCTCACGCGCGTCGGGCTCGAC ATCGGCAAGGTGTGGGTCGCGGACGACGGCGCGCGCGGTGGCGGTCTGGACCACGCCGGAGA GCGTCGAAGCGGGGGGGGGGTGTTCGCCGAGATCGGCCCGCGCATGGCCGAGTTGAGCGGTTC CCGGCTGGCCGCGCAGCAACAGATGGAAGGCCTCCTGGCGCCGCACCGGCCCAAGGAGCCC GCGTGGTTCCTGGCCACCGTCGGCGTCTCGCCCGACCACCAGGGCAAGGGTCTGGGCAGCG CCGTCGTGCTCCCCGGAGTGGAGGCGGCCGAGCGCGCGGGGGGGCCCGCCTTCCTGGAGAC CTCCGCGCCCCGCAACCTCCCCTTCTACGAGCGGCTCGGCTTCACCGTCACCGCCGACGTC GAGTGCCCGAAGGACCGCGCGCCCCGCGCGCCCCGCAGCCCGCGCGCCCCCGAGTGAG ggcttgtgcattgctactactgagtctacttgagggtggatgcatctacactctgacttcggctttgatctttcagacacctcaaaggctgtaactgtgtaaacagatgcgctttcttgcag agataaccccttacaaagtctgcctatgaatgccttgtccttgctcacatgtaacagaacg gcttagtcaagaggccattgaataattaaaccatgagaggcttcacgttcagcgtcggcgg gggctgccggaatgctcctgtcgactttggaccgtgtagagcagggacttccacggtgata gaggttctctttagctccacgctctctgtaagcgttaacgttagcatctcaaatttgccacggcacattgatgctgttcccaagcaatttattctcaatccctcgagcaagatgaatgtgaa gttcacatgggtctcaaaggatactaaatttcaaatcctcaacgaaactctgaatgttgaa agccagaagtcagtgcagcaccttgtgctcttgggcttagcaactgagaaggaactgaaca tctttttttcggcatccaatgagaagctctactttcgtattttgggtcg**gcccgagacttt** ctttgtcca

Fig. S6. Replacement of the *mbf1* gene with the *pac* gene in the MBF1td cell line confirmed by PCR and sequencing. Genomic DNA was isolated from MBF1td and control cell lines cultured in growth medium. PCR was performed using primers specific for *pac* (PCR2 in Fig. 8A), which are PCR2F for bold region 1 and PCR2R for bold region 2, to verify the integration of the *pac* gene into the correct region in genomic DNA. The sequence results obtained from the PCR2 product are shown as underlined letters. Capital letters indicate the coding sequence for *pac* gene, which starts at ATG and stops at TGA. This indicates the replacement of the *mbf1* gene with the *pac* gene. The region used to clone the *mbf1* 3' region into the pMBF1td plasmid for HR is shown in red, which is also between the sequence of MBF13XF and MBF13KR. The underlined and lower case letters, which are downstream and outside of the red region of MBF13XF and MBF13KR, indicate that HR occurred in the sequence of *mbf1* 3' region and that the *pac* gene was integrated in the genomic DNA.

Figure S7

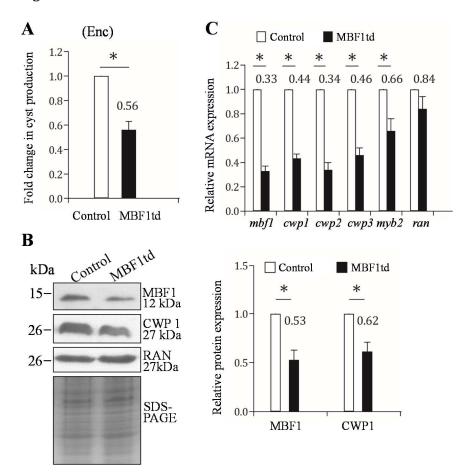


Fig. S7. Decrease in expression of *cwp1-3*, and *myb2* by targeted disruption of the *mbf1* gene during encystation. (A) Cyst generation decreased by targeted disruption of the *mbf1* gene in the MBF1td cell line during encystation. The control and MBF1td cell lines were cultured in encystation medium for 24h (Enc) and then subjected to cyst count as described under "Materials and Methods" and Fig. 3D. (B) Targeted disruption of the *mbf1* gene decreased the CWP1 level in the MBF1td cell line during encystation. The control and MBF1td cell lines were cultured in encystation medium for 24h and then subjected to SDS-PAGE and Western blot analysis as described in Fig. 3A. The blot was probed with anti-MBF1, anti-CWP1, and anti-RAN antibodies, respectively. The intensity of bands from three Western blot assays was quantified as described in Fig. 3A. (C) Decrease in expression of cwp1-3, and *myb2* by targeted disruption of the *mbf1* gene in the MBF1td cell line during encystation. The control and MBF1td cell lines were cultured in encystation medium for 24h and then subjected to quantitative real-time RT-PCR analysis using primers specific for *mbf1*, *cwp1*, *cwp2*, *cwp3*, *myb2*, *ran*, and 18S ribosomal RNA genes, respectively, as described in Fig. 2A.

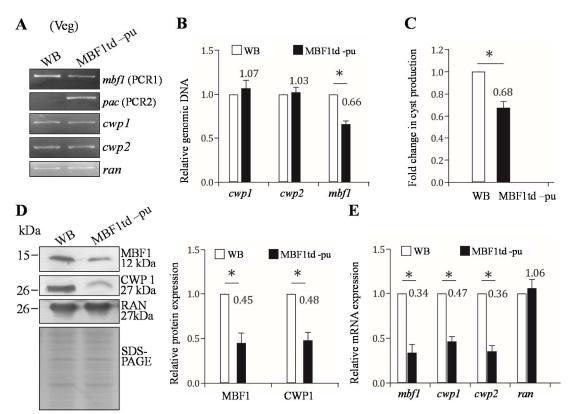


Fig. S8. Decrease in expression of *cwp1* and *cwp2* by targeted disruption of the *mbf1* gene after the removal of puromycin during vegetative growth. (A) Partial replacement of the *mbf1* gene with the *pac* gene in the MBF1 –pu cell line confirmed by PCR. Puromycin was removed from the MBF1td and control cell lines to obtain the MBF1td -pu and control -pu cell lines, respectively. Genomic DNA was isolated from MBF1td --pu and control --pu cell lines cultured in growth medium (vegetative growth, Veg). PCR was performed using primers specific for *mbf1* (PCR1), *pac* (PCR2), cwp1, cwp2, and ran genes, respectively, as described in Fig. 8B. (B) Partial disruption of the *mbf1* gene in the MBF1td -pu cell line confirmed by real-time PCR. Real-time PCR was performed using genomic DNA and primers specific for *mbf1*, *cwp1*, *cwp2*, and *ran* genes, respectively, as described in Fig. 8C. (C) Cyst generation decreased by targeted disruption of the *mbf1* gene in the MBF1td –pu cell line during vegetative growth. The control -pu and MBF1td -pu cell lines were cultured in growth medium and then subjected to cyst count as described under "Materials and Methods" and Fig. 3D. (D) Targeted disruption of the *mbf1* gene decreased the CWP1 level in the MBF1td -pu cell line during vegetative growth. The control -pu and MBF1td –pu cell lines were cultured in growth medium and then subjected to SDS-PAGE and Western blot analysis as described in Fig. 3A. The blot was probed with anti-MBF1, anti-CWP1, and anti-RAN antibodies, respectively. The intensity of bands from three Western blot assays was quantified as described in Fig. 3A. (E) Decrease in expression of *cwp1* and *cwp2* by targeted disruption of the *mbf1* gene in the MBF1td --pu cell line during vegetative growth. The control --pu and MBF1td --pu cell lines were cultured in growth medium and then subjected to quantitative real-time RT-PCR analysis using primers specific for *mbf1*, *cwp1*, *cwp2*, *ran*, and 18S ribosomal RNA genes, respectively, as described in Fig. 2A.

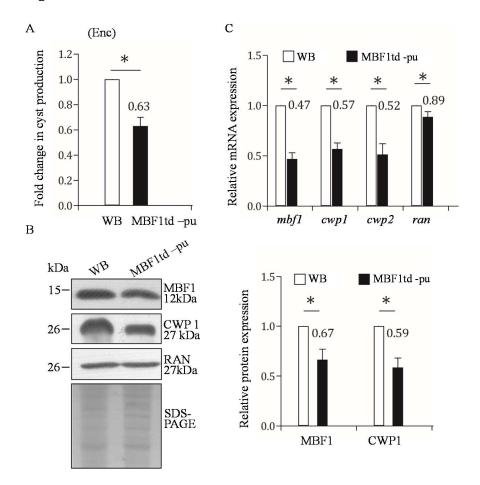


Fig. S9. Decrease in expression of *cwp1* and *cwp2* by targeted disruption of the mbf1 gene after the removal of puromycin during encystation. (A) Cyst generation decreased by targeted disruption of the *mbf1* gene in the MBF1td –pu cell line during encystation. The control -pu and MBF1td -pu cell lines were cultured in encystation medium for 24h (Enc) and then subjected to cyst count as described under "Materials and Methods", as described in Fig. 3D. (B) Targeted disruption of the *mbf1* gene decreased the CWP1 level in the MBF1td -pu cell line during encystation. The control -pu and MBF1td -pu cell lines were cultured in encystation medium for 24h and then subjected to SDS-PAGE and Western blot analysis as described in Fig. 3A. The blot was probed with anti-MBF1, anti-CWP1, and anti-RAN antibodies, respectively. The intensity of bands from three Western blot assays was quantified as described in Fig. 3A. (C) Decrease in expression of *cwp1* and *cwp2* by targeted disruption of the *mbf1* gene in the MBF1td –pu cell line during encystation. The control -pu and MBF1td -pu cell lines were cultured in encystation medium for 24h and then subjected to quantitative real-time RT-PCR analysis using primers specific for *mbf1*, *cwp1*, *cwp2*, *ran*, and 18S ribosomal RNA genes, respectively, as described in Fig. 2A.

Number	Annotation	Orf number	Fold change (pPMBF1/5'∆5N-Pac)*
1	VSP	41476	26.55
2	VSP	13402	21.92
3	VSP	14307	17.34
4	E2F1	23756	14.85
5	VSP	26590	11.23
6	VSP	13727	8.86
7	VSP	137614	8.16
8	VSP	105983	6.70
9	VSP	111873	6.02
10	VSP	114121	5.94
11	VSP, putative	96055	5.47
12	Hypothetical protein	117989	4.58
13	Hypothetical protein	105786	3.68
14	High cysteine		
	membrane protein	25816	3.66
	Group 1		
15	Hypothetical protein	9605	3.54
16	VSP, putative	114286	3.15
17	VSP	124980	3.02
18	VSP	15206	2.97
19	VSP, putative	92835	2.93
20	VSP	112113	2.48
21	Hypothetical protein	15125	2.29
22	Hypothetical protein	16078	2.23
23	VSP	114065	2.14
24	Hypothetical protein	8960	2.17
25	Dynein heavy chain	16804	2.10
26	Heat shock protein HSP 90-alpha	98054	2.06
27	Hypothetical protein	8505	1.95
28	Hypothetical protein	9210	2.02
29	Kinase, NEK	137733	2.02

Table S1. Genes up or down regulated by MBF1 overexpression.

30	Ubiquitin-activating enzyme E1 1	6288	2.01
31	DNA topoisomerase IIIα	7615	0.03
32	VSP	40591	0.17
33	VSP AS8	13194	0.17
34	VSP	114672	0.17
35	Hypothetical protein	99726	0.21
36	VSP with INR	119707	0.25
37	VSP	40571	0.26
38	VSP	90215	0.27
39	VSP	34357	0.27
40	VSP	105759	0.34
41	Hypothetical protein	123980	0.35
42	VSP with INR	40592	0.35
43	VSP	34196	0.38
44	VSP	115047	0.43
45	Hypothetical protein	114674	0.45
46	VSP	114653	0.46
47	VSP	116477	0.46
48	Hypothetical protein	26442	0.47
49	VSP	36493	0.47
50	Hypothetical protein	16697	0.48
51	Hypothetical protein	13239	0.49
52	VSP	112678	0.49
53	Elongation factor 1- gamma	12102	0.50

**p* values were determined to be <0.05 for groups in which the average means changed by a factor of ≥ 2.0 or ≤ 0.5 .

Name	Sequence (5'>3')
mbf1F (PCR1F)	CACCATGTCCGAGTATCGTGACTAC
mbf1R (PCR1R)	CTTCTTATCCTTCTCGGGAC
HAR	AGCGTAATCTGGAACATCGTATGGGTA
cwp1F	ATGATGCTCGCTCTCCTT
cwp1R	TCAAGGCGGGGTGAGGCA
cwp2F	ATGATCGCAGCCCTTGTTCTA
cwp2R	CCTTCTGCGGACAATAGGCTT
cwp3F	ATGTTTTCTCTGCTTCTTCT
cwp3R	TCTGTAGTAGGGCGGCTGTA
myb2F	ATGTTACCGGTACCTTCTCAGC
myb2R	GGGTAGCTTCTCACGGGGAAG
ranF	ATGTCTGACCCAATCAGC
ranR	TCAATCATCGTCGGGAAG
mbflrealF	CGACAAAGATCCCGGAGACA
mbf1realR	TTGCGACGCACTTCAAACTC
cwp1realF	AACGCTCTCACAGGCTCCAT
cwp1realR	AGGTGGAGCTCCTTGAGAAATTG
cwp2realF	TAGGCTGCTTCCCACTTTTGAG
cwp2realR	CGGGCCCGCAAGGT
cwp3realF	GCAAATTGGATGCCAAACAA
cwp3realR	GACTCCGATCCAGTCGCAGTA
myb2realF	TCCCTAATGACGCCAAACG
myb2realR	AGCACGCAGAGGCCAAGT
ranrealF	TCGTCCTCGTCGGAAACAA
ranrealR	AACTGTCTGGGTGCGGATCT
18SrealF	AAGACCGCCTCTGTCAATCAA
18SrealR	GTTTACGGCCGGGAATACG
mbf1KF	ACCGTGGTACCCCTCTCTTGACAAAGGAG

Table S2. Oligonucleotides used for construction of plasmids and PCR.

mbf1MR	CCGGCACGCGTCTTCTTATCCTTCTGG
top3βm1F	ATGCAGCGTATATCGCGGGGAATGAGCCGGGCGATGGAAATGCGGGCTCTGCTCCC AT
top3βm1R	ATGGGAGCAGAGCCCGCATTTCCATCGCCCGGCTCATTCCCCGCGATATACGCTGC AT
top3βm2F	CGAAGGGCATGAACGCGGAGCCGCCGGATAATGGGAGTGCGGGGAAGGAA
top3βm2R	AGCTGCGATTCCTTCCCCGCACTCCCATTATCCGGCGGCTCCGCGTTCATGCCCTT CG
top3βm3F	CTCCCATTCCTGATGATGGTGGTCTTCAACCTAATGCTGGTCCTGGTACAAAGC
top3βm3R	GCTTTGTACCAGGACCAGCATTAGGTTGAAGACCACCATCATCAGGAATGGGAG
top3βm4F	GGGAATCCGGCTCTGATGCTGGTGCTAAATGGCAACCTGCTGATTTGGAGAAGGTC CT
top3βm4R	AGGACCTTCTCCAAATCAGCAGGTTGCCATTTAGCACCAGCATCAGAGCCGGATTC CC
mbf15HF	TCTGAAAGCTTCTCTAAAGT
mbf15NR	GGCGGCCATGGTTGTCACCAGGTCTTGAAAAC
mbf13XF	GGCGGCTCGAGTGATGAGGGCTTGTGCATTGCTACTAC
mbf13KR	GGCGGGGTACCGGATTGAGAATAAATTGCTTG
mbf1-guide	GAGAGCGGGTACC <u>CTAGCTTATTGAAAAAGCGAGAGGCCATTGAGATGACTCGCCT</u>
	GATTGCAATAGCAAACAGTGTCTATAGTCTAATTGTGGACAACAGAGGGCTTATTG
	CAACGTTGATGACCAAGTTCAACAAGGGCGTCGCCTCCTATGAGCAGGTCATTCGG
	AATTTCGACGACCGGTAGCGTCCCCAGAGTAAACCATTTTAAATTGAAATAGGCGG
	<u>TTGGAAATAAAAGCGCGCCGTTTGAAGTGCGTCGCA<i>ACC</i></u> GTTTTAGAGCTAGAAAT
	AGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGG
	TGCTTTTTTGAATTCGAGAGCG, underlined region is U6 promoter, bold region
	is for annealing, underlined and bold region is upstream 3nt of PAM, other
	region is scaffold RNA
PCR2F	AAGGACCGCGCGACCTGG
PCR2R	tggacaaagaaagtctcgggc
mbf15F	GTGAACTAAGAGGACTAGCCAG
mbf15R	CAGGTCTTGAAAACAAAGGTCTTC
18S5F	CCAAAAAGTGTGGTGCAGG
18S5R	GCCGGGCGCGCGCGCGG

cwp15F	CAACGGCTTACTAAATCATTCTCTTG
cwp15R	TTCTGTGTTTCTTGATCTGAGAGTTGT
cwp25F	CACTTTGATGAGAGCATGGG
cwp25R	TTAGTTCATATCTTAAGTTA
cwp35F	TGGGGGAGATAGGAGAATAC
cwp35R	ATCAGTAGTAACTTATTTTTGGGAAAGAC
myb25F	TGGCTATGTATTTTTTTTCTTCTACAGCT
myb25R	TAGCAGTACAGAGTAATTATTATTTAGTA
U65F	TTGAGATGACTCGCCTGATTG
U65R	GAAATTCCGAATGACCTGCTC