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Abstract: Plants adjust their growth and development through a sophisticated regulatory system 
integrating endogenous and exogenous cues. Many of them rely on intricate crosstalk between nu-
trients and hormones, an effective way of coupling nutritional and developmental information and 
ensuring plant survival. Sugars in their different forms such as sucrose, glucose, fructose and tre-
halose-6-P and the hormone family of cytokinins (CKs) are major regulators of the shoot and root 
functioning throughout the plant life cycle. While their individual roles have been extensively in-
vestigated, their combined effects have unexpectedly received little attention, resulting in many 
gaps in current knowledge. The present review provides an overview of the relationship between 
sugars and CKs signaling in the main developmental transition during the plant lifecycle, including 
seed development, germination, seedling establishment, root and shoot branching, leaf senescence, 
and flowering. These new insights highlight the diversity and the complexity of the crosstalk be-
tween sugars and CKs and raise several questions that will open onto further investigations of these 
regulation networks orchestrating plant growth and development. 

Keywords: nutrient; hormones; development; seeds; flowering; branching senescence; meristem; 
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1. Introduction 
The regulation of plant growth and development is crucial for yield and resistance 

to abiotic and biotic constraints, which relies on fine-tuned interactions between nutrients 
and hormones, influenced by environmental inputs. Among these central regulators, sug-
ars and cytokinins (CKs) play predominant roles while operating synergistically, antago-
nistically and sometimes independently to shape the final reaction of the plant. Sugars 
growth-related metabolic activity and as signaling entities that drive a wide array of 
mechanisms throughout the plant life cycle [1–5]. Briefly, sugar signaling is intimately 
linked to developmental stages, hormonal signaling and environmental conditions, and 
thereby is an integrative part of plant growth control [6–11]. Plants can sense a diversity 
of soluble sugars such as sucrose, glucose, fructose and trehalose-6-phosphate (T6P). So-
phisticated sugar sensing networks have been identified, including hexokinase (HXK), 
Regulator of G-protein signaling (RGS1), and two main sensors of nutrients and energy 
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status: sucrose-nonfermentation1-related protein kinase1 (SnRK1) and target of rapamy-
cin (TOR) kinase [12–18]. 

CKs are a group of adenine derivatives involved in many central processes in plants, 
such as development of vasculature, differentiation of embryonic cells, maintenance of 
meristematic cells, shoot formation and leaf senescence delay [19–23]. There are two types 
of CKs: adenine-type cytokinins represented by kinetin, zeatin, and 6-benzylaminopurine, 
and phenylurea-type cytokinins like diphenylurea and thidiazuron. Most adenine-type 
cytokinins are synthesized in roots. Cambium and other actively dividing tissues also syn-
thesize CKs. CKs are viewed as one of the major long-distance root-to-shoot messengers 
[24]. Their biosynthesis depends on the activity of adenosine phosphate-isopentenyltrans-
ferases (IPTs). Trans-zeatin is the most abundant form of CK in plants [25]. Initially iden-
tified in rice, Lonely Guy (LOG), cytokinin nucleoside 54-monophosphate phosphoribo-
hydrolases, are involved in direct CK production [26,27]. CKs primarily regulate gene ex-
pression through a phosphotransfer signaling cascade. This cascade is initiated by histi-
dine kinase cytokinin receptors, Arabidopsis Histidine Kinase2 (AHK2), AHK3 and 
AHK4, that located in the endoplasmic reticulum membrane, and completed by cytosolic 
histidine phosphotransfer proteins (AHP) [28]. AHPs shuttle between the cytosol and the 
nucleus and transfer phosphate to nuclear response regulators (Arabidopsis Response 
Regulators, ARRs) [19,23] that fall into two classes: type-A and type-B ARRs are negative 
and positive regulators of CK signaling, respectively. 

Sugars and CKs are individually viewed as major players in many aspects of plant 
biology. Yet, their crosstalk has not been systematically investigated, hence many gaps in 
current knowledge. Moreover, the available results underline that the crosstalk is very 
complex and varies at least according to the nature of the organ and the physiological 
process. This review aims to underline the interactions between sugars and CKs based on 
their individual and combined roles in the regulation of key developmental processes 
throughout the plant life cycle. Based on the results derived from different plant species, 
sugars and CKs seem to act synergistically to take over the seedling emergency, shoot 
meristem activity, shoot branching and flowering while doing antagonistically as strongly 
suggested for seed germination, root meristematic activity, and even demonstrated for 
root branching and leaf senescence (Figure 1). Here, the main results are discussed, po-
tential integrators of this crosstalk are proposed, and further lines of research are high-
lighted. 

 
Figure 1. Relationship between sugars and cytokinins (CKs) in the main plant developmental pro-
cesses, including seed development, germination, seedling establishment, root and shoot branch-
ing, leaf senescence, and flowering. The black arrows indicate stimulation or positive effect, and 
the red lines mean repression or negative effect. This model results from a compilation of studies 
carried out on different model plants (see references and description in the text). 
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2. Seed Development, Germination and Seedling Establishment 
Seed formation, as well as the seed-to-young-seedling transition through germina-

tion, involves sugar and hormone signaling [29,30]. Even though common key players 
have been identified in the seed response to sugars and CKs, their molecular interaction 
remains speculative. 

2.1. Seed Development 
Seed development covers morphogenesis phases characterized by active cell division 

and embryonic organ formation and a maturation phase during which storage nutrients 
accumulate in cotyledons and/or endosperm tissues, with a transfer of reserves between 
these two compartments [31]. In this latter phase, the embryo acquires tolerance to desic-
cation and a dormancy state before dispersal in the environment. Dormancy allows the 
seed to cope with its adverse environment and secures the transition to a new life cycle. 
Previous works have reported the contribution of sugars and CKs in the control of seed 
development [32,33]. In cotyledons of Vicia faba, a high glucose-to-sucrose ratio is corre-
lated with cell division during the morphogenesis phase, whereas an increasing sucrose-
to-glucose ratio marks the sink–source transition to the storage phase [34]. The high glu-
cose gradient is related to both high cell-wall-bound invertase (CWINV) expression in the 
maternal seed coat and hexose transporter (VfSTP1) expression in the embryonic epider-
mal cells [35,36]. Analyses of the CWINV-deficient mutant miniature1 (mn1), impaired in 
endosperm development in maize caryopses, provide evidence that CWINV also contrib-
utes to CK-dependent cell proliferation during the developmental transition to the storage 
phase [37–39]. Such a CK effect may operate directly on cell cycle-related genes (CycD3) 
and indirectly through (CWINV2)-mediated sugar signaling [37,40,41]. Nevertheless, the 
seemingly contradictory phenotype of the CK-receptor-defective triple mutant ahk2 ahk3 
cre1 exhibiting greater seed size points to the complexity of the regulatory network [42]. 
Understanding how CKs contribute to seed development will require considering the dif-
ferent levels of regulation of CK metabolisms, such as the spatiotemporal accumulation 
and transport of CKs in seed tissues, the dynamics of their biosynthesis (IPT) and inacti-
vation (CKX), and their perception. The transition from cell division and expansion (seed 
morphogenesis) to storage activity (seed maturation phase) is associated with downregu-
lated CWINV and IPT expression [43,44]. At this stage, sugars serve for seed storage accu-
mulation by mediating sucrose synthase induction for starch biosynthesis in maize ker-
nels [33,45] or gibberellic acid (GA) dependent -amylase induction for storage remobi-
lization in barley embryos [46]. Such sugar-dependent regulation takes place at the tran-
scriptional and post-transcriptional levels [2]. The role of sugars in seed maturation could 
be complex and partially mediated through T6P, considered as a proxy for sucrose avail-
ability in plants [47], and SnRK1 [48]. Sucrose positively regulates T6P accumulation in 
wheat at the seed pre-filling stage [49], and its exogenous application stimulates seed fill-
ing and yield [50]. Accordingly, Arabidopsis seeds of the mutant tps1 (Trehalose-6-phos-
phate synthase 1) fail to proceed towards the maturation phase [51,52]. In pea, SnRK1 
deficiency hinders the maturation and storage activity [53,54]. Accordingly, SnRK1 in-
duces abscisic acid (ABA) synthesis and signaling and the C/S1-group bZIP signaling 
pathways associated with carbon starvation [55,56]. This regulation is mediated by pFUS3 
(The Arabidopsis B3-domain transcription factor FUSCA3) phosphorylation, known to con-
trol ABA responses during seed maturation and dormancy [57]. Transcriptomic compar-
ison of CK metabolism and signaling in dormant and non-dormant wheat seeds [58,59] 
highlights that CK controls the activity of many genes involved in seed dormancy. The 
interactions of CKs with ABA metabolism and signaling during seed maturation need to 
be further investigated and compared with sugar signaling mediated at least by the T6P 
and SnRK1 pathways. 
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2.2. Seed Germination and Seedling Establishment 
The carbon stored in the mature seed will be remobilized during germination to en-

sure seedling establishment before becoming heterotrophic. Seed germination is accom-
plished when the radicle protrudes through the outer layers of the embryo, i.e., the endo-
sperm and the teguments [60]. The related cellular and metabolic events are orchestrated 
by complex signaling crosstalk involving the hormones ABA and GA, well known for 
their role in inhibiting and inducing germination, respectively [61]. Sugars released from 
the GA-mediated hydrolysis of storage compounds and cell wall loosening serve as os-
motically active solutes for radicle cell expansion. These sugars are potentially used as 
central signals of the seed's C status and are also a source of C for seedling growth during 
the transition to autotrophy. Genetic and molecular analysis revealed a possible control 
of germination by glucose based on HXK1-dependent and independent pathways and the 
T6P pathway, interacting with different hormonal pathways [29]. Many reports also 
showed that CKs contribute to the control of seed germination [42]. However, their inter-
actions with glucose are poorly documented. On the whole, glucose and CKs are likely to 
operate antagonistically at different steps of the ABA biosynthesis and signaling path-
ways (Figure 2). The contribution of glucose to the control of seed germination has long 
been established and proven to be a concentration-dependent signal [62–64]. Exogenous 
supply of high glucose contents delays seed germination through positive regulation of 
ABA synthesis, accumulation and signaling [65–68]. At lower concentrations, glucose 
stimulates germination by inducing ABA catabolism [69]. In germinating seeds, high glu-
cose supply upregulates two ABA biosynthesis genes (NCED3 and ABA2) through the G 
Protein Alpha subunit AtGPA1 and the Regulator of G-protein Signaling AtRGS1, via an 
HXK1-independent channel [70–72]. Glucose also repressed—the positive regulator of 
seed germination AtGASA6 via an HXK1-dependent pathway [73,74]. AtGASA6 acts as 
an integrator of ABI5-dependent ABA signaling and RGL2-dependent GA signaling [73]. 
Therefore, a high level of T6P promotes seed germination by decreasing seed sensitivity 
to glucose and ABA [75–77]. In sum, the inhibition of seed germination under excessive 
glucose supply conditions may be due to the activation of the ABA signaling pathway and 
an imbalance in sugars/T6P [56]. 

 
Figure 2. Antagonistic effect of sugars and cytokinins (CKs) on seed germination. Blue stands for 
players of sugar signaling pathways, and green highlights genes involved in CK synthesis or sig-
naling pathways. Black arrows and red lines indicate stimulatory and inhibitory effects, respec-
tively. ABI, abscisic acid insensitive; AHK, Arabidopsis histidine kinase; ARR, Arabidopsis response 
regulator; CRE, cytokinin response; GASA, gibberellic acid-stimulated Arabidopsis; HXK, hexoki-
nase, IPT: isopentenyl transferase; RGS, regulator of G-protein signaling. This model results from 
a compilation of studies carried out on different model plants (see references and description in 
the text). 
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The CKs are described to stimulate seed germination by an antagonistic effect on 
ABA signaling [78–80]. In germinating seeds, increasing levels of CKs induce the expres-
sion of type-A ARRs (ARR4, ARR5 and ARR6) that inactivate the ABI5-mediated inhibi-
tion of germination [81,82] whereas glucose enhances ABI5 transcription [83] (Figure 2). 
In turn, ABA intake represses CK biosynthetic genes such as AtIPT8 and CK signaling 
genes such as type-A ARRs, and during seed dormancy, ABA signaling, including ABA 
receptor Pyrabactin Resistance (PYR/PYL), SnRK2s and ABI4, downregulates type-A 
ARRs [84]. In dormant seeds, high ABA levels positively regulate ABI4, which inhibits the 
expression of ARR6, ARR7 and ARR15. Either, Arabidopsis CK-receptor mutants exhibit a 
reduced dormancy phenotype, and distinct CK-mediated seed germination regulation 
pathways seem to exist [42]. In germinating seeds, many other regulatory pathways re-
spond to different forms of sugar signals. The exogenous sugar-dependent inhibition of 
seed germination is also regulated by the sucrose transporter SUT4/Cyb5-2-mediated sig-
naling pathway, independently of the ABA (ABI2/ABI4/ABI5)-mediated signaling path-
way [85]. CK biosynthesis is noticeably concomitant with SUT gene expression during pea 
seed germination. Therefore, we may wonder whether sugar transporters could be a con-
vergent target of sugars and CKs during this process [86]. 

Interestingly, promoters of the senescence-associated genes SAG12 and SAG13 are 
inducible in the tomato seed micropylar endosperm [87], suggesting that a senescing 
mechanism known to be stimulated by HXK1-dependent sugar signaling (see leaf senes-
cence section) could facilitate radicle protrusion. Ectopic expression of the IPT gene 
through SAG12 and SAG13 promoters delayed endosperm senescence and germination, 
suggesting that potential CK synthesis in the endosperm can antagonize the HXK-de-
pendent sugar senescing mechanism to negatively control germination. Therefore, CKs 
could be perceived differently in a tissue-dependent manner during seed germination. 

The crosstalk between sugars and CKs in the control of germination remains very 
partially documented, and available results foresee very intricate mechanisms. All the 
present results support antagonistic effects of glucose and CKs throughout the germina-
tion process, which precedes seedling growth considered as a post-germinative phase. 

2.3. Seedling Development 
Upon radicle protrusion through the seed coat, the first post-germinative events ini-

tiate seedling growth through hypocotyl elongation and root meristem development be-
fore the activation of the photosynthesis machinery. Hypocotyl elongation occurs in dark-
ness and is fueled by C issued from the hydrolysis and mobilization of seed storage com-
pounds. The shoot apical meristem (SAM) is characterized by a heterotrophic metabolism, 
while the development of the root apical meristem (RAM) occurs only under light condi-
tions and is controlled by cotyledon-derived photosynthetic sucrose that acts as a long-
distance signal [88]. 

CK and glucose signaling are involved in controlling different aspects of seedling 
growth and development, with auxin signaling components as downstream targets. From 
a physiological point of view, both glucose and CKs could control radicle growth in light 
conditions, hypocotyl length in darkness, chlorophyll and anthocyanin contents [89]. CKs 
interact with glucose via an HXK1-dependent pathway for the control of radicle and hy-
pocotyl elongation [30,90]. SnRK1 overexpression can delay seed germination and in-
creases sensitivity to glucose and ABA during seedling establishment [91]. When glucose 
is supplied to seedlings, T6P acts antagonistically to SnRK1 by inhibiting ABA synthesis 
and signaling and, in turn, the seed sensitivity to glucose [92]. Noteworthily, CKs antag-
onize ABA signaling by inhibiting SnRK2 activity via type-B ARRs and thus promote 
seedling establishment [93]. 
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3. Meristem Establishment and Functioning 
Sugars and CKs are fully part of the regulation of the dynamic balance between cell 

division and cell differentiation, which determines organ shape and size. Sugars can acti-
vate the expression of key cell cycle regulators, such as cyclin-dependent kinases (CDKs) 
and their interacting cyclins (CYCs), promoting the G2/mitosis transition in Arabidopsis 
seedling meristematic tissues [88,94–97]. CK signaling contributes to the stimulation of 
cell division and meristem initiation/formation [98,99]. 

3.1. Root Apical Meristems 
The root system consists of two principal root-types: the primary root (PR), which is 

formed embryonically and secondary roots, which form post-embryonically [100]. Glu-
cose influence root meristematic activity through many pathways, including the macro-
autophagy/autophagy degradation pathway, which acts downstream of SnRK1 and TOR 
kinase [101]. High concentrations of glucose reduce the size of the root meristem zone via 
ABI5, which represses the auxin efflux carrier PIN1 required for auxin accumulation in 
the meristem (Figure 3) [102]. Either, mounting evidence also indicates that SnRK1 and 
ABA can control root meristem activity cooper actively [103–105]. Overexpression of 
SnRK1.1 results in an ABA-hypersensitive phenotype [104] due to its interaction with the 
regulator of ABA response PP2C phosphatase protein [106–108]. ABI5, the main node of 
the glucose and ABA pathways, is directly phosphorylated by SnRK1 [56,109,110]. Glu-
cose induces ABI5 expression, which reduces the size of the root meristem zone. ABI5 can 
coordinate and adjust physiological and metabolic demands with growth, but also inter-
act with TOR kinase—a highly conserved eukaryotic phosphatidylinositol-3-kinase-re-
lated kinase—through TAP46 (2A Phosphatase Associated Protein of 46 KD) to influence 
the ABI5 signaling pathway negatively [111–113]. TOR-kinase also plays a major role in 
the regulation of growth and metabolism in plants [114]. Glucose-driven TOR-kinase sig-
naling regulates root meristem activation independently of hormonal and hexokinase sig-
naling pathways and involves the upregulation of the elongation factor E2Fa [115]. In re-
sponse to metabolic demands, the tonoplast sugar transporter (TST) imports sucrose, fruc-
tose and glucose into the root vacuoles to maintain cytosolic sugar homeostasis [116]. Yet 
Another Kinase (YAK) acts as a member of the dual-specificity tyrosine phosphorylation-
regulated kinase and may be involved downstream of this TOR signaling-mediated con-
trol of root meristem activity in Arabidopsis [117]. 

 
Figure 3. Antagonistic effect of sugars and cytokinins (CKs) on the functioning of the root meri-
stem. Blue indicates sugar signaling pathways, and green highlights genes involved in CK synthe-
sis or signaling pathways. Black arrows and red lines indicate stimulatory and inhibitory effects, 
respectively. Solid line, direct effect; dotted indirect effect. ABI5, abscisic acid insensitive 5; AHK3, 
Arabidopsis histidine kinase 3; ARR, Arabidopsis response regulator; CRF, cytokinin response factor; 
HXK1, hexokinase 1; E2FA, elongation 2 factor A; IPT, isopentenyl transferase; PIN1, PIN-
FORMED 1; SnRK1, SNF1-related kinase1; SPL10, Squamosa Promoter Binding Protein-Like 10; 
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TAP46, type 2A phosphatase associated protein of 46KD; TOR, target of rapamycin protein kinase; 
YAK1: Yet Another Kinase. This model results from a compilation of studies carried out on differ-
ent model plants (see references and description in the text). 

CKs are essential to promote cell differentiation in the root meristem [118–120]. This 
is due to trans-zeatin, whose accumulation slows down the root growth rate and the cell 
transition to elongation, leading to prolonged mitotic cycles [121]. Mutants defective in all 
CK receptors display severely reduced sizes of their shoot and root meristems [122,123]. 
This CK-dependent reduction of the root meristem size could involve a two-component 
receptor histidine kinase and type A-ARR transcription factor, such as AHK3/ARR1, 
AHK3/ARR12, that regulates the rate of meristematic cell differentiation (Figure 3) [123–
125]. The Squamosa Promoter Binding Protein-Like (SPL) transcription factor is one of the 
targets of microRNA156 (miRNA156). miRNA156 and SPL have opposing expression pat-
terns; high miRNA156 levels induce reduced root meristem size, while overexpression of 
SPL10 increases it [126]. Furthermore, meristem activity is regulated by SPL10, probably 
through the reduction of CK responses via the modulation of type-B Arabidopsis Response 
Regulator1 (ARR1) expression. This points to a cooperative regulation of root meristem 
activity by CK responses via miRNA156-targeted SPL10 [126]. Given that miRNA156 is a 
central component of sugar signaling [127], it will be of high interest to investigate 
whether sugars could take part in this regulatory network. CKs also cooperate with other 
hormones to regulate root meristem development. In Arabidopsis roots, the IAA3/Short Hy-
pocotyl 2 (SHY2) gene is an important hub of the crosstalk between CKs, auxin and brassi-
nosteroids (BRs) [128]. This calls for investigating its regulation by sugars. CK response 
factors (CRFs) are a group of related AP2/ERF transcription factors transcriptionally in-
duced by CKs [129]. Overexpression of CRFs in Arabidopsis results in a larger root apical 
meristem. Disruption of CRFs was accompanied by low sensitivity to CKs in a root elon-
gation assay, along with a reduced expression level of ARRs and of the homeobox gene 
STIMPY (STIP or WOX9) required for root and shoot apical meristem maintenance [19]. 
Although being acted antagonistically to regulate root meristem activity, additional in-
vestigations are required to bring the first mechanistic insights associated with molecular 
integrators involved in sugars and CKs crosstalk. 

3.2. Shoot Meristem 
The shoot meristem contains a central zone (CZ) that harbors pluripotent stem cells 

and surrounding regions in which cells start to differentiate, and organ primordia are in-
itiated. Sucrose and Glucose have long been known to promote meristem growth 
[1,130,131], and this effect could be mediated by the upregulation of CDKs and CYCs ex-
pression, which are required for the G1/S and G2/M transitions (Figure 4) [97,132]. While 
glucose signaling is sufficient to activate TOR kinase in root apexes, both glucose and light 
signals are required for TOR activation in shoot apices [133]. SnRK1 is expressed in the 
meristem and young leaf primordia; its low activity is required for CK biosynthesis 
[54,56,134], hence a link between nutrient/energy availability and CK production. In con-
trast with their role in roots, CKs promote shoot cell division through the regulation of a 
variety of key genes related to plant meristem activity and are essential to maintain un-
differentiated cells [119,135,136]. The CLAVATA (CLV) ligand–receptor system and two 
transcription factors, SHOOTMERISTEM-LESS (STM) and WUSCHEL (WUS), are in-
volved in meristem growth [137–139]. WUS, a positive regulator of stem cell proliferation, 
directly downregulates several type-A ARR transcription factors (ARR5, ARR6, ARR7 and 
ARR15), which act in the negative feedback loop of CK signaling (Figure 4) [140,141]. More 
interestingly, CK signaling precedes the de novo expression of WUS in the leaf axil to 
promote axillary meristem initiation via the direct binding of the type-B ARR transcrip-
tion factor to the WUS promoter (Figure 4) [98]. Moreover, CK signaling can activate the 
meristem and maintain its fate by inducing STIMPY expression in meristematic tissues 
[142,143]. The IPT and LONELY GUY (LOG) genes, which encode a novel CK-activating 
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enzyme operating in the final step of bioactive CK synthesis, are both pivotal for the con-
version of CK hormone precursors into active hormones within the shoot meristem 
[26,136]. In line with this, CK deficiency mutants display low activity of the vegetative 
and floral shoot apical meristems [144]. However, an opposite effect has been reported in 
Azolla as compared to Arabidopsis [145]. 

 
Figure 4. Synergetic effect of sugars and cytokinins (CKs) on the functioning of the shoot meri-
stem. Blue indicates sugar signaling pathways, and green highlights genes involved in CK synthe-
sis or signaling pathways. Black arrows and red lines indicate stimulatory and inhibitory effects, 
respectively. Solid line, direct effect; dotted indirect effect. A-ARR, type-A Arabidopsis response 
regulator; B-ARR, type-B Arabidopsis response regulator; CRF, cytokinin response factor; CDKs, 
cyclin-dependent kinases; CYCs, cyclins; E2FA, elongation 2 factor A; IPT, isopentenyl transferase; 
SnRK1, SNF1-related kinase 1; TOR, target of rapamycin protein kinase; Tre6P, trehalose-6-phos-
phate; TSS, TPR-DOMAIN SUPPRESSOR OF STIMP; WUS, WUSCHEL. This model results 
from a compilation of studies carried out on different model plants (see references and 
description in the text). 

Transcriptomic analysis identified that glucose could stimulate CK accumulation 
through the induction of IPT3 expression and the repression of cytokinin oxidase (CKX4) 
and also control the expression of 76% of CK-regulated genes at the whole-genome level 
in Arabidopsis seedlings [90]. This study highlights that the interaction between glucose 
and CKs plays a key and synergistic role in shoot meristem activity. Additional work 
would be required to identify the main convergent node of the crosstalk between sugars 
and CKs. One approach would be to use the promoter of some common genes such as 
CYCs, CDKs to identify the upstream regulators. 

4. Root and Shoot Branching 
Plants comprise two distinct parts: (i) the shoot system for photosynthesis and repro-

ductive functions, and (ii) the root system for water and nutrient uptake from the soil and 
anchorage. These two parts have evolved a complex branching strategy to increase their 
total surface area, ensuring a better adjustment of plants to their abiotic and biotic envi-
ronments. 

4.1. Lateral Root Growth 
Shoot branches are formed by an actively dividing shoot meristem, whereas lateral 

roots are derived from the pericycle, located beyond the root subapical meristem zone 
[146]. Auxin regulates lateral roots (LRs) positioning, which determines the spatial distri-
bution of lateral root primordia and LRs along with primary roots [147]. Auxin also regu-
lates root outgrowth and LRs emergence through interaction with sugars and CKs. Sugars 
promote lateral root initiation using different pathways that are not always associated 
with auxin [148,149]. Map-based cloning revealed that a neutral invertase gene (AtCYT-
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INV1) had a significant influence on lateral root development by controlling the hexose 
concentration within cells [150]. Photosynthetically generated sugars induce AtIPT3 and 
CYP735A expression to promote CK accumulation in roots [151]. This effect operates 
through the heterotrimeric G-protein complex (hexokinase-independent pathway), which 
regulates auxin distribution in the root and thereby induces lateral root formation [149]. 
More precisely, WOX7, a member of the WUSCHEL related homeobox (WOX) family of 
transcription factors, plays a major role in coupling lateral root development with the 
sugar status in plants [146]. WOX7 acts as a transcriptional repressor in lateral root devel-
opment. Genetic, physiological, transcriptomic and grafting approaches evidenced that C-
Terminally Encoded Peptide Receptor 1 (CEPR1) inhibited lateral root growth in response 
to sugars (including sucrose) and elevated light intensity [152]. 

CKs represses lateral root initiation and promote lateral root elongation [153–155]. 
They block cell cycling in the pericycle founder cells at the G2/M transition phase [156] 
and then disturb lateral root initiation in plants [157], confirming that the earliest stages 
of lateral root formation are very sensitive to the inhibitory effect of CKs [158]. Cytokinin 
Response Factor2 (CRF2), a component of the CK signaling pathway, plays an important 
role in regulating Arabidopsis lateral root initiation [159]. In Arabidopsis again, the mutation 
of CYP735A genes required for trans-zeatin biosynthesis causes strong defects in lateral 
root positioning, indicating a determining role for CK metabolites in the regulation of lat-
eral root initiation [160]. 

The crosstalk between CKs and sugars also regulates root branching (Figure 4). Com-
bined analysis in roots of grafted apple revealed that root growth and development of 
rootstocks were mainly influenced by the sugar metabolism, auxin, and CK signaling 
[161]. Furthermore, the crosstalk between glucose and CKs regulates root development in 
Arabidopsis [89]. These authors showed that CKs interact with glucose via an HXK1-de-
pendent pathway for root length control. Wild-type (WT) roots cannot elongate without 
glucose, but roots elongate even in the absence of glucose in the CK-receptor mutant Ara-
bidopsis Histidine Kinase4 (ahk4) and type-B ARR triple mutant arr1 (Arabidopsis Response 
Regulator1), arr10, arr11 compared with the WT. Although 60 genes related to root growth 
are regulated by both CKs and glucose, nothing is known on the physiological relevance 
of the crosstalk between sugars and CKs in the control of root-lateral formation. 

4.2. Shoot Branching 
Shoot branching is a strictly regulated process that involves a very finely tuned hor-

monal and nutrient regulatory network [162–165] and is highly governed by environmen-
tal inputs [166]. In this intricate process, sugars and CKs behave as inducers, while auxin 
and strigolactones (SLs) act as repressors. However, whether sugars and CKs act syner-
gistically or independently in this process remains unknown (Figure 5). Auxin derived 
from the young growing leaves of the apical meristem is transported down the stem 
through a specific polar auxin transport (PAT) stream and indirectly inhibits bud out-
growth through the opposite action of CKs and SLs [162,167]. The inducer effect of CKs 
has long been known [168]. This effect could occur through i) the downregulation of the 
main inhibitor of shoot branching, Teosinte Branched 1/Branched1 (TB1/BRC1), within the 
bud [165], ii) the stimulation of the sink strength of the buds for sugars [169,170], and/or 
iii) the promotion of auxin export from axillary buds to the main stem [171]. This latter 
mechanism is considered as a prerequisite for bud outgrowth in Arabidopsis and relies on 
the downregulation of a CK-signaling transcription factor (ARR1) and the upregulation 
of three auxin efflux carriers (PIN3, 4 and 7) [171–174]. PIN3/4/7 contributes to the local 
auxin transport between the PAT stream and surrounding tissues, referred to as connec-
tive auxin transport (CAT) [174]. The role of sugars in bud outgrowth is at the core of the 
historical nutrient diversion theory, which states that bud outgrowth is restricted by com-
petition for the carbon resource in favor of the faster growing apical zone [175,176]. In 
addition, sugar starvation of the buds is tightly correlated to their dormancy status 
[163,177]. Sugars act as signaling molecules, as supported by their ability to downregulate 
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BRC1 [165,178] and by the fact that nonmetabolizable sugar analogs promote bud out-
growth in rose and pea [178–180]. Positive systemic signaling associated with sugar has 
been reported for etiolated stem branching in potato [181]. The T6P signaling pathway 
takes part in the local and systemic sugar-dependent regulation of bud outgrowth in Ar-
abidopsis and in pea [182,183]. All these findings indicate that sugar mediates bud out-
growth through different sugar-signaling pathways, and additional investigations are 
needed to understand how they drive bud outgrowth individually and/or collectively. 

 
Figure 5. Synergistic effect of sugars and cytokinins (CKs) on bud outgrowth. Black arrows and 
red lines indicate stimulatory and inhibitory effects, respectively. SLs: strigolactones; BRC1: 
Branched1. 

Current evidence shows crosstalk between sugars and SLs in rose, pea and rice 
[184,5]. In contrast, the basic regulatory mechanisms related to the sugar/CK interplay in 
the driving of shoot branching is still unknown. Sugars stimulated CK synthesis in one-
node cuttings in vitro [178], and CKs could promote the expression of genes associated 
with the sink strength of buds for sugars [185]. Additional investigations are obviously 
required to elucidate how sugars and CKs synergistically regulate bud outgrowth. BRC1, 
which is under the control of sugars and CKs, could be an interesting hub for this regula-
tion (Figure 5) [165]. 

5. Leaf Senescence 
Leaf senescence can be a constitutive process of age-related development or an in-

ducible mechanism triggered by unfavorable environmental conditions [186]. During this 
process, leaf cellular constituents and metabolites are actively recycled and exported to 
sink organs [22,187,188]. Leaf senescence is driven by sugars and hormones 
[22,87,187,189,190]. While acting cooperatively in growing leaves, sugars and CKs take on 
opposite roles in senescing leaves. Sugars promote the appearance of senescence symp-
toms [191,192]. Glucose highly promotes the expression of PAP1 and PAP2, two senes-
cence-associated MYB transcription factor genes, and of the senescence-specific gene 
SAG12 [193]. This sugar-dependent induction of senescence could involve different sugar-
related signaling pathways that may work in opposite manners. The best-characterized 
one is the HXK-dependent signaling pathway: tomato or Arabidopsis HXK-overexpressing 
mutants exhibit high sensitivity to glucose and an accelerated senescence phenotype 
[194,195], while delayed senescence occurs in HXK knockout mutants [196,197]. Either 
increased T6P levels or reduced AtTOR activity triggers leaf senescence [198,199]. 

By contrast, CKs delay leaf senescence, as evidenced by results from exogenous sup-
ply of CKs, engineered plants with enhanced endogenous CK concentrations, and mu-
tants deficient in CK signaling [200–203]. However, elevated expression of IPTs or LOG7a, 
two CK-encoding genes, has been unexpectedly reported in detached senescing leaves 
[43,204,205]. Delayed CK-mediated senescence is dependent on the activity of cell wall 
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invertases (CWI) [206]. The tomato mutant deficient in INVINH1, an inhibitor of CWI ac-
tivity– accordingly exhibited low leaf senescence [207]. The role of CWI in retarding leaf 
senescence is still unclear and may be more related to sugar signaling than to C nutrient 
provision [208]. CKs could be involved in the regulation of the progression of leaf senes-
cence by ensuring multiple roles, including scavengers of reactive oxygen species (ROS) 
or the maintenance of mitochondrial integrity [188,201]. Silencing the expression of 
RhPR10.1 (pathogenesis-related PR-10) in rose both accelerated flower senescence re-
duced CK levels and downregulated three CK signaling pathway genes– RhRR3, RhRR8 
and RhRR9 [209]. Additional key components of the CK signaling pathways, including a 
CK receptor (AHK3), a CK-response factor (CRF6), the type-B response regulator (ARR2) 
and the CRF-related AP2/ERF transcription factor family, also take part in the senescence-
retarding role of CKs [19,210,211]. 

Although sugars and CKs clearly have opposite effects on leaf senescence, the basic 
mechanism behind this crosstalk is still mostly unclear. One potential node may be the 
photosynthetic activity that influences the initiation of leaf senescence [212,213]. Photo-
synthetic activity is promoted by CKs [214] and repressed by sucrose and other derivative 
sugars accumulation through HXK-dependent signaling [215,216]. This mechanism in-
volves Abscisic Acid Insensitive4 (ABI4), which encodes an ABA-regulated AP2 domain 
transcription factor [78]. Involved in the CK-dependent regulation of lateral root develop-
ment [217], ABI4 may be an integrator of the antagonistic control of leaf senescence by 
sugars and CKs. Alternatively, a double mutant overexpressing IPT and HXK also showed 
early senescence-related characteristics comparatively to the IPT-overexpressing mutant 
and the WT, indicating a dominant role of sugars in the establishment of leaf senescence 
[218]. This is consistent with the presence of a set of sugar–signal-related motifs (e.g., 
YBGAHV, TATCCAOSAMY and ACGTABBOX) in the Glycine max promoter region of 
the IPT gene [219]. Future lines of research could target the way IP and root-derived CKs 
operate to antagonize the inductive effect of sugars on leaf senescence. 

6. Flowering 
Flowering is an important developmental process that ensures plant survival. The 

transition from the vegetative to the flowering stage must occur in a timely manner to 
maximize reproductive success. This developmental juvenile-to-adult reproductive 
switch is controlled by six major regulatory pathways that integrate different environ-
mental and endogenous signals: the photoperiod, vernalization, gibberellins, ambient 
temperature, autonomous, and age [220]. This flowering network converges toward the 
major floral integrator gene FLOWERING LOCUS T (FT), its closest homolog TWIN SIS-
TER OF FT (TSF), Suppressor of Overexpression of Constans 1 (SOC1), and FLOWERING 
LOCUS D (Figure 6) [220–222]. In Arabidopsis, a facultative long-day plant, sucrose con-
centrations in leaf exudates increase in response to inductive long days [223]. These in-
creases in sucrose export levels result from carbohydrate mobilization rather than in-
creased photosynthesis [224]. In line with this, sucrose supply can promote flowering in 
Arabidopsis and tomato [225,226]. However, high sucrose concentrations can have an in-
hibitory effect on floral transition [227]. Besides sucrose, glucose plays a major role in this 
process through the miR156/SPLs regulatory module identified as a key component of the 
aging pathway (Figure 6). Thus, the glucose-induced repression of miRNA156 is partly 
dependent on the signaling activity of HXK1 [228]. Sugar-mediated flower induction may 
also involve the signaling metabolite T6P, whose accumulation depends on T6P synthase 
1 (TPS1) activity [229]. These authors showed that T6P pathway signaling in leaves is es-
sential for both FT and TSF expression under inductive photoperiod. In addition, the T6P 
pathway also acts as a local signal in the SAM through the miRNA156-SPLs module inde-
pendently of the photoperiod pathway. Transgenic Arabidopsis plants overexpressing 
jatropha T6P phosphatase (JcTPPJ) display a delayed flowering under inductive long days 
as compared to the WT [230]. Nevertheless, the Arabidopsis knockout mutant tppi exhibited 
the opposite phenotype, i.e., late-flowering under non-inductive conditions. This question 



Int. J. Mol. Sci. 2021, 22, 1282 12 of 21 
 

 

means the regulation of flowering time by T6P, but also by downstream products of the 
T6P pathway like trehalose [231]. TSF inhibits the fructose phosphorylating activity of 
fructokinase 6 (FRK6) through direct interaction [232]. This potential regulatory role of 
the TSF-FRKs nexus in determining the flowering time of Arabidopsis is supported by the 
delayed flowering of the frk6 mutant under short-day conditions. In plants, CKs should 
be considered as an obligatory component of floral induction and may act both in leaves 
and shoot apices [233,234]. CK supply to Arabidopsis roots indeed promotes flowering and 
induces transcription of TSF in leaves as well as FD and SOC1 under short-day conditions in-
dependently of FT (Figure 6) [234]. Additionally, exogenous treatment with CKs could 
also induce SOC1 in the shoot meristem [233]. Gain-of-function variants of AHK2 and 
AHK3, two CK receptors, displayed enhanced CK signaling, resulting in early flowering 
under long-day conditions [235]. Consistent with these results, the rice hk5 hk6 mutant, 
disrupted for two HK cytokinin receptor genes, displayed severely delayed flowering 
[236]. SOC1, FD and ARR5-like were upregulated in sweet cherry tree buds during flow-
ering induction when the highest amount of CKs was applied [237], as they were in apple 
tree buds when CKs were applied [11]. 

 
Figure 6. Synergistic effect of sugars and cytokinins (CKs) on flowering. Blue words indicate sugar 
signaling pathways. Black arrows and red lines indicate stimulatory and inhibitory effects, respec-
tively. FD, FLOWERING LOCUS D; FT, FLOWERING LOCUS T; HXK1, hexokinase1; SOC1, Sup-
pressor of Overexpression of Constans1; SPL, Squamosa Promoter-Binding Protein-Like; Tre6P: 
trehalose-6-phosphate; TSF, TWIN SISTER OF FT. 

The role played by the crosstalk between sugars and CKs in the control of flowering 
is still almost unknown. Additional research is required to evaluate whether TSF, the pa-
ralog of FT, could be the main node of the combined effect of T6P and CKs. 

7. Conclusions 
Sugars and CKs play a pivotal role in morphogenesis and plant development because 

they are predominant during both the vegetative and reproductive stages of plant life 
(Figure 1). However, the detailed mechanism whereby these two regulators interplay is 
still puzzling, and many mechanistic scenarios are plausible. Many questions still remain 
open, include which molecular actors, which hubs could be involved at the crossroads of 
the sugar and CK signaling pathways. As the sugar/CK interplay can have antagonistic or 
agonistic outcomes, its regulatory network is expected to be complex and multifactorial 
depending on developmental and environmental inputs. Sugars and CKs both regulate 
the relationships between source and sink organs at the whole plant level. As a conse-
quence, we may wonder about the relevance of the main energy and nutrient status sen-
sors (Sucrose non-fermenting-related kinase (SnRK1)/target of rapamycin (TOR kinase)) 
in this process. The involvement of these mechanisms in this crosstalk deserves to be in-
vestigated. Meanwhile, our knowledge about the roles of sugars and CKs in the plant 
response to stressors is well investigated, but data about their crosstalk is again still very 
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limited. Such an understanding is crucial to building up a comprehensive picture in dif-
ferent biological contexts throughout plant life. Further works are thus needed to fully 
investigate the regulatory networks behind the crosstalk between sugars and CKs. This 
will undoubtedly help to suitably manage plant physiology in view of increasing agron-
omy and resilience performances in an ever-changing environment. 
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