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Abstract: Tumor progression begins when cancer cells recruit tumor-associated stromal cells to
produce a vascular niche, ultimately resulting in uncontrolled growth, invasion, and metastasis.
It is poorly understood, though, how this process might be affected by deletions or mutations in
the breast cancer type 1 susceptibility (BRCA1) gene in patients with a lifetime risk of developing
breast and/or ovarian cancer. To model the BRCA1-deleted stroma, we first generated induced
pluripotent stem cells (iPSCs) from patients carrying a germline deletion of exon 17 of the BRCA1
gene (BRCA1+/− who, based on their family histories, were at a high risk for cancer. Using
peripheral blood mononuclear cells (PBMCs) of these two affected family members and two normal
(BRCA1+/+) individuals, we established a number of iPSC clones via non-integrating Sendai virus-
based delivery of the four OCT4, SOX2, KLF4, and c-MYC factors. Induced mesenchymal stem
cells (iMSCs) were generated and used as normal and pathological stromal cells. In transcriptome
analyses, BRCA1+/− iMSCs exhibited a unique pro-angiogenic signature: compared to non-mutated
iMSCs, they expressed high levels of HIF-1α, angiogenic factors belonging to the VEGF, PDGF, and
ANGPT subfamilies showing high angiogenic potential. This was confirmed in vitro through the
increased capacity to generate tube-like structures compared to BRCA1+/+ iMSCs and in vivo by a
matrigel plug angiogenesis assay where the BRCA1+/− iMSCs promoted the development of an
extended and organized vessel network. We also reported a highly increased migration capacity of
BRCA1+/− iMSCs through an in vitro wound healing assay that correlated with the upregulation of
the periostin (POSTN). Finally, we assessed the ability of both iMSCs to facilitate the engraftment of
murine breast cancer cells using a xenogenic 4T1 transplant model. The co-injection of BRCA1+/−
iMSCs and 4T1 breast cancer cells into mouse mammary fat pads gave rise to highly aggressive tumor
growth (2-fold increase in tumor volume compared to 4T1 alone, p = 0.01283) and a higher prevalence
of spontaneous metastatic spread to the lungs. Here, we report for the first time a major effect of
BRCA1 haploinsufficiency on tumor-associated stroma in the context of BRCA1-associated cancers.
The unique iMSC model used here was generated using patient-specific iPSCs, which opens new
therapeutic avenues for the prevention and personalized treatment of BRCA1-associated hereditary
breast cancer.
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1. Introduction

A tumor is a complex structure composed of malignant cells that are strictly coupled
with tumor stroma; the stroma, in turn, contains a wide variety of cells that have been
implicated in cancer initiation and development, vascular network growth, local invasion,
and metastasis. In breast cancer, this non-malignant compartment can account for up to
70% of the tumor mass, and also plays a pivotal role in resistance to treatment [1].

Recent research has identified mesenchymal stem/stromal cells (MSCs) as important
stromal facilitators of tumor development, as well as integral components of the cancer
stroma in both experimental and clinical settings [2–5]. In the context of breast carcinomas,
MSCs have been shown to display a pro-malignant phenotype [6,7] and to promote breast
cancer progression, invasion, and metastasis [8–12]. Several studies have described a
cross-talk between MSCs and breast cancer cells (BCCs): BCCs stimulate secretion of the
chemokine CCL5 from MSCs, which then interacts, via paracrine signaling, with the BCC
chemokine receptor CCR5 to promote BCC motility, invasion, and metastasis [9]. MSCs
have also been shown to cause aberrant expression of micro-RNAs by BCCs, providing
BCCs with enhanced cancer stem cell properties [8], and to promote the production of lysyl
oxidase by BCCs, which was found to enhance the metastasis of weakly metastatic cancer
cells to the lungs and bones [11].

A small fraction of breast cancers (~1–5%) can be attributed to familial mutations in
the BRCA1 and 2 cancer susceptibility genes; such mutations confer an elevated lifetime
risk of breast, ovarian, and other cancers. However, the mechanisms underlying tumor
formation in these patients are still unknown. BRCA1 is known to be involved in several
signaling pathways and cellular processes, such as DNA damage response, regulation of
cell cycle progression, apoptosis, and ubiquitination. Pathogenic variants of BRCA1 are
created by small insertions or deletions that give rise to a non-functional protein; both
alleles of BRCA1 must be mutated and lost for cancer to develop. Approximately, 85–90%
of hereditary BRCA1-mutation carriers will develop breast cancer [13] and the majority of
these cases demonstrate an aggressive breast tumor phenotype—basal-like, triple-negative
{ER(−), PR(−) HER2(−)} [14,15], which is associated with a strong stromal reaction. The
mechanism(s) by which BRCA1-mutated stromal cells affect the pathogenesis of breast
cancer remain to be clarified. It has been shown that phenotypic aberrations arise early in
pre-tumoral normal cells with a “first hit” germline mutation. Indeed, even in apparently
normal epithelial cells, BRCA1 heterozygosity induces significant molecular alterations,
such as changes in gene expression profiles, the activation status of intracellular signaling
cascades (i.e., hormone receptors), degree of differentiation, and genomic stability [16,17].
To date, the molecular and functional consequences of BRCA1 heterozygosity in stromal
cells have been poorly investigated. We hypothesized that mesenchymal stem cells carrying
mutations in the BRCA cancer susceptibility genes could enable malignant transformation
and tumor progression in BRCA1 carriers. By characterizing the key factors that are altered
in BRCA1-haploinsufficient stromal cells, it might be possible to identify therapeutic
strategies to prevent or treat BRCA-associated cancers. To model human stromal cells with
a heterozygous BRCA1 mutation, we used BRCA1-mutant human induced pluripotent
stem cells (iPSCs) derived from the blood cells of patients with an inherited form of breast
cancer. Using these, we are able to report for the first time a strong genotype-to-phenotype
correlation, and a relationship between the genetic alteration in MSCs and their influence
on the establishment of a permissive vascular niche that promotes tumor growth, invasion,
and metastasis. Furthermore, BRCA1-mutant iPSC-derived Induced MSCs (iMSCs) models
offer a potential framework to evaluate the ability of drugs to modulate the effects of
BRCA1 defects during developmental windows of susceptibility.
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2. Results
2.1. Generation and Characterization of iPSCs and Derivation of Induced Mesenchymal Stem
Cells (iMSCs)

To identify early molecular drivers in the establishment of BRCA1-deleted/mutated
tumors, we generated iPSC lines from the peripheral blood mononuclear cells (PBMCs) of
patients who carried a germline deletion of exon 17 of the BRCA1 gene and who, based
on their family histories, were at a high risk for cancer. Specifically, we identified two
patients (P1 and P2) who represented two generations of a family with the same BRCA1
susceptibility gene. Using PBMCs of these two affected family members and two normal
(BRCA1 wildtype) individuals, we established a number of iPSC clones via non-integrating
Sendai virus-based delivery of the four Yamanaka reprogramming factors: OCT4, SOX2,
KLF4, and c-MYC [18]. In previous publications, we characterized the iPSCs generated from
P2 [19] and confirmed the deletion of exon 17 in BRCA1 by multiplex ligation-dependent
probe amplification analysis [20]. All iPSC clones generated from Patient 1 demonstrated
human embryonic stem cell morphology and expressed pluripotency factors (NANOG,
SOX2 and OCT4) as well as stem cell-specific surface markers (TRA-1-60 and SSEA4)
(Figure S1A,B). Importantly, the iPSC lines from both patients had normal karyotypes
(Figure S1C) and demonstrated the capacity to differentiate into all three germ layers
in vivo in teratomas (Figure S1D) [19].

Together, these data indicated that somatic cells from BRCA1 patients could be prop-
erly reprogrammed, maintain a pluripotent state, and differentiate effectively.

Next, iMSCs were derived from two different lines of BRCA1 WildType (WT) iPSCs
and from the P1- and P2-derived lines of iPSCs (carrying a germline deletion of exon 17 in
BRCA1; Figure 1A). Both BRCA1 WT and deleted iPSC-derived iMSCs had typical MSC
morphology (Figure 1A); they expressed N-Cadherin and Vimentin mesenchymal markers
(revealed via immunostaining; Figure 1B) as well as Snail1, Snail2, N-Cadherin, and Vimentin
mRNA (revealed via RT-PCR; Figure 1C). As we had observed for the iPSCs, the karyotypes
of all iMSCs were normal (46XX) (Figure 1D). The phenotypes of WT and BRCA1-deleted
iMSCs were similar: both expressed CD73, CD90, and CD105, and lacked expression of
CD34 and CD45 (Figure 1E). An immunoblotting assay revealed that BRCA1-deleted iMSCs
expressed 50% less BRCA1 protein than WT iMSCs did (ratio of 0.57) (Figure 1F).

2.2. Increased Angiogenesis Potential in BRCA1+/− iMSCs

To investigate gene expression differences between iMSC lines, we performed a
transcriptome analysis on BRCA1+/− (derived from P2 iPSCs) and WT iMSCs. The
Significance Analysis for Microarray algorithm was used to identify differentially expressed
genes (DEGs) between the two conditions. Of the 261 DEGs highlighted by this analysis,
the majority (219) were found to be upregulated in BRCA1+/− cells compared to WT. This
differential expression profile enabled significant discrimination among BRCA1+/− and
WT samples by both unsupervised classification (Figure 2A) and principal component
analysis (p-value = 0.00014, Figure 2B). We next examined the functional enrichment of
genes that were overexpressed in BRCA1+/− samples using the Gene Ontology (biological
process) database; this analysis revealed an important association between these genes
and the functions of adhesion, and more particularly, anatomical structure development
(Figure 2C). Using these results, we constructed a functional network of all DEGs that were
implicated in development (Figure S2), which underlined the importance of developmental
genes in this differential gene expression profile. Together, these data suggested that BRCA1
may play an important role in mesenchymal-derived iPSCs.
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Figure 1. Characteristics of induced pluripotent stem cell (iPSC)-derived BRCA1+/− induced mesenchymal stem cells 
(iMSCs) and BRCA1+/+ iMSCs. (A) Morphology of iPSCs and iPSC-derived iMSCs, characterized by spindle-shaped 
cells. (B) Immunofluorescence images of iPSC-derived iMSCs stained with N-Cadherin and Vimentin mesenchymal 
markers. (C) Expression of mesenchymal markers (Snail 2, N-Cadherin, Vimentin, and Snail 1) in both cell lines as de-
termined by RT-qPCR. (D) BRCA1-deleted iMSCs exhibit a normal karyotype. (E) Expression of characteristic MSC 
markers by flow cytometry. White histograms indicate negative expression. (F) Western blot of BRCA1 protein levels in 
deleted BRCA1+/− and wild-type BRCA1+/+ iMSCs. Immunoblotting revealed a decrease in BRCA1 protein level in the 
BRCA1-mutated MSCs. 

Figure 1. Characteristics of induced pluripotent stem cell (iPSC)-derived BRCA1+/− induced mesenchymal stem cells
(iMSCs) and BRCA1+/+ iMSCs. (A) Morphology of iPSCs and iPSC-derived iMSCs, characterized by spindle-shaped cells.
(B) Immunofluorescence images of iPSC-derived iMSCs stained with N-Cadherin and Vimentin mesenchymal markers.
(C) Expression of mesenchymal markers (Snail 2, N-Cadherin, Vimentin, and Snail 1) in both cell lines as determined by
RT-qPCR. (D) BRCA1-deleted iMSCs exhibit a normal karyotype. (E) Expression of characteristic MSC markers by flow
cytometry. White histograms indicate negative expression. (F) Western blot of BRCA1 protein levels in deleted BRCA1+/−
and wild-type BRCA1+/+ iMSCs. Immunoblotting revealed a decrease in BRCA1 protein level in the BRCA1-mutated MSCs.
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Figure 2. Differentially expressed genes between BRCA1+/− and BRCA1+/+ iMSCs. (A) Transcriptome heatmap with un-
supervised classification of genes with differential expression between BRCA1+/− and BRCA1+/+ iMSCs. (B) Principal 
component analysis of genes with differential expression between BRCA1+/− and BRCA1+/+ iMSCs. (C) Functional en-
richment in Gene Ontology Biological Processes of genes that were upregulated in BRCA1+/− iMSCs compared to 
BRCA1+/+ iMSCs. 
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genic Factors 

HIF-1α is expressed at very high levels under hypoxic conditions and, following 
translocation into the nucleus, heterodimerizes with HIF-1β to form HIF-1, which initi-
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ic and normoxic conditions. Regardless of the culture conditions, Western blot analysis 
revealed that the expression level of HIF-1α was increased in BRCA1+/− iMSCs from 
both patients (P1 and P2). Compared to controls (WT iMSCs and physiological iMSCs 
isolated from the bone marrow of a healthy donor), HIF-1α by P2-derived BRCA1+/− 
iMSCs increased 2-fold after 8 h of culture in normoxic conditions (Figure 4A) and 2.5-
fold after 4 and 8 h in hypoxic culture conditions (Figure 4B). Similarly, for P1-derived 
BRCA1+/− iMSCs, the concentration of HIF-1α increased after 4 and 8 h in hypoxic cul-
ture conditions by 5.6- and 3-fold, respectively, compared to WT iMSCs (Figure S3). 
These results suggested that the loss of one allele of BRCA1 was able to trigger the stabi-
lization of HIF-1α and/or prevent its degradation in the presence of oxygen. We next 

Figure 2. Differentially expressed genes between BRCA1+/− and BRCA1+/+ iMSCs. (A) Transcriptome heatmap with
unsupervised classification of genes with differential expression between BRCA1+/− and BRCA1+/+ iMSCs. (B) Principal
component analysis of genes with differential expression between BRCA1+/− and BRCA1+/+ iMSCs. (C) Functional
enrichment in Gene Ontology Biological Processes of genes that were upregulated in BRCA1+/− iMSCs compared to
BRCA1+/+ iMSCs.

Next, we performed a gene-set enrichment analysis on the transcriptome data using
the “hallmarks” database; these results highlighted an increase in angiogenesis functionality
in BRCA1-deleted iMSCs (Normalized Enrichment Score (NES) = +1.64, p-value < 0.0001,
Figure 3A). A similar analysis performed using the gene set collection from the Gene
Ontology database confirmed the relationship between this gene expression profile and
angiogenic processes, specifically the functions “sprouting angiogenesis” (NES = +1.91,
p-value < 0.0001, Figure 3A), “angiogenesis” (NES = +1.51, p-value < 0.0001), and “lym-
phoangiogenesis” (NES = +1.28, p-value < 0.0001, Figure 3A). An unsupervised classi-
fication based on the differentially expressed angiogenic-related genes enabled the dis-
crimination of BRCA1+/− samples from their WT homologs (Figure 3B). Angiopoietin
1 (ANGPT1), which is implicated in angiogenesis (Figure 3C), was also considerably up-
regulated (FC = +28) in BRCA1+/− samples compared to WT. Overall, the upregulated
genes in the angiogenesis network (Figure 3C) represented diverse classes of molecules,
including receptors (PDGFRB, PDGFRA, LRP5, TEK), ligands (ANGPT1, PDGFA, VEGFB,
BMP4, GREM1, THBS1, ANG, CTGF), transcription factors (FOXC2, MEIS1, MSX1, EPAS1,
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HOXB3, KLF5, ELK3), and extracellular matrix components (POSTN, LUM, MMP2, SPP1)
(Table S1).
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from MSigDB version 5.2 (NES: Normalized Enrichment Score). (B) Unsupervised clustering (Euclidean distances) of 
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Figure 3. Angiogenesis-associated activity in the transcriptome of BRCA1+/− iMSCs. (A) Enrichment in angiogenesis-
and lymphangiogenesis-related gene sets from the Hallmarks and Gene Ontology Biological Process gene set collections
from MSigDB version 5.2 (NES: Normalized Enrichment Score). (B) Unsupervised clustering (Euclidean distances) of
angiogenic genes that were upregulated in BRCA1+/− iMSCs. (C) Angiogenesis-related functional network created with
genes upregulated in BRCA1+/− iMSCs compared to WT (NES: Normalized Enrichment Score).
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2.3. Pro-Angiogenic Activity of BRCA1+/− iMSCs Leads to Upregulation of HIF-1α and
Angiogenic Factors

HIF-1α is expressed at very high levels under hypoxic conditions and, following
translocation into the nucleus, heterodimerizes with HIF-1β to form HIF-1, which initiates
the transcription of several angiogenic factors [21]. To investigate the relationship between
BRCA1 deletion and HIF-1α expression, we cultured iMSCs under both hypoxic and nor-
moxic conditions. Regardless of the culture conditions, Western blot analysis revealed
that the expression level of HIF-1α was increased in BRCA1+/− iMSCs from both patients
(P1 and P2). Compared to controls (WT iMSCs and physiological iMSCs isolated from
the bone marrow of a healthy donor), HIF-1α by P2-derived BRCA1+/− iMSCs increased
2-fold after 8 h of culture in normoxic conditions (Figure 4A) and 2.5-fold after 4 and 8 h
in hypoxic culture conditions (Figure 4B). Similarly, for P1-derived BRCA1+/− iMSCs,
the concentration of HIF-1α increased after 4 and 8 h in hypoxic culture conditions by
5.6- and 3-fold, respectively, compared to WT iMSCs (Figure S3). These results suggested
that the loss of one allele of BRCA1 was able to trigger the stabilization of HIF-1α and/or
prevent its degradation in the presence of oxygen. We next wanted to confirm whether
the upregulation of HIF-1α in BRCA1+/− iMSCs resulted in a corresponding increase in
the expression of genes that encode hypoxia-inducible proteins linked to angiogenesis. To
verify the angiogenic potential of both WT and BRCA1-deleted iMSCs, we quantified the
mRNA of angiogenic molecules from the hypoxia-inducible VEGF, PDFG, and ANGPT
subfamily and compared them with levels found in primary human umbilical vein en-
dothelial cells (HUVECs). Compared to controls (WT iMSCs and HUVECs), many of these
factors were significantly overexpressed in BRCA1+/− iMSCs under hypoxic conditions,
including PDGFa, VEGFa, ANGPT1, and ANGPT2, which, respectively, act as ligands for
PDGFRa, KDR/flk1, Flt1, and TEK/TIE2 (which were also upregulated in BRCA1+/− iMSCs
under both normoxic and hypoxic conditions; Figure 4C). Interestingly, the expression of
VEGFc, which mediates lymphangiogenesis, was 2.5- and 2.0-fold higher in BRCA1+/−
iMSCs under normoxic and hypoxic conditions, respectively, compared to levels in WT
iMSCs (Table S2).

To further evaluate the potential pro-angiogenic activity of BRCA1+/− iMSCs, we
first performed an in vitro Matrigel angiogenesis assay which evaluated the formation
of tube-like structures from HUVECs. With the inclusion of conditioned medium (CM)
from BRCA1+/− iMSCs that had been cultured in either normoxia (Figure 4D) or hypoxia
(data not shown), we observed a significant increase in the growth of tube-like structures
on extracellular matrix compared to cultures that used WT-derived CM. The CM from
BRCA1+/− iMSCs dramatically enhanced the length and number of total branches, with a
significant increase in the number of extremities and segments (Figure 4E).

We then used an in vivo method to assess the role of BRCA1+/− iMSCs in triggering
the development of an efficient network of vessels. To better represent the processes that
occur in the human body, we measured angiogenesis in three dimensions using a Matrigel
plug angiogenesis assay in mice. Progenitor endothelial cells (PECs) were mixed with equal
amounts of BRCA1+/+ or BRCA1+/− iMSCs and subcutaneously injected in nude mice;
after 10 days, the plugs were analyzed. At a macroscopic level, the plugs generated with
BRCA1+/− iMSCs displayed hemorrhagic areas, whereas their control group counterparts
appeared much less vascularized (Figure 4F). Histological analysis of the BRCA1+/−
iMSC plugs revealed the presence of complete tube-like vessel structures, with lumen that
contained a large number of red blood cells (Figure 4F). These kinds of structures were
never found in plugs generated with PECs+WT iMSCs or PECs alone. Only the presence
of BRCA1+/− iMSCs exerted an angiogenic paracrine effect on PECs by inducing the
development of large and organized networks of vessels.
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culture under hypoxia. (C) Expression of a variety of genes encoding hypoxia-inducible proteins in human umbilical 
vein endothelial cells (HUVECs) and in BRCA1+/− and BRCA1+/+ iMSCs cultured for 4 days under normoxia and hypox-
ia, as determined by RT-PCR. (D) Matrigel angiogenesis assay using HUVECs and conditioned medium from BRCA1+/− 
or BRCA1+/+ iMSCs, showing differences in the number of extremities and the length and number of branches. (E) Rep-
resentative images of tube-like structures on an extracellular matrix. (F) Plug angiogenesis assay performed with 
BRCA1+/− and BRCA1+/+ iMSCs. Macroscopic image of the plug after 10 days is shown as well as histological analysis 
after hematoxylin and eosin staining. Plugs created with BRCA1+/− iMSCs had complete tube-like vessel structures, with 
lumen containing a large number of red blood cells (arrows). 
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Figure 4. Pro-angiogenic properties of BRCA1+/− iMSCs (A) Western blot of relative HIF-1α levels in BRCA1+/− iMSCs,
BRCA1+/+ iMSCs, and bone marrow-derived MSCs at 1, 4, and 8 h of culture under normoxia. (B) Quantification of
HIF-1α levels relative to β-actin in BRCA1+/− iMSCs, BRCA1+/+ iMSCs, and bone marrow-derived MSCs at 1, 4, and 8 h
of culture under hypoxia. (C) Expression of a variety of genes encoding hypoxia-inducible proteins in human umbilical
vein endothelial cells (HUVECs) and in BRCA1+/− and BRCA1+/+ iMSCs cultured for 4 days under normoxia and
hypoxia, as determined by RT-PCR. (D) Matrigel angiogenesis assay using HUVECs and conditioned medium from
BRCA1+/− or BRCA1+/+ iMSCs, showing differences in the number of extremities and the length and number of branches.
(E) Representative images of tube-like structures on an extracellular matrix. (F) Plug angiogenesis assay performed with
BRCA1+/− and BRCA1+/+ iMSCs. Macroscopic image of the plug after 10 days is shown as well as histological analysis
after hematoxylin and eosin staining. Plugs created with BRCA1+/− iMSCs had complete tube-like vessel structures, with
lumen containing a large number of red blood cells (arrows).
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2.4. BRCA1 Haplo-Insufficiency Induces Upregulation of Periostin and Increases iMSC Migration

In our gene expression analysis, we found that periostin (POSTN) mRNA was highly
upregulated in BRCA1+/− iMSCs (fold change ×8) compared to WT iMSCs. To confirm
this result, we compared the amount of POSTN mRNA by RT-PCR, and protein levels by
Western blot and ELISA using cell supernatants from BRCA1+/− and WT iMSCs. POSTN
mRNA levels were significantly enhanced, with a 2.5-fold change in BRCA1+/− iMSCs
compared to WT. In contrast, iPSCs produced very low levels of POSTN (Figure 5A). After
8 h of culture, soluble POSTN was detected in the supernatant of BRCA1+/− iMSCs at
levels that were 17-fold higher than those of WT iMSCs (6599 ± 286 vs. 385 ± 50 pg/mL;
Figure 5B). Likewise, POSTN expression as measured by Western blot analysis (at 93 kDa)
was found to be 2.4-fold higher in BRCA1+/− iMSCs compared to WT after 8 h of culture
(Figure 5C). Since POSTN is known to activate signaling pathways that promote integrin-
dependent cell adhesion and motility, we performed a wound-healing assay with both
sets of iMSCs. We made a linear scratch/wound on monolayers of both cell types and
measured the gap closure rate at four different timepoints. As expected, BRCA1+/−
iMSCs migrated faster than WT iMSCs (Figure 5D); in the former group, the wound
closed after 24 h, while in the latter a gap was still present at 48 h (Figure 5E). Since the
proliferation rate could interfere with measurements of migration, we also performed an
MTT (bromure de 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium) proliferation assay
lasting 72 h. As shown in Figure 5F, the proliferative rate of both iMSCs was identical in
culture at a low concentration of serum (Figure 5F). To confirm the functional relevance and
involvement of POSTN in the observed cell motility of BRCA1+/− iMSCs, we investigated
the consequences of POSTN knockdown. We transiently transfected siRNAs directed
against POSTN into BRCA1+/− and BRCA1+/+ iMSCs, and again screened cell motility
in a wound-healing assay. We first optimized transfection by using a fluorophore-labeled
siRNA (Accell Green Non-targeting Control siRNA); with this, we reached an efficacy of
95.3% after transfection of 2.8 µM of siRNA (Figure 6A). POSTN mRNA was inhibited
by 90 and 99%, respectively, in BRCA1+/+ and BRCA1+/− iMSCs (Figure 6B). After
48 h of culture, POSTN knockdown significantly reduced the cell motility of BRCA1+/−
iMSCs, which demonstrated an inhibition of 56% compared to POSTN-expressing controls
(Figure 6C, Kruskal–Wallis test, p-value = 0.000000002162). Instead, POSTN inhibition
did not have any effect on the migration of BRCA1+/+ iMSCs compared to control cells,
revealing that, unlike BRCA1-deleted iMSCs, WT iMSCs are not dependent on POSTN for
migration (Figure 6C,D). These findings confirm that POSTN produced and secreted by
BRCA1-deleted iMSCs has the ability to promote cell motility and potentially the migration
and invasion of breast cancer cells.
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Figure 5. Periostin (POSTN) expression and wound-healing assay. (A) Quantitative RT-PCR for POSTN expression in iMSCs
and iPSCs. (B) ELISA for POSTN in the supernatant of BRCA1+/− and BRCA1+/+ iMSCs after 1, 4, and 8 h of culture.
(C) Quantification of POSTN levels relative to -actin in BRCA1+/− and BRCA1+/+ iMSCs after 1, 4, and 8 h of culture
under normoxia. (D) Cell migration ability measured by a wound-healing assay. Compared with control cells (BRCA1+/+
iMSCs), the migration distance of BRCA1+/− iMSCs was significantly (2-sided Student’s t-test) greater. (E) Representative
photomicrographs of the gaps for BRCA1+/− and BRCA1+/+ iMSCs in culture at different time points (6, 24, 30, 48 h) after
scratching in a wound healing assay. (F) Proliferation assays using an MTT test on BRCA1+/− and BRCA1+/+ iMSCs after
1, 2, and 3 days of culture.



Int. J. Mol. Sci. 2021, 22, 1227 11 of 22

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 24 
 

  

Representative photomicrographs of the gaps for BRCA1+/− and BRCA1+/+ iMSCs in culture at different time points (6, 
24, 30, 48 h) after scratching in a wound healing assay. (F) Proliferation assays using an MTT test on BRCA1+/− and 
BRCA1+/+ iMSCs after 1, 2, and 3 days of culture. 

 

Figure 6. Wound-healing assay with BRCA1+/− and BRCA1+/+ iMSCs after transfection with siRNA against POSTN. (A) 
Evaluation of the transfection efficacy in BRCA1+/− iMSCs using fluorophore-labeled siRNA. (B) Knockdown of POSTN 
mRNA in both cell lines as evaluated by quantitative RT-PCR. (C) Cell migration ability was measured at 48 h with a 
wound-healing assay using cell lines transfected with POSTN siRNA and siRNA control. (D) Representative photomi-
crographs of the gaps for transfected BRCA1+/− and BRCA1+/+ iMSCs in culture at different time points (24 and 48 h) af-
ter scratching in a wound-healing assay. 

2.5. BRCA1+/− iMSCs Promote Breast Tumor Cell Growth and Metastasis  
To investigate the effect of BRCA1+/− iMSCs on tumor growth and invasion in vivo, 

we assessed the activity of 4T1 breast tumor cells in the presence or absence of both 
types of iMSCs. We tracked metastasis in the lungs by using 4T1 cells that carried a lu-
ciferase-expressing cassette (Luc-4T1) which could then be quantified using biolumines-
cence imaging analysis. Luc-4T1 cells, either alone or pre-mixed with BRCA1+/− or 
BRCA1+/+ iMSCs, were injected into the mammary fat pads of NOD-SCID mice; meas-

Figure 6. Wound-healing assay with BRCA1+/− and BRCA1+/+ iMSCs after transfection with siRNA against POSTN.
(A) Evaluation of the transfection efficacy in BRCA1+/− iMSCs using fluorophore-labeled siRNA. (B) Knockdown of
POSTN mRNA in both cell lines as evaluated by quantitative RT-PCR. (C) Cell migration ability was measured at 48 h
with a wound-healing assay using cell lines transfected with POSTN siRNA and siRNA control. (D) Representative
photomicrographs of the gaps for transfected BRCA1+/− and BRCA1+/+ iMSCs in culture at different time points (24 and
48 h) after scratching in a wound-healing assay.

2.5. BRCA1+/− iMSCs Promote Breast Tumor Cell Growth and Metastasis

To investigate the effect of BRCA1+/− iMSCs on tumor growth and invasion in vivo,
we assessed the activity of 4T1 breast tumor cells in the presence or absence of both
types of iMSCs. We tracked metastasis in the lungs by using 4T1 cells that carried a
luciferase-expressing cassette (Luc-4T1) which could then be quantified using biolumi-
nescence imaging analysis. Luc-4T1 cells, either alone or pre-mixed with BRCA1+/− or
BRCA1+/+ iMSCs, were injected into the mammary fat pads of NOD-SCID mice; measure-
ments of tumor volume were taken over the next 18 days. A progressive enhancement in
tumor growth was detected with both iMSCs, but with a higher rate for BRCA1+/− iMSCs
compared to WT. On day 18, tumors from the 4T1+ BRCA1+/− iMSC co-transplantation
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group were 2-fold larger compared to the tumors derived from injection of 4T1 cells alone;
instead, co-transplantation of 4T1 cells with WT iMSCs did not result in tumors that were
significantly larger than those derived from 4T1 cells alone (Figure 7A). Tumor growth was
logarithm 10 transformed in order to fit the Gaussian distribution assessed by the Shapiro
test (p-value = 0.3352, significance superior 0.05 in Shapiro test) and uniform distribution
of quantile on QQ-plot (graph not shown). On Gaussian transformed growth data between
day 10 and 18, two-way ANOVA analysis was applied, showing a significant effect of
the growth (p = 0.01283) without interaction of the time effect (interaction p = 0.87696).
These results implicate BRCA1+/− iMSCs in a drastic enhancement of tumor growth,
which was confirmed by bioluminescence imaging analysis (Figure 7B). This increase in
tumor size was also correlated with the expression of POSTN, as detected by immunohis-
tochemical analyses of tumor sections at day 18 (Figure 7C). Intratumoral angiogenesis,
as assessed by CD34 immunostaining of tumor sections, was found to be significantly
increased in the BRCA1+/− iMSC treatment group (Figure 7C). A well-developed vessel
network, with new, completely structured vessels, was detected in the sections of tumors
that had been co-injected with BRCA1+/− iMSCs (score of 7.3 ± 0.1), with a lower score
for 4T1 + WT iMSCs or 4T1 alone (scores of 5.5 ± 0.11 and 2.4 ± 0.11, respectively; Figure
7D, Kruskal–Wallis test, p-value = 0.000001292). To test whether BRCA1+/− iMSCs, which
were enriched in POSTN and angiogenic factors, promoted migration and metastasis, we
measured the occurrence of lung metastases in the three groups of mice. Treatment with
BRCA1+/− iMSCs significantly enhanced the spontaneous metastasis of 4T1 tumors in
the lungs 18 days after transplantation, with more numerous and more positive lung areas
(6764 ± 275) than in mice treated with WT iMSCs (5243 ± 382) or without any iMSCs
(3147 ± 195) (Figure 7E Kruskal–Wallis test, p-value = 0.0004595, and F); these results were
also confirmed by bioluminescence imaging analysis (Figure 7B).
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Figure 7. BRCA1+/− iMSCs enhance 4T1 tumor formation and lung metastasis. (A) To evaluate the in vivo tumorigenic
potential of 4T1 cells, a total of 105 Luc-expressing 4T1 cells, either alone or premixed with 3 × 105 BRCA1+/− or
BRCA1+/+ iMSCs, were injected into the mammary fat pad. Tumor growth was recorded. Data are presented as the
mean+SD. (B) Representative images of tumorigenesis visualized by bioluminescence imaging at day 18. (C) Left: CD34
immunostaining of tumor sections, showing a well-developed vessel network with a complete structure of new vessels
within BRCA1+/− iMSC co-transplanted 4T1 tumors as compared with those co-injected with WT iMSC or only 4T1, right:
immunohistochemistry of POSTN-immunoreactive material in tumor sections, showing cells positive for POSTN (arrows).
(D) The extent of intratumoral vascularization was assessed by CD34 immunostaining and quantified by assessing the
percentage of segmented tissue area that was positive for CD34 at day 18. (E) Quantification of lung metastatic areas at day
18. (F) The extent of lung metastasis is shown after 18 days within the whole lung area following immunohistochemical
staining with GFP.
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3. Discussion

The aim of our study was to evaluate the effect of BRCA1-deleted (BRCA1+/−) iMSCs
on breast tumor development and progression, compared to iMSCs that contained two
copies of BRCA1 (BRCA1+/+ iMSCs). The BRCA1+/− iMSCs used here were produced
from iPSCs that were generated by reprogramming blood cells (PBMCs) from two patients
with a heterozygous deletion of exon 17 of the BRCA1 gene [19].

Using gene expression analysis, we first identified a set of interrelated gene transcripts
whose increased expression in BRCA1+/− iMSCs results in the deregulation of several
important biological processes, including those implicated in blood vessel development,
cell adhesion, and integrin-mediated signaling pathways. Overall, we identified 261
different genes with differential expression between BRCA1+/− and BRCA1+/+ iMSCs,
and these differences enabled significant (p = 0.00014) discrimination between the two
cell lines. More than 20% of these genes were linked with angiogenesis and sprouting
angiogenesis, including VEGFb, PDGFa, and ANGPT1, and their related receptors (PDGFRB,
PDGFRA, TEK). Since all of these factors are known to be regulated by HIF-1α [22], we
investigated the relationship between BRCA1 deletion and HIF-1α after having exposed
cells to hypoxic or normoxic conditions. Under both culture conditions, Western blots
revealed a clear increase in HIF-1α levels in BRCA1+/− iMSCs derived from both patients
compared to WT iMSCs. These results are in accordance with a previous report that
the modification of BRCA1 in fibroblasts using a shRNA lentiviral approach increased
levels of HIF-1α compared to unmodified fibroblasts [23]. In that work, the authors
hypothesized that the shBRCA1 treatment decreased levels of succinate dehydrogenase
subunit B (SDHB, a complex II subunit) with respect to those of the parental fibroblasts,
resulting in an excess of succinate in the cytoplasm that then inhibited prolyl hydroxylase
domain (PHD) oxidation of HIF-1α. This in turn led to the stabilization of HIF-1α and
to an increase in the half-life of this protein [24]. Similar results have been observed
in clinical settings from several cohorts of patients with sporadic and hereditary breast
carcinogenesis; specifically, significant overexpression of HIF-1α was reported in BRCA1-
related cancers [25]. Furthermore, in patients with hereditary breast cancers, positive
associations were found between HIF-1α expression and both high tumor grade and
shorter relapse-free survival [26]. One potential mechanism to explain these results could
be a probable decrease in prolyl hydroxylase enzyme 3 (PHD3), which together with
the von Hippel-Lindau tumor suppressor participates in the proteasomal-degradation of
HIF-1α [27].

Based on these previous results, we hypothesized that, in response to hypoxia, HIF-1α
becomes stabilized in BRCA1+/− iMSCs and can translocate into the nucleus in order
to regulate a variety of hypoxia-inducible target genes [28]. As expected, in BRCA1+/−
iMSCs we observed significant upregulation compared to WT of several hypoxia-inducible
genes, including VEFGa, VEGFc, PDGFa, ANGPT1, and ANGPT2. From these results,
we concluded that BRCA1+/− iMSCs may have more pro-angiogenic potential, which
was subsequently confirmed in vitro and in vivo. In vitro, conditioned medium produced
from BRCA1+/− iMSCs was shown to be more effective in differentiating HUVECs into
tube-like structures compared to CM from WT iMSCs. In vivo, BRCA1+/− iMSCs were
shown to efficiently induce endothelial progenitor cells to form vessel-like structures in a
Matrigel plug angiogenesis assay.

By gene expression analysis, Western blot analysis, and RT-PCR, BRCA1+/− iMSCs
were shown to overexpress periostin (POSTN) compared to WT controls. In addition, an
ELISA performed on cell supernatants revealed that only BRCA1+/− iMSCs, and not
WT, were able to efficiently produce POSTN. POSTN is a secreted cell adhesion protein
normally expressed in mesenchyme-derived cells [29]. The N-terminal region of the pro-
tein influences cell function, while the C-terminal regulates cell-matrix organization and
interactions by binding extracellular matrix proteins such as collagen I/V, fibronectin,
heparin, and POSTN itself. POSTN binds to integrins through its Fatty Acid Synthase (FAS)
domains and activates the Akt/PKB and the FAK-mediated signaling pathways, which



Int. J. Mol. Sci. 2021, 22, 1227 15 of 22

together contribute to increased tumor invasion, migration, and metastasis [30]. As POSTN
is involved in cell adhesion, motility, and migration, we conducted a wound-healing assay
that revealed that BRCA1+/− iMSCs have a superior ability to migrate compared to WT
iMSCs. Furthermore, this effect was significantly reversed when BRCA1+/− iMSCs were
transfected with POSTN-specific siRNA. POSTN was previously shown to be involved in
the epithelial-mesenchymal transition of carcinoma cells [31–35], a process that is responsi-
ble for the dissemination of primary tumor epithelial cells to the sites of metastasis and for
the dedifferentiation program that leads to the increased malignant behavior of tumors [36].
In order to determine how both types of iMSCs affect tumor progression, we performed an
in vivo study to assess the behavior of breast carcinoma cells when co-injected with iMSCs
into the mammary fat pad of NOD-SCID mice. For this, we used a syngenic tumor model
based on the triple-negative 4T1 breast tumor cell line, which is known to be highly tumori-
genic and invasive, and which, unlike most tumor models, can spontaneously metastasize
from the primary tumor in the mammary gland to multiple distant sites including the
lung, similar to human mammary cancer [37]. We demonstrated that BRCA1+/− iMSCs
enhanced 4T1 tumor growth and lung metastasis when co-injected into mouse mammary
fat pads; this result was not observed following co-injection of BRCA1+/+ iMSCs. These
effects were significantly correlated with an increase in intra-tumoral angiogenesis, as
assessed by murine CD34 immuno-staining of tumor sections, and with the detection of
POSTN immuno-reactive protein by immuno-histochemistry. Together, these results sug-
gest that modulation by BRCA1+/− iMSCs, which secrete high levels of POSTN, conferred
enhanced self-renewal ability on 4T1 cancer cells, which is one of the characteristics of
cancer stem cells. This is consistent with a previous report that one of the effects of POSTN
is to increase the prevalence of breast cancer stem cell phenotypes [38]. We also confirmed
that the positive effect of BRCA1+/− iMSCs on 4T1 tumor growth and dissemination
is related to the increased development of tumor vessel networks, which promote lung
metastasis. Furthermore, the vessels that developed appeared thicker compared to those
obtained from co-injection of WT iMSCs or from the injection of 4T1 cells alone. This
provided further evidence that BRCA1+/− iMSCs create a more favorable vascularized
microenvironment than their BRCA1+/+ counterparts. It is probable that this effect is due
to factors secreted by BRCA1+/− iMSCs that have been shown to influence angiogenesis,
including VEFGa, VEGFc, PDGFa, ANGPT1, and ANGPT2. These results reveal for the first
time that BRCA1 haplo-insufficiency in iMSCs strongly affects the tumor microenvironment
by promoting tumor angiogenesis, specifically through the release of angiogenic factors un-
der hypoxia and the secretion of POSTN, which promotes angiogenesis through paracrine
regulation of the adhesion and migration of endothelial cells. Interestingly, POSTN is also
able to regulate the immunosuppressive function of immature myeloid cells in ER-negative
breast cancer patients and thus promote premetastatic niche formation in the lungs during
breast tumor metastasis [39]. It cannot be ruled out that BRCA1+/− iMSCs might also
facilitate the progression of lung metastasis by regulating the immunosuppressive function
of myeloid cells.

Our findings suggest that POSTN may play a crucial role in the initiation, progres-
sion, and dissemination of BRCA1-deleted breast cancer, and could serve as a prognostic
biomarker in predicting poor survival outcomes in specific subgroups of patients with ag-
gressive and invasive triple-negative breast cancers. Furthermore, our study suggests that
POSTN could represent a new potential target for the prevention and treatment of breast
tumor metastasis. These results are in concordance with those published by Ryner et al. and
Kujawa et al. showing the negative prognostic role of high POSTN level in tumor stroma
of ovarian cancer, in high-grade serous ovarian cancer [40,41]. In the future, iPSC-derived
BRCA1+/− iMSCs could have important applications in high-throughput drug screening
and the testing of new drugs to prevent or to cure hereditary breast and/or ovarian cancers
by specifically targeting the stromal compartment with germline BRCA1 mutations.
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4. Methods
4.1. Generation of iMSCs from iPSCs

Induced pluripotent stem cells (iPSCs) were produced and maintained on feeder cells
as previously described [18]. Briefly, peripheral blood mononuclear cells (PBMCs) were
obtained from two patients who carried a deletion in exon 17 of the BRCA1 gene; these cells
were then reprogrammed into iPSCs using the Oct3/4, Sox2, Klf4, and cMyc transgene
factors [18]. These iPSCs exhibit typical markers of pluripotency (Nanog, Sox2, SSEA4,
and TRA-1-60) and the ability to differentiate into the three germ layers [19]. To produce
Mesenchymal Stem Cells (iMSCs), we used our established protocol, described in [42].
Briefly, iPSCs were detached using DPBS (Life Technologies, Thermo Fisher Scientific,
Foster City, CA, USA), supplemented with 0.5 mM EDTA (Life Technologies, Thermo Fisher
Scientific, Foster City, CA, USA) and 1.8 mg/L NaCl (Sigma Aldrich, Darmstadt, Germany),
and seeded in a Geltrex-coated culture plate with Essential 8 medium (Life Technologies,
Thermo Fisher Scientific, Foster City, CA, USA) and 1% penicillin/streptomycin. After 80%
confluence was reached, the medium was changed to Minimum Essential Medium alpha
(MEM, Gibco, Thermo Fisher Scientific, Foster City, CA, USA) that was supplemented
with 10% fetal bovine serum (Hyclone, GE Healthcare, Logan, UT, USA), 1 ng/mL basic
fibroblast growth factor, 0.1 mmol/L nonessential amino acids, 1 mmol/L L-glutamine,
0.1 mmol/L β-mercaptoethanol, and 1× penicillin-streptomycin (all from Invitrogen,
Thermo Fisher Scientific, Foster City, CA, USA). The medium was changed every day.
After 3–4 weeks of culture, iMSCs were characterized by flow cytometry, Western blot
analysis, and RT-PCR. To assess the reaction of cultured cells to hypoxic conditions, cells
were maintained at 37 ◦C in 2% O2. For some experiments, we used adult bone marrow
derived MSCs as additional control samples.

4.2. Transcriptome and Bioinformatics Analysis

Total RNA was extracted from iPSC-derived iMSCs using the TRIzol protocol (Am-
bion, Thermo Fisher Scientific, Foster City, CA, USA) according to the manufacturer’s
instructions. The integrity of RNA was assessed on a Bioanalyzer 2100 (Agilent Tech-
nologies, Santa Clara, CA, USA). RNA material that passed quality control was used to
create aRNA probes via T7 RNA amplification following the manufacturer’s instructions
(Affymetrix, Thermo Fisher Scientific, Foster City, CA, USA). aRNA-labeled microarray
probes were hybridized on an Affymetrix human gene microarray, version ST2.0. Follow-
ing extraction of the signal on an Affymetrix scanner, the matrix was normalized using
the RMA algorithm with Expression Console version 1.4.1.46 (Affymetrix, Thermo Fisher
Scientific, Foster City, CA, USA). Transcriptome data were submitted to the Gene Expres-
sion Omnibus database under accession number GSE104693. The Significance Analysis
for Microarray algorithm [43] was used to identify differentially expressed genes between
iMSCs derived from BRCA1+/− iPSCs and iMSCs derived from WT iPSCs; genes with
a fold change higher than 2 (in absolute value) were retained after applying a False Dis-
covery Rate (FDR) threshold of less than 5 percent. An unsupervised principal component
analysis was performed with the FactoMineR R-package [44]. Functional enrichment
was analyzed with the standalone software Goelite version 1.5 [45]. Gene-set enrichment
analysis (GSEA) was used to identify differences between the two iMSC populations [46]
using the Reactome and Gene Ontology biological process gene sets from MSigDB version
1.5. We specifically examined angiogenesis- and lymphangiogenesis-related gene sets that
were enriched in BRCA1+/− iMSC samples compared to WT iMSCs (positive Normalized
Enrichment Score with p-value p < 0.05 and FDR < 0.25). The enriched genes in each
angiogenic gene set were pooled in order to perform unsupervised classification (complete
distances–Euclidean metric) with the package gplots in R version 3.0.2. Angiogenic genes
that were upregulated in BRCA1+/− iMSC samples and identified as enriched by the GSEA
analysis were also used to build a functional enrichment network with Cytoscape software
version 3.0.2: octagon elements represent the enriched gene set, circle elements represent
corresponding enriched genes, edges represent links between genes and functions (gene
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sets). The size of the octagon indicates the number of connected genes and the color scale
(from yellow to purple) represents the Normalized Enrichment Score (NES) obtained in the
GSEA analysis [47].

4.3. Matrigel Angiogenesis Assay

One-hundred microliters of Matrigel was added to a 48-well culture plate and incu-
bated at 37 ◦C for 1 h. Human umbilical vein endothelial cells (HUVECs) were seeded at a
density of 6 × 104 cells per well in 280 µL of EBM-2 on Matrigel; to this we added 70 µL of
conditioned medium (CM) recovered from cultured BRCA1+/+ or BRCA1+/− iMSCs in
normoxic or hypoxic conditions. Prior to addition, CM was concentrated through Amicon
tubes (Millipore, Darmstadt, Germany) by centrifugation at 3400× g for 20 min. After 18 h
of incubation under normal culture conditions, vascular tube formation was examined by
phase-contrast microscopy and scored using the Angiogenesis Analyzer plugin of ImageJ
software (NIH, Bethesda, MD, USA).

4.4. RT-qPCR Analysis

Total RNA was extracted using the TRIzol protocol (Ambion, Thermo Fisher Scientific,
Foster City, CA, USA) according to the manufacturer’s instructions and treated with
DNAse 1 (Invitrogen, Thermo Fisher Scientific, Foster City, CA, USA). RNA was reverse-
transcribed to obtain cDNA using an AffinityScript Multiple Temperature cDNA Synthesis
Kit (Agilent, Santa Clara, CA, USA) according to the manufacturer’s instructions. Real-time
qPCR reactions were performed using FastStart Universal SYBR Green Master Mix (Roche,
Mannheim, Germany) on an Agilent Mx3005p apparatus (Santa Clara, CA, USA). The
thermal cycling conditions comprised an initial denaturation step at 95 ◦C for 10 min and
50 cycles of 95 ◦C for 15 s and 65 ◦C for 1 min. Results were visualized using MxPro
software (Agilent, Santa Clara, CA, USA) and analyzed with the 2∆∆Ct method.

4.5. Immunoblot Analysis

Cells were lysed on ice with 1x RIPA buffer (Pierce, Thermo Fisher Scientific, Foster
City, CA, USA) that was supplemented with protease inhibitors (Complete™ Mini EDTA-
free Protease Inhibitor cocktail tablets, Roche, Mannheim, Germany), then centrifuged at
12,000× g for 20 min at 4 ◦C. Cell lysates were separated by electrophoresis on 4–20% Tris-
Glycine gel (Invitrogen, Thermo Fisher Scientific, Foster City, CA, USA) and transferred
onto a nitrocellulose membrane. After blocking with TBS Tween 5% BSA for 1 h at room
temperature with gentle shaking, membranes were incubated with primary antibodies at
4 ◦C overnight. The primary antibodies used were rabbit monoclonal anti- HIF-1α (1:1000,
#14179, Cell Signaling, Danvers, MA, USA, clone D2U3T), rabbit polyclonal anti- POSTN
(1:10,000, ab83739, Abcam, Cambridge, UK), and mouse monoclonal anti- β-actin (1:50,000,
A3854, Sigma, Aldrich, Darmstadt, Germany, clone AC-15). They were detected using
HRP conjugated secondary antibodies and the signal was revealed by chemiluminescence
with SuperSignal West Dura or Femto reagents (Thermo Fisher Scientific, Foster City, CA,
USA). Images were acquired with a G:BOX iChemi Chemiluminescence Image Capture
system (Syngene, Synoptics Ltd, Cambridge, UK) and analyzed with ImageJ software.
For BRCA1 detection, cells (4 × 106) were lysed with 100 µl NuPage™ LDS Sample
Buffer (Thermo Fisher Scientific, Foster City, CA, USA). Equivalent amounts of protein
of each sample were analyzed by SDS Page; samples were transferred onto nitrocellulose
membranes using the iBlot Dry Blotting system (Thermo Fisher Scientific, Foster City,
CA, USA) and probed with mouse anti-BRCA1 monoclonal antibody (1:50, OP92, Merck
Millipore, Darmstadt, Germany, clone MS110) or anti-β-actin antibody (Sigma-Aldrich,
Darmstadt, Germany). Immunodetection was performed using the chemiluminescent
substrate Luminata Forte (Merck Millipore, Darmstadt, Germany). The intensity of bands
was quantified by computer-based densitometry of Western blot bands (ImageJ software).
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4.6. ELISA

Supernatants of cultured iMSCs were harvested after 1 h, 4 h, and 8 h of culture
in both normoxic and hypoxic culture conditions. To determine the amount of human
periostin produced in the supernatant of iMSCs, we used a sandwich-based ELISA assay
according to the manufacturer’s instructions (DuoSet ELISA DY3548B, R&D Systems,
Biotechne, Minneapolis, MN, USA). Absorbance was detected at 450 nm using a Modulus
II microplate multimode reader (Turner Biosystems, Sunnyvale, CA, USA).

4.7. Immunofluorescence

Cells were fixed in 4% PFA for 15 min at room temperature. After washing with
PBS, cells were permeabilized when necessary with PBS that contained 0.25% Triton X-
100 for 10 min. The primary antibodies used were rabbit monoclonal anti-N-Cadherin
(1:200, #11039-H08H, Sino Biological, Beijing, China, clone 020) and mouse monoclonal anti-
Vimentin (1:200, # 562338, BD Pharmingen, Franklin Lakes, NJ, USA, clone RV202) and were
incubated in PBS with 1% BSA for 45 min at room temperature. After washing three times
with PBS that contained 0.1% Triton, cells were incubated for 45 min at room temperature
with fluorochrome-conjugated anti-rabbit and anti-mouse secondary antibodies diluted in
PBS with 1% BSA. Finally, nuclei were stained with DAPI (1 µg/mL) and the coverslips
were mounted with Dako Mounting Medium (Dako, Agilent Technologies, Santa Clara,
CA, USA).

4.8. Flow Cytometry

The phenotype of iMSCs was characterized and analyzed by flow cytometry. Briefly,
iMSCs were suspended in PBS and incubated for 45 min at 4 ◦C in the dark with the
following antibodies: mouse monoclonal anti-CD34-APC (1:10, #555824, BD Biosciences,
San Jose, CA, USA, clone 581), mouse monoclonal anti-CD45-PerCP (1:10, #130-094-975,
Miltenyi Biotec, Bergisch Gladbach, Germany, clone 5B1), mouse monoclonal anti-CD73-PE
(1:10, #550257, BD Biosciences, San Jose, CA, USA, clone AD2), mouse monoclonal anti-
CD90-PE (1:10, PN IM1840U, Beckman Coulter, Indianapolis, IN, USA, clone F15-42-1-5),
and mouse monoclonal anti-CD105-PE (1:10, PN A07414, Beckman Coulter, Indianapolis,
IN, USA, clone 1G2). Stained iMSCs were then washed with PBS and analyzed by flow
cytometry (MACSQuant, Miltenyi Biotec, Bergisch Gladbach, Germany).

4.9. Transfection of iMSCs with siRNA

POSTN expression was knocked down in iMSCs using siRNA. iMSCs were cultured
in six-well plates until 80–90% confluence was reached, then transfected with 2.8 µM
of POSTN siRNA (Thermo Fisher Scientific, Foster City, CA, USA) using the Viromer
Blue transfection reagent (Lipocalyx, Halle, Germany) according to the manufacturer’s
instructions. As a nonspecific control, scrambled sequence siRNA was used at the same
concentration. In order to assess transfection efficiency, we used GFP siRNA (Dharmacon,
Lafayette, CO, USA) in the same conditions.

4.10. Wound Healing Assay

To investigate the migration ability of the iMSCs, they were first plated in six-well
plates and allowed to grow into monolayers. A linear wound was made on cell monolayers
with a sterile pipette tip. Phase-contrast microscopy images were regularly taken and the
wound area was measured by analyzing the images using ImageJ software. In experi-
ments using POSTN-knockdown iMSCs, the transfection protocol with POSTN siRNA was
performed twelve hours prior to the wound healing assay.

4.11. MTT Assay

The iMSCs were seeded into 24-well plates at a density of 1.5 × 104 cells/well. After
24, 48, and 72 h of culture, cell viability was tested: we removed half of the medium and
added 20 µL of 5 mg/mL tetrazolium salt solution (Sigma-Aldrich, Darmstadt, Germany)
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to each well, then incubated the plates at 37 ◦C for 4 h. After removing the medium,
formazan crystals were dissolved with DMSO and the absorbance was read at 570 nm with
a Modulus II microplate multimode reader (Turner Biosystems, Sunnyvale, CA, USA).

4.12. In Vivo Matrigel Plug Assay

Human progenitor endothelial cells (PECs) were obtained from cord blood as pre-
viously described [48]. Matrigel plugs were prepared on ice with PBS as control or by
mixing 1.5 × 106 PECs with 1.5 × 106 iMSCs, then re-suspended in 200 µL phenol red-free
Matrigel (BD Bioscience, San Jose, CA, USA). The mixture was implanted in the backs
of 8-week-old male athymic nu/nu mice (Janvier Labs, Le Genest-Saint-Isle, France) by
subcutaneous injection using a 25-gauge needle. After 10 days, the plugs were removed,
fixed, and embedded in paraffin for histological analysis.

4.13. Animal Studies

For in vivo experiments, we used the 4T1 cell line as a breast cancer model, which is
an aggressive triple-negative murine cancer cell line. The animal study was conducted
according to the guidelines of the Declaration of Helsinki, and approved by an Ethics
Committee. We created 4T1-Luc-GFP clones by transducing the cells with retroviruses
that harbored a Luciferase-GFP cassette. BRCA1+/+ or BRCA1+/− iMSCs (3 × 105) were
mixed with 4T1-Luc-GFP cells (105) and re-suspended in 100 µL of PBS (ratio: 3:1). The
mixture was injected into the fat pad of anesthetized NOD-SCID mice (Taconic, Doussard,
France), one injection per mouse [49]. In addition, iMSCs and 4T1-Luc-GFP cells were also
injected alone as controls. Tumor growth was measured twice per week and IVIS analysis
was performed on the day of sacrifice (day 18). Primary tumors and lung metastases were
removed for histological and immuno-histochemical analysis.

4.14. Immuno-Histochemistry

Samples of paraffin-embedded sections of fat-pad 4T1 tumors and lung 4T1 metastases
were stained to determine the expression levels of POSTN and GFP proteins. After de-
paraffinization and rehydration, antigen retrieval was performed in 10 mM sodium citrate
for 15 min using a pressure cooker. Sections were blocked with 3% hydrogen peroxide for
10 min, followed by protein blocking for 1 h with Power Vision IHC/ISH Super Blocking
reagent (Leica Biosystems, Wetzlar, Germany). Sections were incubated with the primary
antibodies, rabbit polyclonal anti-POSTN (1:100, ab83739, Abcam, Cambridge, UK) and rab-
bit polyclonal anti-GFP (1:1000, ab290, Abcam) for 1 h at room temperature. For detection
of the primary antibodies, poly HRP anti-mouse/rabbit IgG (Leica Biosystems, Wetzlar,
Gerlany) was used. All slides were counterstained with Mayer’s hemalum solution. For
GFP staining, images were taken and analyzed using ImageJ software to determine the area
of lung metastasis. To quantify the number of intra-tumoral vessels in 4T1 tumors, paraffin
sections were prepared by murine CD34 immunostaining as previously described [50].
Digital images of immunohistochemically stained tissue slides were obtained at ×20 mag-
nification using a slide scanner (NanoZoomer 2.0-HT, Hamamatsu, Japan). Scanned slides
were uploaded onto the Calopix database (Tribvn Healthcare, Chatillon, France).

4.15. Statistical Analysis

Each experiment was performed at least twice. Statistical significance was evaluated
using 2-sided Student’s t-test and compared with a non-parametric Kruskal–Wallis test for
low sample numbers by groups. Additionally, a two-way ANOVA was applied to tumor
growth data transformed in logarithm base 10 after assessing the Gaussian distribution
through the Shapiro test and visualization of uniform distribution on quantile-quantile
plot (QQ-plot). Barplots present mean and standard deviation as error bars and boxplots
present interquartile ranges.
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