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Abstract: A library of novel imidazole-1,2,3-triazole hybrids were designed and synthesized based on
the hybrid pharmacophore approach. Therefore, copper(I)catalyzed click reaction of thiopropargylated-
imidazole 2 with several organoazides yielded two sets of imidazole-1,2,3-triazole hybrids carrying
different un/functionalized alkyl/aryl side chains 4a–k and 6a–e. After full spectroscopic characteri-
zation using different spectral techniques (IR, 1H, 13C NMR) and elemental analyses, the resulted
adducts were screened for their anticancer activity against four cancer cell lines (Caco-2, HCT-116,
HeLa, and MCF-7) by the MTT assay and showed significant activity. In-silico molecular docking
study was also investigated on one of the prominent cancer target receptors, i.e., glycogen synthase
kinase-3β (GSK-3β), revealing a good binding interaction with our potent compound, 4k and was
in agreement with the in vitro cytotoxic results. In addition, the ADMET profile was assessed for
these novel derivatives to get an insight on their pharmacokinetic/dynamic attributes. Finally, this
research design and synthesis offered click chemistry products with interesting biological motifs
mainly 1,2,3 triazoles linked to phenyl imidazole as promising candidates for further investigation as
anticancer drugs.

Keywords: 1,2,3-triazole; imidazole; click synthesis; anticancer activity; docking study

1. Introduction

Despite several anticancer drugs being available in the market hitherto, many im-
pediments of current anticancer remedies have implored researchers to keep looking for
new candidates [1–3]. However, heterocycles are well documented as fascinating skeletons
when constructing molecules that will interact with the targets and disrupt the biological
pathways associated with cancer progression. In addition, the relative ease in designing
these ring systems with several substituents enables them to cover a wide range of chemical
space and further making them as significant starting points for anticancer drug design
and discovery [4,5].

Being a group of highly diversified structures, nitrogen rich heterocycles and their
fused systems are widely incorporated into the structure of various pharmacologically
active agents and synthetic drugs [6]. Among these bioactive heterocycles, imidazole deriva-
tives [7], particularly substituted thioimidazoles are known in medicinal chemistry as anti-
obesity [8], antitubercular [9], antidiabetic [10], anticancer [11–13], antimicrobial [14,15], and
antioxidant agents [16].
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1,2,3-triazoles have also marked their position as a significant pharmacophore from
nitrogen rich heterocyclic compounds with spectacular therapeutic potential [17,18]. Rufi-
namide (anticonvulsant), TSAO (anti-HIV), cefatrizine (antibiotic), tazobactam (antibac-
terial), and CAI (anticancer) are some of the FDA approved drugs bearing 1,2,3-triazole
moiety [19–22].

Lately, it has been observed that among the combinatorial libraries of derivatized
heterocycles, the most active ones had a bi-heterocyclic structure, which provides better
binding opportunities in comparison to mono-heterocycles [23–25]. Consequently, we
envisioned the molecular coupling of thioimidazole derivative with the 1,2,3-triazole core
through a flexible spacer. The resulting molecular hybrids could deliver better interactions
with biological targets by means of their synergistic effects [26].

Physicochemical, pharmacokinetic, and pharmacodynamics features, over the past
few decades, have emanated as one of the crucial phases in drug discovery. This “phar-
maceutical profiling” strategy furnishes a variety of suitable “drug-like” traits that can
be developed into a structure-property association. Jointly, this information is utilized to
escort chemical synthesis and nominate the best candidates for further drug advancement.
Drug discovery and research organizations have set up a capability for the structured
in vitro computation of properties which are pivotal to the understanding of absorption,
distribution, metabolism, excretion, and toxicity (ADMET) behavior in vivo. In silico AD-
MET forecasting is expected to minimize the probability of late-stage attrition of drug
development procedure and to optimize screening and trials by gazing at the promising
drug candidates only. Molecular docking is a computational simulation strategy of an
aspirant ligand binding to a macromolecule (receptor) and foretells the favorable orien-
tation of binding one compound to the second one to make a stable complex. In silico
molecular docking is employed to forecast the binding affinity and activity of the small
molecule to their target receptors by availing scoring functions. Hence, the docking ap-
proach plays an influential role in the rational design of drugs in the drug development
process. The synthesized ligand 4k was appraised by the in silico docking analysis for
procuring an additional comprehension of the binding pattern with the glycogen synthase
kinase-3 (GSK-3). Glycogen synthase kinase-3 (GSK-3), a serine/threonine protein kinase,
was initially described as a key enzyme involved in glycogen metabolism [27,28]. Recent
reports have suggested that GSK-3β is a positive regulator of cancer cell proliferation
and survival [29–32], thus, providing further support for GSK-3β as a therapeutic target
in cancer.

Considering the facts mentioned above, and pursuing our ongoing interest in the de-
sign of bioactive 1,2,3-triazoles molecular conjugates [33–43], we describe herein the design
and synthesis of focused 1,4-disubstituted 1,2,3-triazoles, linked to the imidazole ring via
regioselective copper catalyzed-1,3-dipolar cycloaddition reaction of S-propargylimidazole
and some selected un/functionalized alkyl and aryl azides. The newly synthesized adducts
were subjected to in vitro anticancer evaluation utilizing an MTT colorimetric assay against
four different human cancer cell lines (Caco-2, HCT-116, HeLa, and MCF-7). The physico-
chemical and ADMET properties were also forecasted. Further mechanistic computational
analysis was done by molecular docking screening of the synthesized click product 4k
using GSK-3β as the target receptor. A schematic diagram for the study work is given in
Figure 1.
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thiomethylene bridge as a flexible linker between imidazole and triazole moieties, along 
with derivatizing triazole at the N-1 position with flexible (Scheme 2) and rigid (Scheme 
3) groups to enhance the solubility and/or bioavailability of the resulting products, which 
is incredibly essential for crossing the cell membrane and reaching the target. Initially, 
1,4,5-triphenylimidazole-2-thione (1) upon reaction with propargyl bromide in refluxing 
the methanolic solution of sodium methoxide for 2 h, yielded the desired thioimidazole-
based alkyne 2 in 90% yield, Scheme 1. 
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Figure 1. Schematic diagram for the study work.

2. Results and Discussion
2.1. Chemistry

Our strategy for designing two sets of novel bi-heterocyclic based on imidazole-1,2,3-
triazole combined systems was driven by employing a substituted imidazole, inserting
thiomethylene bridge as a flexible linker between imidazole and triazole moieties, along
with derivatizing triazole at the N-1 position with flexible (Scheme 2) and rigid (Scheme 3)
groups to enhance the solubility and/or bioavailability of the resulting products, which
is incredibly essential for crossing the cell membrane and reaching the target. Initially,
1,4,5-triphenylimidazole-2-thione (1) upon reaction with propargyl bromide in refluxing the
methanolic solution of sodium methoxide for 2 h, yielded the desired thioimidazole-based
alkyne 2 in 90% yield, Scheme 1.
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The formation of the thiopropargylated imidazole 2 has been approved based on its
spectral analysis. The sharp band observed at 3300 cm−1 in the IR spectrum indicated
the presence of the acetylenic hydrogen (≡C–H), while the (C≡C) group appeared also
as a sharp band at 2140 cm−1. Additionally, its 1H NMR revealed the disappearance of
the SH proton of its starting material 1 and the appearance of a new significant singlet
in the aliphatic region at δH 3.25 and 3.99 ppm assigning the sp-CH and SCH2 protons,
respectively, guaranteed the incorporation of a propargyl side chain. The aromatic protons
of the phenyl rings have been recorded at their usual chemical shifts (δH 7.18–7.46 ppm).
Moreover, the 13C NMR spectrum exhibited the diagnostic propargyl carbon signals (SCH2
and C≡C) at δC 21.54, 74.81, and 80.47 ppm, respectively. The signals observed at δC
126.72–141.39 ppm were assigned to the aromatic and C=N carbons.

The synthesized alkyne derivative 2 was then coupled with a rich variety of organic
azides 3a–k and 5a–e via the 1,3-dipolar cycloaddition reaction catalyzed by copper sul-
phate and sodium ascorbate in a mixture of DMSO:H2O (1:1) at room temperature to afford
the targeted imidazole-1,2,3-triazole hybrids carrying un-/functionalized alkyl and/or
phenyl acetamide side chain 4a–k (86–93%) and 6a–e (85–86%) and possessing rigid func-
tionalized aromatic units; as described in Schemes 2 and 3, respectively.

The spectroscopic data including IR, 1H NMR, 13C NMR, and elemental analyses of
all newly designed hybrids 4a–k and 6a–e approved the success of the click reaction. By
taking the adduct 1,2,3-triazole 4e as a model, its IR spectrum disclosed the absence of
absorption bands related to the C≡C and ≡C-H groups and the presence of characteristic
bands at 1725, 2889, and 2967 cm−1 related to the C=O group and aliphatic hydrogens,
respectively. Additionally, the 1H NMR spectrum exhibited a diagnostic singlet at δH
8.04 ppm attributed to the CH-1,2,3-triazole ring. The spectrum also showed characteristic
triplet and quartet at δH 1.20 and 4.14-4.19 ppm belonging to the ester functionality. While
the SCH2 and NCH2 protons resonated as two singlets at δH 4.50 and 5.39 ppm, respectively.
Furthermore, the 13C NMR analysis supported the proposed structure 4e by the absence of
the alkyne carbons of its precursor alkyne 2 and the presence of new signals at δC 14.43 and
61.34 ppm attributed to the ester side chain carbons. The presence of the ester functionality
has been also confirmed by the appearance of a downfield signal at δC 167.74 ppm assigned
to the ester carbonyl carbon.
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2.2. Biological Screening
2.2.1. In Vitro Anticancer Study

The synthesized imidazole-1,2,3-triazole hybrids were screened for their anticancer
activity against three different types of cancers namely colon, cervical, and breast cancers
using doxorubicin as the reference drug. Cancer cell lines included Caco2 and HCT116
(human colon carcinoma), HeLa (human cervical carcinoma), and MCF-7 (human breast
adenocarcinoma). The results were reported as half maximal inhibitory concentration (IC50)
caused by the tested candidates (Table 1).

Table 1. Anticancer screening of the synthesized compounds expressed as IC50 (µM) using the MTT assay. IC50 values are
expressed as the mean ±SD of three independent experiments.

Compound No. Caco-2 HCT-116 HeLa MCF-7 Selectivity
Analysis

2 146.76 ± 3.04 >200 120.90 ± 4.08 88.19 ± 3.12
4a 18.67 ± 1.19 50.74 ± 2.62 20.19 ± 1.61 15.90 ± 1.35
4b 16.80 ± 1.31 46.80 ± 2.21 8.56 ± 0.49 0.98 ± 0.05 MCF-7 selective
4c 12.56 ± 1.32 40.78 ± 2.34 4.80 ± 0.19 3.21 ± 0.02
4d 77.80 ± 1.60 88.34 ± 4.45 37.65 ± 2.34 30.67 ± 1.80
4e 84.34 ± 2.31 91.14 ± 3.80 47.23 ± 2.70 44.45 ± 2.23
4f 20.69 ± 1.24 34.42 ± 2.02 30.41 ± 1.85 27.31 ± 1.11
4g 12.31 ± 0.22 21.56 ± 0.38 12.67 ± 0.31 6.41 ± 0.18
4h 15.78 ± 0.31 24.90 ± 0.42 15.83 ± 0.34 9.46 ± 0.27
4i 6.31 ± 0.17 12.04 ± 0.32 7.91 ± 0.29 3.80 ± 0.12
4j 8.45 ± 0.18 18.32 ± 0.42 9.45 ± 0.39 4.45 ± 0.08
4k 4.67 ± 0.11 16.78 ± 0.59 6.87 ± 0.32 0.38 ± 0.04 MCF-7 selective
6a 10.87 ± 1.24 30.98 ± 1.67 20.34 ± 1.11 15.56 ± 1.21
6b 13.34 ± 1.67 36.46 ± 2.30 29.87 ± 1.86 27.29 ± 1.82
6c 25.67 ± 1.80 40.67 ± 2.71 33.68 ± 2.14 30.56 ± 2.24
6d 35.65 ± 2.67 49.34 ± 3.32 45.14 ± 2.90 40.34 ± 2.45
6e 5.22 ± 0.20 18.70 ± 0.42 8.42 ± 0.41 3.87 ± 0.07

Doxorubicin 5.17 ± 0.25 5.64 ± 0.17 1.25 ± 0.02 0.65 ± 0.01

Initial screening revealed that most of the synthesized triazoles showed very good
to good activity, i.e., their IC50 lies in the range of 4.67–20.69 µM (Caco-2), 4.80–30.41 µM
(HeLa), and 0.38–27.29 µM (MCF-7), except 2, 4d, 4e, 6c, and 6d. Interestingly, a prelim-
inary structure–activity relationship analysis urged the low activity of the acetylated 4e,
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6c, and 6d derivatives due to the presence of acetyl functionality in their structures in the
form of ketone or ester composition. The S-propargylimidazole 2 (high IC50) have not
displayed any significant anticancer activity against all the used cell lines, confirming the
benefit of the molecular hybridization. Among the newly synthesized click adducts, the
triazole 4k was found to be one of the most potent derivatives against MCF-7 cell lines
with IC50 of 0.38 µM and demonstrated similar potency to the standard drug, doxoru-
bicin. This could be presumably due to the presence of a lipophilic long alkyl side chain
appended to the 1,2,3-triazole ring in compound 4k. Moreover, the imidazole triazole
conjugates, 4k and 6e bearing aromatic carboxylic group in their structures, displayed
better potency amongst the synthesized compounds against the Caco-2 cell line with IC50
of 4.67 ± 0.11 µM and 5.22 ± 0.20 µM, respectively, significantly similar to the standard
doxorubicin (IC50 = 5.17 ± 0.25 µM). The replacement of aromatic carboxylic group by the
fluorinated phenyl group decreased the anticancer potency against the Caco-2 cell line,
compound 4i (IC50 = 6.31 ± 0.17 µM) and compound 4g (IC50 = 8.45 ± 0.18 µM). Whereas,
triazoles 4g and 4h having electron withdrawing groups (Cl, NO2) showed a moderate an-
ticancer activity ranging from 12.31 ± 0.22 µM to 15.78 ± 0.31 µM. These results suggested
that, the designed triazoles are promising candidates for the future anticancer molecule
discovery and research.

2.2.2. In Silico ADMET Analysis

In silico predictions of the physicochemical descriptors, drug likeness or ADMET
(adsorption, distribution, metabolism, excretion, and toxicity) properties, have increased
the possibility of detecting new lead compounds in a much shorter time span as compared
to the conventional/traditional procedures. In silico studies were conducted to confirm the
precision of in vitro biological outcomes. Various physicochemical traits, i.e., the presence
of a particular class of atoms or bonds, lipophilicity, molar refractivity, and solubility in
water and TPSA (topological polar surface area) were computed. These physicochemical
properties are given in Table 2. The forecasted physicochemical characteristics are in
agreement with the exercised criteria and are presumed to possess a good bioavailability
score as all the compounds have TPSA ≤ 140 Å2 except compound 4h.

Table 2. Physicochemical properties of the selected compounds.

Comp.
No. Fraction Csp3 a No. of Rotatable

Bonds HBA b HBD c iLogP d Molar
Refractivity Log S e TPSA f

2 0.22 23 4 0 7.98 285.53 I 116.95
4a 0.34 16 3 0 6.19 173.56 I 73.83
4b 0.42 21 3 0 7.26 197.59 I 73.83
4c 0.45 23 3 0 7.92 207.20 I 73.83
4d 0.06 8 3 0 4.52 149.97 I 73.83
4e 0.14 10 5 0 4.29 141.19 PS 100.13
4f 0.09 10 5 0 4.43 161.69 I 100.13
4g 0.06 10 4 1 4.81 168.02 I 102.93
4h 0.06 11 6 1 4.15 166.83 I 148.75
4i 0.06 10 5 1 4.51 157.96 I 102.93
4j 0.06 10 5 1 4.19 157.96 I 102.93
4k 0.06 11 6 2 4.19 164.96 I 140.23
6a 0.03 7 3 0 5.05 155.58 I 73.83
6b 0.03 8 5 0 4.27 154.38 I 119.65
6c 0.06 8 4 0 4.67 155.76 I 90.90
6d 0.06 9 5 0 5.05 156.84 I 100.13
6e 0.03 8 5 1 4.21 152.52 I 111.13

a The ratio of sp3 hybridized carbons over the total carbon count of the molecule; b number of hydrogen bond acceptors; c number of
hydrogen bond donors; d lipophilicity; e water solubility (SILICOS-IT [I = Insoluble, PS = Poorly soluble]); f topological polar surface
area (Å2).
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On the other hand, ADME predictions are documented in Table 3, revealing that
all the compounds have low gastrointestinal absorptions (GI) except compound 4e. All
the compounds displayed no blood brain barrier (BBB) permeation. Few of the tested
compounds are P-gp (p-glycoprotein) inhibitors, i.e., 2, 4a–4c, and 4e. The BOILED-Egg
diagram which is a pooled built-in graphical classification model for the prediction of BBB
permeations, passive human gastrointestinal absorption (HIA), and P-gp substrates, is
shown in Figure 2. In terms of metabolism, all the synthesized compounds were tested
for inhibition of the Cytochrome P450 isomers, i.e., CYP1A2, CYP2C19, CYP2C9, CYP2D6,
and CYP3A4. Most of the compounds are non-inhibitors of CYP1A2 and CYP2D6 with
the exception of 4b, as it is a CYP1A2 inhibitor and 4a which also inhibits both CYP1A2
and CYP2D6. Most of the tested molecules are CYP3A4 inhibitors. The tested compounds
emerged to be non-inhibitors of CYP2D6. The skin permeability coefficient (log Kp; with
Kp in cm/s) values display low permeability through the skin for most of the compounds
except, compound 2, 4a–4c which displayed good skin permeability.

Five different rule-based sieves, with diverse ranges of characteristics inside of which
the drug candidate is defined as drug-like were appraised, i.e., Lipinski [44], Ghose [45],
Veber [46], Egan [47], and Muegge [48] rules. Drug-like predictions with a number of
violations to the above-mentioned rules, their bioavailability scores, and toxicity profiles
are documented in Table 4. All the tested compounds violated the Ghose and Muegge rules.
The Lipinski and Egan rules are violated by most of the compounds except compound 4e.
Most of the compounds follow the Veber rule with few exceptions. Our results indicated
that the tested compounds were in good agreement in terms of the bioavailability score
ranging from 0.17–0.55. Compounds 4e, 6a, 6d, and 6e are predicted to be non-toxic
in nature by AMES, i.e., they are not mutagenic. All the synthesized compounds are
forecasted as non-carcinogens. Doxorubicin was predicted as AMES toxic, mutagenic, and
non-carcinogenic in nature.

Table 3. Pharmacokinetic/adsorption, distribution, metabolism, excretion, and toxicity (ADME) properties of the
selected compounds.

Comp.
No.

Pharmacokinetic/ADME Properties

GI
Abs a

BBB
Permeant b

P-gp
Substrate c

CYP1A2
Inhibitor d

CYP2C19
Inhibitor e

CYP2C9
Inhibitor f

CYP2D6
Inhibitor g

CYP3A4
Inhibitor h Log Kp

i

2 Low No Yes No No No No No −0.91
4a Low No Yes Yes Yes No Yes Yes −2.56
4b Low No Yes Yes No No No Yes −1.06
4c Low No Yes No No No No Yes −0.47
4d Low No No No Yes No No Yes −4.57
4e High No Yes No Yes Yes No Yes −5.40
4f Low No No No No Yes No Yes −5.00
4g Low No No No Yes No No Yes −4.78
4h Low No No No Yes No No Yes −5.65
4i Low No No No Yes Yes No Yes −5.29
4j Low No No No Yes Yes No Yes −5.29
4k Low No No No Yes Yes No No −5.85
6a Low No No No Yes No No Yes −3.97
6b Low No No No Yes No No Yes −4.84
6c Low No No No No Yes No Yes −4.92
6d Low No No No No Yes No Yes −4.89
6e Low No No No No Yes No No −5.04
a Gastro intestinal absorption; b blood brain barrier permeant; c p-glycoprotein substrate; d CYP1A2: Cytochrome P450 family 1 subfamily
A member 2 (PDB:2HI4); e CYP2C19: Cytochrome P450 family 2 subfamily C member 19 (PDB:4GQS); f CYP2C9: Cytochrome P450 family
2 subfamily C member 9 (PDB:1OG2); g CYP2D6: Cytochrome P450 family 2 subfamily D member 6 (PDB:5TFT); h CYP3A4: Cytochrome
P450 family 3 subfamily A member 4 (PDB:4K9T); i skin permeation in cm/s.
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Table 4. Drug-likeness and toxicity predictions of the selected compounds.

Comp.
No.

Lipinski
Violations

Ghose
Violations

Veber
Violations

Egan
Violation

Muegge
Violations

Bioavailability
Score

AMES
Toxicity Carcinogenicity

2 2 4 1 1 4 0.17 Yes No
4a 2 4 1 1 2 0.17 Yes No
4b 2 4 1 1 3 0.17 Yes No
4c 2 4 1 1 3 0.17 Yes No
4d 1 3 0 1 1 0.55 Yes No
4e 0 2 0 0 1 0.55 No No
4f 1 3 0 1 1 0.55 Yes No
4g 2 3 0 1 2 0.17 Yes No
4h 2 3 2 2 1 0.17 Yes No
4i 2 3 0 1 1 0.17 Yes No
4j 2 3 0 1 1 0.17 Yes No
4k 2 3 2 1 1 0.56 Yes No
6a 2 3 0 1 1 0.17 No No
6b 2 3 0 1 1 0.17 Yes No
6c 2 3 0 1 1 0.17 Yes No
6d 2 3 0 1 1 0.17 No No
6e 2 3 0 1 1 0.56 No No

2.2.3. Molecular Docking Simulations

Glycogen synthase kinase-3 beta (GSK-3β) is a promising target with an overexpressed
oncogene in different breast cancers [49], so we evaluated the binding modes of our potent
compound 4k as a selective MCF-7 cytotoxic agent against the GSK-3β ATP binding pocket
and confirmed the overall prognostic dependency of breast cancer patients on the GSK-3β
inhibition effect. We docked the 4k test ligand on our target protein, i.e., GSK-3β (PDB
ID: 1UV5), in order to analyze the binding pattern and affinity using the software MOE.
Docking poses of the bound and tested compound 4k are depicted in Figure 3A–C. The
compound 4k displayed an excellent binding interaction and affinity, i.e., −9.8 kcal/mol
toward GSK-3β target compared to the reference drug; 6-Bromoindirubin-3′-oxime with
−8.8 kcal/mol. The interaction analysis of the bound ligand; 6-bromoindirubin-3′-oxime,
exhibited that the cyclic nitrogen of the pyrrole ring donates a hydrogen bond to the
peptide carbonyl oxygen of Val135, while the cyclic nitrogen of the lactam ring donates a
hydrogen bond to the carbonyl oxygen of Asp133, and the lactam carbonyl oxygen accepts
a hydrogen bond from the backbone amide of Val135 and Tyr134. The molecular docking
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studies revealed that the compound 4k emerged to be a promising drug candidate; on
the account of its lowest binding energy, i.e., −9.8 kcal/mol with the active site residues
of the target receptor GSK-3β and this might be one of the reasons for its good in vitro
anticancer activity. The putative interaction of compound 4k with GSK3 suggested that the
terminal aromatic ring might display two hydrogen bond interactions through the COOH
substituent with the backbone carbonyl group of Asp133 and the backbone amide of Val135,
respectively. Moreover, another essential linker hydrogen bond through the carbonyl of
amide with conserved Cys199 stabilized the compound in the pocket. In addition, the
fit of the aromatic systems for the whole compound occurs through a group of aromatic
stacking interactions with corresponding residues; Ile62, Tyr134, Asn64 for triazole ring,
Val70, and Leu188 that might support selective binding. The 2D and 3D analysis of the
target compound 4k mapped to the 6-Bromoindirubin-3′-oxime as a reference is shown
in Figure 3. Taken together, these observations might rationalize the observed cytotoxic
activity of 4k through the inhibitory effect of overexpressed GSK-3β within the cancer
cell lines.
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Figure 3. Docking poses of selected compound 4k onto the active site of glycogen synthase kinase-3
beta (GSK-3β) (PDB ID: 1UV5). (A) Two-dimensional (2D) interaction data and residues of bound
ligand 6-bromoindirubin-3′-oxime within the ATP pocket of the target. (B) 2D of the compound
within the ATP pocket with the corresponding hydrogen bonding and aromatic interactions with
residues. (C) Three-dimensional (3D) analysis of the target compound 4k mapped to the reference
drug, i.e., 6-Bromoindirubin-3′-oxime.

3. Experimental Section

The 1H NMR spectra were recorded using an Advance Bruker NMR spectrometer
(Bruker, Switzerland) at 400–600 MHz, while 13C NMR spectra were recorded on the
same instrument at 100–150 MHz using tetramethylsilane (TMS) (d, ppm) as the internal
standard. The EI mass spectra were measured with a Finnigan MAT 95XL spectrometer
(Finnigan, Germany). Sonochemical reactions were performed in a Kunshan KQ-250B
ultrasound cleaner (50 kHz, 240 W, China).

All the solvents and reagents used in this work were of the highest quality of analytical
reagent grade and purchased from Sigma-Aldrich, USA, and were used without further
purification. All the reactions were monitored by thin layer chromatography (TLC), using
UV fluorescent Silica gel type Merck 60 F254 plates. The spots were visualized using
a UV lamp (254 nm). The melting points of the synthesized products were measured
using a Stuart Scientific SMP1 (Stuart, UK). The functional groups were identified using a
SHIMADZU FTIR-Affinity-1S spectrometer in the range of 400–4000 cm−1 using a Perkin-
Elmer 1430 series FT-IR spectrometer (Perkin-Elmer, USA) as potassium bromide pellets.
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All the synthesized compounds were fully characterized by 1H, 13C NMR, and elemental
analysis. The 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were investigated
with an Advance Bruker NMR spectrometer (Bruker, Switzerland) (400 MHz) with TMS
as an internal standard to calibrate the chemical shifts (δ) reported in ppm. Elemental
analyses were performed using a GmbH, Vario EL III, Elementar Analyzer (HEKAtech
GmbH, Germany).

3.1. Synthesis of the Title Compounds

The azides 3a–k and 5a–e used in this study were prepared according to the reported
procedures [50–52]. The procedures for the synthesis of the reported compounds are
described below.

3.1.1. Synthesis and Characterization of 1,4,5-triphenyl-2-(prop-2-yn-1-ylthio)-1H-imidazole (2)

A solution of imidazole 1 (12 mmol) in a methanolic solution (30 mL) of sodium
methoxide (12 mmol) was stirred, then propargyl bromide (12 mmol) was added under
stirring. The mixture was heated under reflux for 1 h until the completion of the reaction
(as indicated by TLC; hexane—ethyl acetate 2:1). The solvent was removed by evaporation
under reduced pressure; the solid formed was collected by filtration, washed with water,
dried, and recrystallized from ethanol to give the desired imidazole-based alkyne 2 as
colorless crystals in 90% yield, mp: 103–105 ◦C. IR (υ, cm−1): 1590 (C=C), 1620 (C=N), 2140
(C≡C), 2888, 2894 (C-H Al), 3050 (C-H Ar), 3300 (≡CH). 1H NMR (400 MHz, DMSO-d6):
δH = 3.25 (s, 1H, ≡CH), 3.99 (s, 2H, SCH2), 7.18–7.28 (m, 10H, Ar-H), 7.39–7.46 (m, 5H,
Ar-H) ppm. 13C NMR (100 MHz, DMSO-d6): δC = 21.54 (SCH2); 74.81 (C≡CH); 80.47
(C≡CH); 126.72, 127.09, 128.68, 128.73, 128.94, 129.05, 129.53, 129.65, 130.40, 131.17, 131.89,
134.44, 135.59, 138.08, 141.39 (Ar-C, C=N) ppm. Calculated for C24H18N2S: C, 78.66; H,
4.95; N, 7.64. Found: C, 78.59; H, 4.89; N, 7.82.

3.1.2. General Procedure for the Synthesis of 1,4-disubstituted 1,2,3-triazoles Bearing
Imidazole Moiety 4a–k and 6a–e

A solution of copper sulfate (0.10 g) and sodium ascorbate (0.15 g) in water (10 mL)
was added dropwise to a solution of alkyne 2 (1 mmol) in DMSO (10 mL) under stirring.
Then, the appropriate azide 3a–k and/or 5a–e (1 mmol) was added. The stirring was
continued for 6-10 h at room temperature. The reaction was monitored via TLC (hexane-
ethyl acetate 2:1), and after the completion of the reaction, the mixture was poured onto
iced-water. The precipitate thus formed was collected by filtration, washed with a saturated
solution of ammonium chloride, and recrystallized from ethanol/DMF to give the targeted
1,2,3-triazoles 4a–k and 6a–e.

4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1-undecyl-1H-1,2,3-triazole (4a)

This compound was obtained as a yellow solid in 90% yield, mp: 99–101 ◦C. IR
(υ, cm−1): 1525 (C=C), 1610 (C=N), 2910-2880 (CH-Al), 3030 (CH-Ar). 1H NMR (400 MHz,
DMSO-d6): δH = 0.87 (t, 3H, J = 4.0 Hz, CH3), 1.19-1.28 (m, 16H, 8×CH2), 1.77 (bs, 2H,
NCH2CH2), 4.27 (t, 2H, J = 4.0 Hz, NCH2), 4.46 (s, 2H, SCH2), 7.18-7.29 (m, 10H, Ar-H),
7.33-7.46 (m, 5H, Ar-H), 8.08 (s, 1H, CH-1,2,3-triazole) ppm. 13C NMR (100 MHz, DMSO-
d6): δC = 14.45 (CH3); 26.15, 28.66, 29.22, 29.30, 29.36, 29.38, 30.14 (CH2); 27.53 (SCH2); 54.87
(NCH2); 125.42, 126.62, 126.77, 127.06, 128.65, 128.68, 128.86, 129.03, 129.45, 129.63, 130.38,
131.13, 131.64, 134.57, 135.59, 142.39, 142.46 (Ar-C, C=N) ppm. Calculated for C27H25N5S:
C, 74.56; H, 7.33; N, 12.42. Found: C, 74.78; H, 7.45; N, 12.66.

4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1-hexadecyl-1H-1,2,3-triazole (4b)

This compound was obtained as a light-yellow solid in 88% yield, mp: 90–91 ◦C. IR
(υ, cm−1): 1530 (C=C), 1620 (C=N), 2955 (C-H Al), 3050 (C-H Ar). 1H NMR (400 MHz,
DMSO-d6): δH = 0.88 (t, 3H, J = 4.0 Hz, CH3), 1.16-1.26 (m, 26H, 13×CH2), 1.77 (t, 2H, J
= 4.0 Hz, NCH2CH2), 4.29 (s, 2H, NCH2), 4.45 (s, 2H, SCH2), 7.20-7.28 (m, 10H, Ar-H),
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7.36-7.47 (m, 5H, Ar-H), 8.06 (s, 1H, CH-1,2,3-triazole) ppm. 13C NMR (100 MHz, DMSO-
d6): δC = 14.46 (CH3); 22.56, 26.24, 28.79, 29.24, 29.29, 29.39, 29.48, 29.56, 30.13 (CH2); 27.57
(SCH2); 54.81 (NCH2); 125.40, 126.65, 126.76, 127.09, 128.62, 128.65, 128.81, 129.08, 129.48,
129.69, 130.35, 131.10, 131.61, 134.53, 135.55, 142.33, 142.52 (Ar-C, C=N) ppm. Calculated
for C27H25N5S: C, 75.79; H, 8.11; N, 11.05. Found: C, 75.58; H, 8.23; N, 11.29.

4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1-octadecyl-1H-1,2,3-triazole (4c)

This compound was obtained as a pale yellow solid in 88% yield, mp: 10–110 ◦C. IR
(υ, cm−1): 1560 (C=C), 1620 (C=N), 2955 (C-H Al), 3050 (C-H Ar). 1H NMR (400 MHz,
DMSO-d6): δH = 0.85 (t, 3H, J = 4.0 Hz, CH3), 1.14-1.29 (m, 30H, 15×CH2), 1.74 (t, 2H,
J = 4.0 Hz, NCH2CH2), 4.26 (s, 2H, NCH2), 4.49 (s, 2H, SCH2), 7.21-7.30 (m, 10H, Ar-H),
7.35-7.48 (m, 5H, Ar-H), 8.10 (s, 1H, CH-1,2,3-triazole) ppm. 13C NMR (100 MHz, DMSO-
d6): δC = 14.43 (CH3); 22.59, 26.27, 26.65, 26.89, 28.72, 29.27, 29.35, 29.48, 29.56, 29.59, 30.15
(CH2); 27.59 (SCH2); 54.89 (NCH2), 125.42, 126.69, 126.79, 127.17, 128.71, 128.69, 128.88,
129.13, 129.42, 129.68, 130.34, 131.13, 131.64, 134.55, 135.58, 142.37, 142.58 (Ar-C, C=N) ppm.
Calculated for C27H25N5S: C, 76.20; H, 8.37; N, 10.58. Found: C, 76.48; H, 8.26; N, 10.77.

4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1-benzyl-1H-1,2,3-triazole (4d)

This compound was obtained as colorless crystals in 93% yield, mp: 239–240 ◦C. IR
(υ, cm−1): 1505 (C=C), 1630 (C=N), 2960 (CH- Al), 3090 (CH-Ar). 1H NMR (400 MHz,
DMSO-d6): δH = 4.44 (s, 2H, SCH2), 5.58 (s, 2H, CH2), 7.15-7.21 (m, 5H, Ar-H), 7.23-7.45
(m, 15H, Ar-H), 8.05 (s, 1H, CH-1,2,3-triazole) ppm. 13C NMR (100 MHz, DMSO-d6):
δC = 27.85 (SCH2); 53.22 (NCH2); 124.04, 126.71, 127.02, 128.46, 128.61, 128.67, 128.87,
129.02, 129.22, 129.40, 129.57, 130.44, 131.14, 131.65, 134.54, 135.64, 136.45, 137.95, 142.29,
143.93 (Ar-C, C=N). Calculated for C31H25N5S: C, 74.52; H, 5.04; N, 14.02. Found: C, 74.88;
H, 5.12; N, 14.24.

Ethyl-2-(4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)acetate (4e)

This compound was obtained as a yellow solid in 90% yield, mp: 103–105 ◦C. IR
(υ, cm−1): 1255 (C-O), 1509 (C=C), 1610 (C=N), 1725 (C=O), 2889, 2967, (CH-Al), 3088
(CH-Ar). 1H NMR (400 MHz, DMSO-d6): δH 1.20 (t, 3H, J = 4.0 Hz, CH3), 4.14-4.19
(q, 2H, OCH2CH3), 4.50 (s, 2H, SCH2), 5.39 (s, 2H, NCH2), 7.19-7.27 (m, 10H, Ar-H),
7.36-7.48 (m, 5H, Ar-H), 8.04 (s, 1H, CH-1,2,3-triazole) ppm. 13C NMR (100 MHz, DMSO-
d6): δC 14.43 (CH3); 27.88 (SCH2); 50.54 (NCH2), 61.34 (OCH2), 125.40, 124.43, 126.63,
126.79, 127.03, 128.63, 128.66, 128.88, 129.02, 129.45, 129.61, 130.36, 130.44, 131.15, 131.62,
131.69, 134.52, 134.58, 135.56, 135.63, 137.96, 142.35, 142.41 (Ar-C, C=N); 167.74 (C=O) ppm.
Calculated for C28H25N5O2S: C, 67.86; H, 5.08; N, 14.13. Found: C, 67.58; H, 5.18; N, 14.39.

2-(4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)-1-(4-
methoxyphenyl) ethanone (4f)

This compound was obtained as a yellow solid in 87% yield, mp: 154–155 ◦C. IR
(υ, cm−1): 1560 (C=C), 1620 (C=N), 1730 (C=O), 2960 (CH-Al), 3030 (CH-Ar). 1H NMR
(400 MHz, DMSO-d6): δH = 3.80 (s, 3H, OCH3), 4.52 (s, 2H, SCH2), 6.02 (d, 2H, NCH2),
7.16-7.29 (m, 10H, Ar-H), 7.32-7.48 (m, 5H, Ar-H), 8.06-8.20 (m, 4H, Ar-H), 8.10 (s, 1H,
CH-1,2,3-triazole) ppm. 13C NMR (100 MHz, DMSO-d6): δC = 27.80 (SCH2); 52.42 (NCH2);
56.26 (OCH3); 118.87, 122.60, 126.09, 126.62, 128.81, 128.48, 129.65, 131.01, 131.41, 131.83,
134.44, 135.24, 136.24, 137.60, 138.45, 140.23, 141.86, 145.11, 145.29 (Ar-C, C=N); 191.13 (CO).
Calculated for C33H27N5O2S: C, 71.07; H, 4.88; N, 12.56. Found: C, 71.32; H, 4.729; N, 12.78.

N-(3,4-Dichlorophenyl)-2-(4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-
triazol-1-yl)acetamide (4g)

This compound was obtained as a yellow solid in 90% yield, mp: 161–162 ◦C. IR
(υ, cm−1): 1565 (C=C), 1628 (C=N), 1745 (C=O), 2899 (CH- Al), 3055 (CH-Ar), 3355 (NH).
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1H NMR (400 MHz, DMSO-d6): δH = 4.50 (s, 2H, SCH2), 5.36 (s, 2H, NCH2), 7.11-7.64
(m, 17H, Ar-H), 7.96 (s, 1H, Ar-H), 8.06 (s, 1H, CH-1,2,3-triazole), 10.82 (s, 1H, NH) ppm.
13C NMR (100 MHz, DMSO-d6): δC = 27.50 (SCH2); 52.68 (NCH2); 119.65, 120.87, 125.73,
126.95, 127.67, 128.23, 128.60, 128.99, 129.60, 130.19, 131.05, 131.38, 131.76, 134.45, 135.53,
138.92 (Ar-C, C=N); 165.11 (C=O). Calculated for C32H24Cl2N6OS: C, 62.85; H, 3.96; N,
13.74. Found: C, 62.69; H, 3.90; N, 13.93.

N-(4-Nitrophenyl)-2-(4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-
1-yl)acetamide(4h)

This compound was obtained as a yellow solid in 87% yield, mp: 144–145 ◦C. IR
(υ, cm−1): 1565 (C=C), 1620 (C=N), 1700 (C=O), 2940 (CH-Al), 3080 (CH-Ar), 3340 (NH).
1H NMR (400 MHz, DMSO-d6): δH = 4.46 (s, 2H, SCH2), 5.36 (s, 2H, NCH2), 7.00-7.49
(m, 15H, Ar-H), 7.59-8.00 (m, 4H, Ar-H), 8.15 (s, 1H, CH-1,2,3-triazole), 10.60 (s, 1H, NH)
ppm. 13C NMR (100 MHz, DMSO-d6): δC = 27.53 (SCH2); 52.57 (NCH2); 115.91, 116.13,
121.38, 121.36, 125.69, 127.28, 128.49, 128.92, 129.06, 129.61, 129.71, 129.99, 131.03, 134.14,
135.22, 135.64 (Ar-C, C=N); 164.53 (C=O). Calculated for C32H25N7O3S: C, 65.40; H, 4.29;
N, 16.68. Found: C, 65.66; H, 4.33; N, 16.82.

N-(2-Fluorophenyl)-2-(4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-
triazol-1-yl) acetamide (4i)

This compound was obtained as a pale yellow solid in 89% yield, mp: 118–119 ◦C.
IR (υ, cm−1): 1555 (C=C), 1630 (C=N), 1693 (C=O), 3070 (CH-Ar), 3330 (NH). 1H NMR
(400 MHz, DMSO-d6): δH = 4.58 (s, 2H, SCH2), 5.39 (s, 2H, NCH2), 7.18-7.29 (m, 10H,
Ar-H), 7.34-7.48 (m, 5H, Ar-H), 8.07-8.22 (m, 4H, Ar-H), 8.09 (s, 1H, CH-1,2,3-triazole),
10.85 (s, 1H, NH) ppm. 13C NMR (100 MHz, DMSO-d6): δC = 27.59 (SCH2); 52.76 (NCH2);
119.89, 120.77, 125.69, 126.95, 127.70, 128.56, 128.47, 128.80, 129.61, 131.12, 131.21, 132.07,
132.56, 133.98, 135.76, 140.57 (Ar-C, C=N); 165.23 (C=O). Calculated for C32H25FN6OS: C,
68.55; H, 4.49; N, 14.99. Found: C, 68.70; H, 4.60; N, 14.82.

N-(4-Fluorophenyl)-2-(4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-
triazol-1-yl) acetamide (4j)

This compound was obtained as a pale yellow solid in 86% yield, mp: 126–127 ◦C. IR
(υ, cm−1): 1570 (C=C), 1625 (C=N), 1695 (C=O), 2925 (CH-Al), 3085 (CH-Ar), 3310 (NH).
1H NMR (400 MHz, DMSO-d6): δH = 4.51 (s, 2H, SCH2), 5.41 (s, 2H, NCH2), 7.16-7.28
(m, 10H, Ar-H), 7.31-7.45 (m, 5H, Ar-H), 8.02-8.15 (m, 4H, Ar-H), 8.14 (s, 1H, CH-1,2,3-
triazole), 10.89 (s, 1H, NH) ppm. 13C NMR (100 MHz, DMSO-d6): δC = 27.59 (SCH2);
52.76 (NCH2); 119.60, 120.82, 125.85, 126.91, 127.76, 128.45, 128.54, 128.87, 129.68, 130.34,
131.11, 131.29, 131.67, 134.51, 135.48, 140.36 (Ar-C, C=N); 165.47 (C=O). Calculated for
C32H25FN6OS: C, 68.55; H, 4.49; N, 14.99. Found: C, 68.78; H, 4.58; N, 14.76.

4-(2-(4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-
yl)acetamido)benzoic acid (4k)

This compound was obtained as a yellow solid in 86% yield, mp: 129–130 ◦C. IR
(υ, cm−1): 1550 (C=C), 1615 (C=N), 1725 (C=O), 2510-3300 (OH, NH). 1H NMR (400 MHz,
DMSO-d6): δH = 4.50 (s, 2H, SCH2), 5.39 (s, 2H, NCH2), 7.22-7.30 (m, 10H, Ar-H), 7.38-7.50
(m, 5H, Ar-H), 7.94 (d, 2H, J = 4.0 Hz, Ar-H), 8.14 (d, 2H, J = 4.0 Hz, Ar-H), 8.02 (s, 1H,
CH-1,2,3-triazole), 10.78 (s, 1H, NH), 12.45 (s, 1H, COOH) ppm. 13C NMR (100 MHz,
DMSO-d6): δC = 27.60 (SCH2); 52.67 (NCH2); 119.76, 120.81, 125.72, 126.85, 127.76, 128.38,
128.55, 128.78, 129.54, 130.54, 131.21, 131.44, 132.09, 134.56, 135.78, 141.57 (Ar-C, C=N);
167.78 (C=O); 168.44 (C=O). Calculated for C33H26N6O3S: C, 67.56; H, 4.47; N, 14.33. Found:
C, 67.83; H, 4.33; N, 14.78.
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1-(3,4-Dichlorophenyl)-4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-
triazole (6a)

This compound was obtained as a pale yellow solid in 85% yield, mp: 124–125 ◦C.
IR (υ, cm−1): 1525 (C=C), 1625 (C=N), 2925 (CH- Al), 3075 (CH-Ar). 1H NMR (400 MHz,
DMSO-d6): δH = 4.54 (s, 2H, SCH2), 7.17-7.27 (m, 10H, Ar-H), 7.35-7.46 (m, 5H, Ar-H),
7.84-7.94 (m, 2H, Ar-H), 8.23 (s, 1H, Ar-H), 8.84 (s, 1H, CH-1,2,3-triazole) ppm. 13C NMR
(100 MHz, DMSO-d6): δC = 27.55 (SCH2); 120.33, 122.11, 122.68, 126.70, 127.05, 128.63,
128.97, 129.73, 131.13, 131.30, 132.29, 132.83, 141.86, 144.93 (Ar-C, C=N). Calculated for
C30H21Cl2N5S: C, 64.98; H, 3.82; N, 12.63. Found: C, 64.63; H, 3.69; N, 12.88.

1-(4-Nitrophenyl)-4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazole (6b)

This compound was obtained as a colorless solid in 86% yield, mp: 129–130 ◦C. IR
(υ, cm−1): 1540 (C=C), 1605 (C=N), 2930 (CH-Al), 3085 (CH-Ar). 1H NMR (400 MHz,
DMSO-d6): δH = 4.51 (s, 2H, SCH2), 7.13-7.25 (m, 10H, Ar-H), 7.38-7.50 (m, 5H, Ar-H), 7.90
(d, 2H, J = 4.0 Hz, Ar-H), 8.04 (d, 2H, J = 4.0 Hz, Ar-H), 8.80 (s, 1H, CH-1,2,3-triazole) ppm.
13C NMR (100 MHz, DMSO-d6): δC = 27.68 (SCH2); 119.21, 121.35, 126.45, 127.21, 128.42,
127.82, 129.52, 130.36, 131.45, 131.28, 132.41, 132.77, 134.62, 135.67, 136.31, 138.14, 141.90,
144.76 (Ar-C, C=N). Calculated for C30H22N6O2S: C, 67.91; H, 4.18; N, 15.84. Found: C,
67.66; H, 4.25; N, 15.72.

1-(4-(4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-
yl)phenyl)ethan-1-one (6c)

This compound was obtained as a yellow solid in 85% yield, mp: 161–163 ◦C. IR
(υ, cm−1): 1545 (C=C), 1635 (C=N), 1765 (C=O), 2992 (CH-Al), 3079 (CH-Ar). 1H NMR
(400 MHz, DMSO-d6): δH = 2.64 (s, 3H, CH3), 4.56 (s, 2H, SCH2), 7.18-7.28 (m, 10H, Ar-H),
7.36-7.47 (m, 5H, Ar-H), 8.07 (d, 2H, J = 12 Hz, Ar-H), 8.17 (d, 2H, J = 8 Hz, Ar-H), 8.88
(s, 1H, CH-1,2,3-triazole) ppm. 13C NMR (100 MHz, DMSO-d6): δC = 27.16 (SCH2); 27.68
(CH3); 119.62, 122.63, 126.05, 126.68, 128.80, 129.42, 130.43, 131.48, 131.80, 134.49, 135.20,
136.21, 137.57, 137.96, 139.94, 141.92, 145.02, 145.36 (Ar-C, C=N); 197.45 (C=O). Calculated
for C32H25N5OS: C, 72.84; H, 4.78; N, 13.27. Found: C, 72.59; H, 4.90; N, 13.46.

Ethyl 4-(4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)benzoate (6d)

This compound was obtained as a pale yellow solid in 86% yield, mp: 134–135 ◦C. IR
(υ, cm−1): 1210 (C-O), 1565 (C=C), 1610 (C=N), 1740 (C=O), 2975 (CH-Al), 3055 (CH-Ar).
1H NMR (400 MHz, DMSO-d6): δH = 1.30 (t, 3H, J = 4.0 Hz, CH3), 4.27-4.34 (q, 2H, OCH2),
4.52 (s, 2H, SCH2), 7.21-7.30 (m, 10H, Ar-H), 7.39-7.49 (m, 5H, Ar-H), 8.01-8.16 (m, 4H,
Ar-H), 8.84 (s, 1H, CH-1,2,3-triazole) ppm. 13C NMR (100 MHz, DMSO-d6): δC = 14.48
(CH3); 27.49 (SCH2); 60.98 (OCH2); 119.78, 122.60, 126.51, 126.66, 128.83, 128.46, 129.47,
130.37, 131.29, 131.86, 134.52, 135.24, 136.29, 137.64, 138.11, 139.89, 141.96, 145.08, 145.42
(Ar-C, C=N); 166.22 (C=O). Calculated for C33H27N5O2S: C, 71.07; H, 4.88; N, 12.56. Found:
C, 71.29; H, 4.99; N, 12.72.

4-(4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)benzoic acid (6e)

This compound was obtained as a yellow solid in 85% yield, mp: 219–220 ◦C. IR
(υ, cm−1): 1535 (C=C), 1605 (C=N), 1720 (C=O), 2580-3350 (OH). 1H NMR (400 MHz,
DMSO-d6): δH = 4.57 (s, 2H, SCH2), 7.15-7.30 (m, 10H, Ar-H), 7.39-7.48 (m, 5H, Ar-H), 7.92
(d, 2H, J = 4.0 Hz, Ar-H), 8.06 (d, 2H, J = 4.0 Hz, Ar-H), 8.82 (s, 1H, CH-1,2,3-triazole), 12.23
(s, 1H, COOH) ppm. 13C NMR (100 MHz, DMSO-d6): δC = 27.74 (SCH2); 119.26, 121.38,
126.38, 127.28, 128.53, 127.77, 129.65, 130.41, 131.37, 131.78, 132.48, 132.80, 134.78, 135.64,
136.29, 138.24, 141.82, 144.89 (Ar-C, C=N); 167.58 (C=O). Calculated for C31H23N5O2S: C,
70.30; H, 4.38; N, 13.22. Found: C, 70.47; H, 4.42; N, 13.34.
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3.2. MTT Assay

The cytotoxic activity was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) colorimetric assay as reported previously [53–55]. In brief, the
tumor cell lines were suspended in the medium at a concentration of 1 × 104 cell/well in
Corning® 96-well tissue culture plates and then incubated for 24 h. The tested compounds
with concentrations were then added into 96-well plates to achieve different concentrations
for each compound. After incubating for 24 h, the number of viable cells was determined by
the MTT test. Briefly, the medium was removed and the MTT solution (50 µL, 0.5 mg/mL
in RPMI 1640 without phenol red) was added. After 3 h of incubation, the MTT solution
was removed and the acquired formazan was dissolved in an isopropanol:HCl system. The
96-well plates were then incubated at 37 ◦C and 5% CO2 for 4 h. Finally, the optical density
was measured at 570 nm with the microplate reader to determine the number of viable
cells and the percentage of viability were calculated as [1-(ODt/ODc)] × 100% where ODt
is the mean optical density of wells treated with the tested sample and ODc is the mean
optical density of the untreated cells. The experiment was conducted in three independent
iterations with four technical repetitions. Tests were conducted at concentrations of tested
compounds ranging from 0.01 to 0.8 mM solutions. The 50% inhibitory concentration
(IC50), the concentration required to cause toxic effects in 50% of intact cells, was estimated
from graphic plots of the dose response curve for each concentration using CalcuSyn.

3.3. In Silico Analysis

Several physicochemical, pharmacokinetic, and pharmacodynamic attributes (i.e.,
topological polar surface area (TPSA), lipophilicity, absorption, distribution, metabolism,
excretion and toxicity (ADMET)), molar refractivity, fragment-based drug-likeness and
violations, etc., of the newly synthesized compounds were predicted through an in silico
strategy utilizing the Swiss ADME tool from the Swiss Institute of Bioinformatics (http:
//www.sib.swiss) and ADMET SAR server (http://lmmd.ecust.edu.cn).

3.4. Molecular Docking Studies

The newly potent synthesized compound 4k was docked into the active site of 3D
crystallographic structure of the GSK-3β (PDB: 1UV5), used as the target model. The
AutoDock 3.0 [56] and the MOE software [57] were used for all the docking calculations
and molecular representations. The AutoDock Tools package was employed to generate
the docking input files and analyze the docking results. A grid box size of 90 × 90 × 90
points with a spacing of 0.375 Å between the grid points was generated that covered almost
the entire protein surface. The ligand was built by means of the MOE builder interface,
their geometries were optimized with the CHARMm forcefield and then prepared for
docking calculations with the python scripts available in the AutoDock package. Fifty runs
were performed, and the resulting poses were clustered with 1.8 Å tolerance. Lamarckian
GA was used for the conformational space search with the initial population set to 150,
and fitness function evaluations set to 2,500,0000. The most abundant low energy clusters
were selected for the analysis. The protein-ligand interaction plots were generated, using
MOE 2012.10.

4. Conclusions

An efficient copper(I)catalyzed click reaction of imidazole-based alkyne 2 with a
variety of organoazides furnished a focused library of imidazole-1,2,3-triazole hybrids
carrying different un/functionalized alkyl/aryl side chains 4a–k and 6a–e. The targeted
click products were fully characterized using different spectroscopic techniques such as
IR, 1H, 13C NMR, and elemental analyses. The resulted adducts were investigated for
their anticancer activity against four cancer cell lines (Caco-2, HCT-116, HeLa, and MCF-7)
by the MTT assay and showed moderate to significant activity. Of these compounds, 4k
displayed potent cytotoxic activity against the cancer cell lines, especially MCF-7 with IC50
0.38 µM. The study of pharmacokinetic parameters of the synthesized compounds revealed

http://www.sib.swiss
http://www.sib.swiss
http://lmmd.ecust.edu.cn
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that most of the compounds are CYP2C19 and CYP3A4 inhibitors. All the synthesized
compounds emerged to be non-carcinogenic in nature. The in silico molecular docking
study was also performed recruiting GSK-3β as the promising cancer target receptor. The
results of in silico studies were in accordance with the in vitro results. The overall results
of this study showed that a fascinating protocol for the production of new anticancer
agents targeting the GSK3β enzyme for the treatment of breast cancer was the molecular
hybridization of 1,2,3-triazole to biologically interesting imidazole scaffolds with diverse
aromatic substituents.
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