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Abstract: The prevention and control of infectious diseases is crucial to the maintenance and pro-
tection of social and public healthcare. The global impact of SARS-CoV-2 has demonstrated how 
outbreaks of emerging and re-emerging infections can lead to pandemics of significant public 
health and socio-economic burden. Vaccination is one of the most effective approaches to protect 
against infectious diseases, and to date, multiple vaccines have been successfully used to protect 
against and eradicate both viral and bacterial pathogens. The main criterion of vaccine efficacy is 
the induction of specific humoral and cellular immune responses, and it is well established that 
immunogenicity depends on the type of vaccine as well as the route of delivery. In addition, anti-
gen delivery to immune organs and the site of injection can potentiate efficacy of the vaccine. In 
light of this, microvesicles have been suggested as potential vehicles for antigen delivery as they 
can carry various immunogenic molecules including proteins, nucleic acids and polysaccharides 
directly to target cells. In this review, we focus on the mechanisms of microvesicle biogenesis and 
the role of microvesicles in infectious diseases. Further, we discuss the application of microvesicles 
as a novel and effective vaccine delivery system. 
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1. Introduction 
Vaccines are one of the most critical healthcare interventions, protecting millions of 

people around the world and contributing to the decreased incidence of a variety of in-
fectious diseases and associated fatality rates. Vaccines induce cellular and humoral 
immune responses to infectious pathogens such as bacteria, fungi and viruses with lim-
ited side effects [1]. Currently, vaccines protect against more than 25 debilitating and 
life-threatening diseases, including measles, polio, tetanus, diphtheria, meningitis, in-
fluenza, typhoid, and cervical cancer [2]. However, there are still many infectious path-
ogens for which there are no approved vaccinations [3]. Additionally, research is con-
tinually conducted to further improve vaccine efficacy and duration of protection, as 
well as increase public confidence in vaccine safety [4–6]. 

Classical vaccines, such as live-attenuated vaccines (LAVs) and whole-cell inacti-
vated vaccines (IV), have demonstrated efficacy in controlling infectious disease out-
breaks [7]. However, due to limitations, most prominently their contraindication in 
pregnant and immunocompromised patients [8,9], research is continually necessary to 
improve the efficacy of these vaccines and develop alternative approaches [10]. One al-
ternative is the use of subunit and nucleic acid-based vaccines. These are suggested to be 
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a safer approach due to limited side effects and reduced chance of reversion to virulence 
through back-mutation of attenuating mutations in LAVs [11]. Another alternative cur-
rently under investigation is the use of novel vehicles for vaccine delivery such as 
cell-derived, lipid bi-layered extracellular vesicles (EVs), which could improve antigen 
retention at the site of injection, facilitate delivery to immune cells and increase overall 
immunogenicity [12–14]. EVs play a crucial role in intercellular communication, acting as 
vehicles for the transport of membrane and cytosolic proteins, lipids, and nucleic acids, 
including differential RNA molecules [15–18]. They have also been shown to be potential 
carriers for therapeutic molecules, including piceatannol [19] and RNA drugs such as 
antisense oligonucleotides, Cas9 mRNA, guide RNAs [20] and miRNAs [21]. 

Importantly, EVs could serve as prospective vaccine candidates against bacteria and 
parasites [22]. Bacteria-derived vesicles are capable of interacting with innate immune 
cells, e.g., macrophages and neutrophils, as well as adaptive immune cells and anti-
gen-presenting cells (APCs), e.g., dendritic cells (DCs), and thus may lead to protective 
immune responses [23–26]. 

Further, it has been demonstrated that EVs obtained from genetically modified cells 
exhibited a neuromodulatory effect in autoimmune and neurodegenerative diseases 
[27–29]. In addition, Horrevorts et al. reported that glycan-modified apoptotic melano-
ma-derived EVs resulted in enhanced priming of tumor-specific CD8+ T cells [30]. Thus, 
EVs obtained from genetically engineered cells could be also considered as vaccine can-
didates.  

Indeed, application of EVs in vaccine delivery might be prospective in treatment of 
several types of cancers; the mechanisms, advantages, and prospects of EVs as anti-
gen-carrier vaccines in cancer vaccine development have been previously extensively 
reviewed [31,32]. Furthermore, several studies have also reported the potential applica-
tions of EVs in vaccines against infectious diseases [33,34].  

EVs can be differentiated into exosomes, microvesicles (MVs) and apoptotic bodies, 
depending on their origin, and can also differ in their function for the development of 
therapeutics. In this review, we focus on one type of EVs: MVs and how their multiple 
advantages as delivery systems depend on their natural properties such as biocompati-
bility, enhanced stability, limited immunotoxicity and specific cell targeting properties 
[35,36]. We also discuss MVs as a potential novel delivery approach of nanoscale vaccines 
[12]. 

At present, multiple vaccines have been produced, each with advantages and limi-
tations [1]. LAVs contain the attenuated pathogen, which are modified to decrease viru-
lence in comparison with the wild-type pathogen [37,38]. One advantage of these vac-
cines is that they can mimic natural infection, inducing a robust immune response and 
confer immunity lasting for years after a single dose [39]. However, in rare cases, LAVs 
can undergo back-mutations, reverting the introduced attenuating mutations and 
thereby leading to replication of the wild-type infectious pathogen. This can therefore 
lead to the progression of the disease and in very rare cases, death [37,40].  

Another current vaccination method is the use of whole-cell and subunit inactivated 
vaccines (IVs) [41,42]. Whole-cell IVs are heterogeneous in antigenic composition and 
therefore can elicit non-specific immune responses [1]. In contrast, subunit IVs include 
purified antigenic components, such as proteins and polysaccharides instead of whole 
microorganisms, which can minimize side effects and still induce an immune response 
[43]. A downside of IVs is reduced immunogenicity compared with LAVs due to a lower 
concentration of antigens and the lack of elements enhancing innate immunity [42]. A 
novel approach for vaccine design includes delivery of nucleic acids such as DNA or 
RNA, which encode specific target antigens that thereby elicit immune responses in the 
host [44,45]. These vaccines are gaining popularity due to their relatively simple design 
requirements, cost-effectiveness and ease of production. However, these vaccines are 
currently in various stages of clinical trials [45–47], and due to the global public health 
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COVID-19 emergency, they have only very recently been approved for human use 
[48–50]. 

2. Vaccine Delivery Systems 
The route of vaccine delivery is important for uptake and processing of the target 

antigen by antigen presenting cells (APCs), which in turn activate immune cells [51,52]. 
Therefore, the route of administration is essential for vaccine efficacy [51]. Vector-based 
vaccines (VBVs) combine the advantages of both live and subunit vaccines [45]. In gen-
eral, VBV constructs contain non-pathogenic viruses as a vector backbone carrying genes, 
which encode for the antigens of pathogens [53]. The backbone can be derived from 
live-attenuated or non-replicating vectors [47]. Retroviruses, herpes simplex virus, mea-
sles virus, adenoviruses and poxviruses are commonly used [53]. The efficacy of several 
VBVs has been evaluated in clinical trials (сlinicaltrials.gov, NCT04128059, 
NCT03333538). For example, a recombinant adenovirus vector has recently been used in 
the development of a COVID-19 vaccine (сlinicaltrials.gov, NCT04313127, NCT04552366) 
[54]. However, VBVs have a potential limitation linked to pre-exposure to the virus from 
which the backbone is derived; this can induce neutralizing antibodies and reduce vac-
cine immunogenicity [53].  

Nanoscale vaccines (NVs) have recently become a novel approach for vaccine de-
livery [55]. These types of vaccines include virus-like particles (VLPs), polymeric, inor-
ganic nanoparticles, liposomes and nano-emulsions and have demonstrated efficacy both 
in vitro and even ex vivo [55,56]. Recently, two lipid nanoparticle-formulated, nucleo-
side-modified RNA vaccines were developed against SARS-CoV-2 [48,50]. These vac-
cines, BNT162b1 and BNT162b2, containing mRNA encoding the SARS-CoV-2 recep-
tor-binding domain and membrane-anchored SARS-CoV-2 full-length spike protein, re-
spectively, were tested in clinical studies (clinicaltrials.gov, NCT04368728, NCT04368728) 
and were shown to be safe and immunogenic [57]. This demonstrates that NVs can be 
used as a platform for developing vaccines against emerging infections, given their de-
sired features including prolonged stability, immunogenicity and a non-invasive route of 
administration [58–60]. The future use of NVs as vaccines will, however, require opti-
mization of particle size and polarity, enhanced tissue penetration, and the means to 
prevent potential immunotoxicity in order to overcome limitations identified in in vivo 
studies [58,61,62].  

Novel delivery systems using MVs, however, have multiple advantages in the de-
livery of biological substances compared with other nanoscale vehicles. Due to their en-
dogenous origin, MVs are less toxic than other synthetic liposomes or polymeric nano-
particles [58]. They are also capable of crossing natural biological barriers including the 
blood–brain barrier [63–65] and remain stable due to their lipid-rich membrane structure, 
which also ensures resistance to detergents [66]. In addition, the range in size of MVs in-
fluences their uptake by antigen presenting cells to elicit specific immune responses 
against the cargo within the MV [23,67]. 

3. The Biogenesis of MVs 
MVs, also known as ectosomes, are nano-sized EVs that are released from cells into 

the intercellular environment [60]. In contrast to exosomes, which are derived from en-
dosomal compartments, MVs are produced by shedding directly from the plasma mem-
brane as the result of apoptosis or membrane remodeling [68]. They are commonly found 
in various body fluids such as saliva, milk, urine, blood and serum [60,69,70]. Uptake of 
MVs by target cells is largely mediated by receptors that interact with the universal 
molecules present in the MV membrane, such as lipids and specific peptides (Figure 1). 
MVs range between 100 and 1000 nm in diameter and are therefore easily internalized 
into target cells by receptor-mediated endocytosis or phagocytosis [60,71]. MVs have 
been shown to deliver cargo and elicit strong cellular and humoral immune responses 
[58]. The advantages of MVs as potential vehicles for vaccines could result from their 
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natural origin as they are produced by multiple cell types in physiological and patho-
logical conditions [63].  

 
Figure 1. Structure of microvesicles (MVs). MVs consist of a phospholipid membrane bi-layer and contain transmem-
brane proteins (ligands and receptors), adhesion molecules and common markers including major histocompatibility 
complexes (MHC), and heat shock 70-kDa proteins. MVs are enriched with tetraspanins and cytoskeletal proteins and 
possess a set of proteins and nucleic acids unique to the cell of origin. 

Although MVs originate from different cell types, they can share a similar composi-
tion of proteins and lipids and express common host markers, including major histo-
compatibility complex (MHC), flotillin, and heat shock 70-kDa proteins [69,72]. The 
content of MVs has also been shown to be enriched with other cellular proteins (tetra-
spanins, CD9, CD63, CD81 receptors), cytoskeletal proteins (actin, tubulin) and lipids 
(phosphatidylserine, ceramide and cholesterol) that are indicative of the cells from which 
they are derived [69,73] (Figure 1). Some proteins, such as the heat shock protein 70 fam-
ily and tetraspanins, were originally identified as specific markers for exosomes; how-
ever, these proteins have also been identified in MVs and apoptotic bodies [74,75]. Thus, 
MV cargos can include proteins unique to the cell of origin [69], and therefore receptors 
expressed on MV membranes can define the cell target [76]. 

In natural conditions, MVs are generated directly from the plasma membrane by 
outward budding followed by fusion and release of these vesicles to the extracellular 
space [77]. Several changes in the cell can initiate the budding process, including altera-
tions to the distribution of asymmetric phospholipids by increasing calcium levels in the 
cytosol [68,78]. Increased concentration of calcium ions activates the calcium-dependent 
enzymes scramblase and floppase and inhibits the activity of translocase [79,80]. This 
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prevents translocation of phosphatidylserine (PS) and phosphatidylethanolamine (PE) to 
the inner side of the membrane, thus disturbing the phospholipid composition of the 
plasma membrane [68]. As a result, MVs bud from the cell membrane with both PS and 
PE present on the surface [78,81]. 

Cytoskeletal rearrangement also contributes to the production of MVs. Changes in 
the cytoskeleton lead to detachment of the plasma membrane from the cortical cytoskel-
eton, including actin fibers capped by proteins, which maintain cell stability and shape 
[77,78]. Calpine, a calcium-dependent enzyme, cleaves actin-capping proteins, which 
disorganizes the cytoskeleton and leads to MV release [68]. Additionally, cytoskeletal 
changes can be caused by reduced synthesis of phosphatidylinositol 4,5-biphosphate 
(PIP2), which is essential for the attachment of the plasma membrane to the cytoskeleton 
[68,82]. 

MVs can also be produced during apoptosis. Amongst the proteins responsible for 
MV shedding through apoptosis is Rho [83], a GTPase family protein. Upon activation, 
Rho proteins exchange GDP for GTP and signal to downstream Rho-associated kinase 
(ROCK) [84]. GTP-bound Rho thereby activates ROCK. This activation phosphorylates 
LIM kinase (LIMK), which prevents cofilin from severing actin filaments and prolongs 
the extension of actin fibers [85]. Activated ROCK also inhibits myosin light chain 
phosphatase (MYLP) activity, resulting in an enhancement of myosin phosphorylation 
[86], actin-myosin sliding, detachment of the plasma membrane from the cytoskeleton, 
and the release of MVs [87]. 

MVs play an essential role in cellular communication in physiological and patho-
logical conditions, contributing to the pathogenesis of inflammation [88–94], coagulation 
[88,95–97], immunomodulation [93], regeneration [98–101] and tumorigenesis [76,102]. 
MV contribution to pathogenesis is often achieved through delivering cytokines, chem-
okines, mRNA and miRNA between cells [103,104]. Thus, MVs are considered as poten-
tial biomarkers in various diseases [69,105,106]. 

4. MVs as Immune Modulators 
MVs represent a critical component of the immune response for their ability to 

transfer cytokines, interleukins, growth factors, and other biomolecules from cell to cell 
[106]. Therefore, they can contribute to the control of inflammation and the adaptive 
immune response [107]. For example, it has been shown that MVs derived from platelets 
(pMVs) contribute to inflammation by facilitating leukocyte adhesion to endothelial cells 
[108]. This is due to expression of PS on the surface, along with adhesive glycoproteins 
such as GP1b (CD42b), GPIIbIIIa (αIIbβ3 integrin; CD41, CD61), β1-integrin (CD29), and 
P-selectin (CD62P) [109–111]. These molecules can immobilize circulating neutrophils, 
retaining them at the site of inflammation [106]. pMVs are also capable of transporting 
pro-inflammatory cytokines and chemokines, such as interleukins (IL-1β, IL-8, IL-6, and 
RANTES), to the site of leukocyte-endothelial cell adhesion and promote inflammation 
[106,112].  

Leukocytes, including NK cells (natural killer), have been shown to release MVs 
[113]. NK-derived MVs (NKMVs) are known to express perforin, granzymes, CD40L and 
other molecules involved in cytotoxicity, homing, cell adhesion, and immune activation 
[113–116]. It was demonstrated that NKMVs from healthy donors can activate peripheral 
blood mononuclear cells (PBMCs) by activating CD4+ T cells and inducing the expression 
of co-stimulatory molecules on monocytes and CD25 on T cells [116]. In inflamed lymph 
nodes, NKMVs are suggested to contribute to NK cell priming of CD4+ T helper (Th) type 
1 cells via secretion of interferon-γ (IFN-γ) [117]. NKMVs are also shown to express sev-
eral tumor necrosis factor (TNF) receptors and ligands and carry IFN-induced trans-
membrane proteins, suggesting that they can also modulate adaptive immune responses 
by directly activating T and B cells [116]. The activation potency of immune cell-derived 
MVs has also been demonstrated in an immune-tolerant and immune-suppressing tumor 
microenvironment [118]. Even though, NKMVs were exposed to tolerogenic stimuli [119] 
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and an immune-suppressing environment containing IL-10/TGFβ in order to mimic the 
tumor microenvironment, they were shown to stimulate monocytes and induced T-cell 
activation [116].  

Granulocytes, another subset of leukocytes, can also produce MVs [120–122]. Shen et 
al. have demonstrated that MVs released by apoptotic polymorphonuclear neutrophils 
(apoPMN-MVs) can significantly bind to CD25 (IL-2Rα)- CD127 (IL-7Rα)+ Th cells with 
higher capacity than apoptotic neutrophils and can selectively suppress proliferation of 
these lymphocytes [123]. After an acute infection immediately following pathogen elim-
ination, apoPMN-MVs were shown to suppress proliferation of CD25- CD127+ Th cells 
by downregulating expression of IL-2 and IL-2R, thereby supporting immunological 
tolerance [124,125]. However, these MVs failed to affect T-cell proliferation, suggesting 
that these T cells likely produced substantial amounts of IL-2, secreted IL-2 and CD25 
[123]. 

5. Mesenchymal Stem Cell (MSC)-Derived MVs 
Mesenchymal stem cell (MSC)-derived MVs were introduced as one of the most at-

tractive pharmaceutical carriers due to specific properties inherited from the parental 
cells [126]. Maumus et al. have reviewed the advantages of MVs derived from MSCs and 
their therapeutic applications [127]. MSC-derived MVs were shown to simulate the im-
munoregulatory and regenerative actions of MSCs [128,129]. Thus, MSC-derived MVs 
lack MHC class I and II, which allows allogenic transfusion without eliciting autoim-
munity or tumors [98,130]. MSC-derived MVs were shown to circulate in the blood and 
contain molecules, including miRNA, with potential therapeutic properties [131]. Collino 
et al. have also demonstrated that MSC-derived MVs can hold ribonucleoproteins in-
volved in the intracellular trafficking of RNA as well as selected miRNAs [132]. This 
transfer of miRNAs by MVs to target cells highlights the possibility that the biologic ef-
fect of stem cells could depend on MV-shuttled miRNAs [132]. 

MSC-derived MVs can modulate immune responses via interaction with leukocytes 
[133,134]. The immunomodulatory properties of MSC-derived MVs were confirmed by 
Mokarizadeh et al., who showed that the expression of PD-L1, galectin-1 and mem-
brane-bound TGF-β inhibited auto-reactive lymphocyte proliferation and promoted the 
secretion of anti-inflammatory cytokines IL-10 and TGF-β [135]. Also, Henao Agudelo et 
al. have demonstrated that MSC-derived MVs can promote a regulatory-like phenotype 
in M1-macrophages, which showed higher CD206 levels and decreased CCR7 expression 
[136]. This effect was also associated with reduced levels of inflammatory molecules 
(IL-1β, IL-6, nitric oxide) and increased expression of immunoregulatory markers (IL-10 
and arginase) in M1-macrophages.  

MSC-derived MVs also have therapeutic potential in neuropathology [137–140]. 
Jaimes et al. have reported that MSC-derived MVs can prevent TNF-α, IL-1β and IL-6 
upregulation in microglia cell lines and primary microglia cells treated with lipopoly-
saccharides (LPS) [133]. Additionally, a co-culture of microglia cells with MSC-derived 
MVs could upregulate CCL22 expression and can be used as a marker for M2 microglia 
phenotypes [133,141] characterized by enhanced phagocytosis and anti-inflammatory 
properties [142]. MSC-derived MVs were also shown to inhibit the expression of the ac-
tivation markers CD45 and CD11b on microglia cells treated with LPS, suggesting an 
anti-inflammatory effect [133]. 

6. MSC-derived MVs Isolation and Purification Techniques 
Prospective immunomodulatory properties of MSC-derived MVs and potential ap-

plication of MVs as a vehicle for the delivery of target proteins have initiated the devel-
opment of various techniques for their large-scale manufacture (Figure 2) [143]. Howev-
er, lack of bioprocessing methods for scaling up the derivation of MSC-derived MVs has 
become a serious challenge both for research and clinical purposes. Several studies have 
demonstrated that MSC 3D-cultures are more beneficial than monolayer cultures in sev-
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eral therapeutic applications [144,145]. Previously, Bartosh and Frith have reported that 
3D MSC-assembly preserves the phenotype and innate properties of MSCs and promotes 
the microenvironment similar to that in vivo [146,147]. Thus, it has been suggested that 
3D MSC-assembly could be used for the production of therapeutic MVs [126,148]. Using 
the unique composition of a Polyethylene glycol (PEG) hydrogel microwell-array, Cha et 
al. have demonstrated that 3D MSC-assembly increases MV production up to 100-fold in 
comparison with 2D cultures [126].  

 
Figure 2. Formation of artificial MVs. Three separate approaches for the artificial formation of MVs. (A) The 3D mesen-
chymal stem cell (MSC)-culturing technique uses polyethylene glycol hydrogels to form spheroid MSCs. MSC-spheroids 
are subsequently cultured for 7 days on a 30-rpm orbital-shaker (3D w/shaking). Scalable pro-duction of MSC-derived 
MVs can be achieved by this method. (B) The ultracentrifugation approach. This includes numerous centrifugation steps. 
MSCs are first cultured with complete media supplemented with 15% vesicle-depleted fetal bovine serum (FBS) for 3 
days. MSCs are then centrifuged at 120,000 × g for 18 h to deplete extra-cellular vesicles from FBS. The cell solution is 
centrifuged at 300 × g for 30 min at 4 °C to remove whole cells and large debris. Supernatants are then centrifuged at 
16,500 ×g for 20 min at 4 °C to collect the MV fraction [149]. (C) Cytochalasin B-induced MVs. This approach depends on 
the incubation of MSCs with cytochalasin-B to obtain MVs. 

Another approach includes treatment of cells with cytochalasin B, which disrupts 
the bonds between actin fibers leading to disintegration of the cytoskeleton [143]. Since 
various sized vesicles are produced, MVs are differentiated from exosomes by using 
multiple differential centrifugation steps [150]. Due to the cytochalasin B-induced ability 
of MVs to fuse with cell receptors in a similar way to naturally produced MVs, it was 
suggested that they also have similar physiological and biological characteristics, in-
cluding the transport of biologically active molecules between cells [143].  

Ultracentrifugation is one of the most reliable and validated techniques for the ro-
bust isolation and purification of large-scale MVs [149]. Using this approach, vesicles can 
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be isolated from cells and, due to size variation, differential centrifugation can separate 
exosomes from MVs [149].  

Aside from differential centrifugation, various approaches have been described to 
separate MVs from exosomes [151–153]. Density gradient centrifugation remains one of 
the most utilized techniques [154], in which EVs can be separated into specific layers 
based on their buoyant density in iodixanol solutions [154]. Additionally, by means of 
size-exclusion chromatography using porous beads, Boing et al. have separated EVs 
based on their hydrodynamic radius [155]. Immune-affinity capture utilizing monoclonal 
antibodies against surface proteins is also often adopted for the isolation of EVs, partic-
ularly using antibodies against tetraspanins present in exosomes [156]. Recently, several 
studies have shown that all EVs express tetraspanins at different levels, so the purifica-
tion methodology yields a mixed population of different EVs [74,75]. However, im-
mune-affinity methods require clear data on the biomarkers that distinguish MVs from 
exosomes, and at present, these have not been clearly defined [152]. The size of the EV 
sample in represented purification methods is limited by different variables, including 
the size of the centrifuge and rotary tubes used, the size of the column, and the quantity 
of antibody coated beads used [153,157,158]. Thereby, a suitable method of isolation and 
purification of MVs needs to be applied for large-scale production and further therapeu-
tic delivery to target cells. 

7. Tumor-Derived MVs 
Tumor-derived MVs have been shown to contribute substantially to cancer pro-

gression [102,159]. These MVs can stimulate cancer cell migration, invasion of tissues and 
proliferation [160]. Features of these MVs that support tumor growth and invasiveness 
are linked to interactions with the tumor microenvironment, where they can induce a 
tumor-supporting milieu [161,162]. Bordeleau et al. have suggested that tumor-derived 
MVs could contribute to extracellular matrix reorganization by enhancing the contractil-
ity of non-malignant epithelial cells within the primary tumor and the metastatic sites 
[163]. Also, Taheri et al. have demonstrated that glioma tumor-derived MVs can stimu-
late proliferative and metastatic gene expression in normal astrocytes within the tumor 
microenvironment, thus affecting tumor growth and invasion [164]. 

Another mechanism utilized by tumor-derived MVs to support malignancy is the 
reprogramming of immune cells. It was shown that these MVs can modify leukocyte 
differentiation into tumor-supporting cells as they stimulate growth, migration and tube 
formation of tumor cells [162,165]. For example, Ma et al. have reported that tu-
mor-derived MVs stimulate the conversion of macrophages into an active phenotype that 
expresses cytokines and growth factors, leading to tumor growth and the formation of 
metastases, as well as differentiation of tumor stem cells [166]. In addition, tu-
mor-derived MVs enable cancer cells to escape immune surveillance by suppressing NKs 
and CD8+ T lymphocytes [167–169]. This immunosuppressive effect was shown to be 
associated with the secretion of immunosuppressive cytokines by regulatory B cells [170].  

Conversely, tumor-derived MVs have been shown to contribute to the anti-cancer 
immune response. MVs, when engulfed by dendritic cells, could contribute to anti-
gen-processing, thus promoting the selection of tumor antigens with immunogenic 
properties [171]. Pineda et al. have demonstrated that irradiated tumor-derived MVs 
could facilitate the capture of tumor-associated antigens by antigen-presenting cells, 
thereby triggering an innate and adaptive immune response against malignancy [172]. 
Interestingly, the nature of tumor-derived MVs, as they form particles, was shown to 
make them more immunogenic than the soluble tumor antigens [173]. This was con-
firmed by Rughetti et al., who showed that the cell surface-associated tumor antigen 
Mucin 1 (MUC1) was immunogenic only when cross-processed and presented to anti-
gen-specific CD8+ T cells carried by MVs [174]. 
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It appears that the efficacy of tumor-derived MVs in eliciting an anti-tumor immune 
response makes them an attractive potential vaccine platform against cancer. However, 
their potential immunosuppressive activity severely limits this clinical application. 

8. Role of MVs in Infectious Diseases 
MVs play an important role in defense against infectious diseases. For example, it 

was shown that pro-coagulant MVs, isolated from M1 protein-stimulated PBMCs, can 
limit the dissemination and growth of bacteria [175]. Also, Oehmcke et al. have shown 
that formation of the plasma thrombus resulted from association between pro-coagulant 
MVs and Streptococcus pyogenes [176]. Additionally, it was reported that the MVs con-
taining parasite RNAs from malaria-infected erythrocytes could fuse with NK cells and 
activate them to provide the first line of defense against parasite infection [177]. The ef-
fect of MVs in the pathogenesis of coagulopathy was demonstrated in meningococcemia, 
Ebola hemorrhagic fever [178] and Chaga’s disease [179]. 

MVs can affect the function of macrophages, which are essential to the clearance of 
microbial pathogens [180]. MV delivery of pore-forming toxins to macrophages can in-
duce their polarization into a novel CD14+MHCIIlowCD86low phenotype, which is 
characterized by an enhanced reactivity to Gram-positive bacterial ligands [181]. It was 
reported that MSC-derived MVs have potential therapeutic activity in mouse models of 
bacterial pneumonia [134,182,183]. Monsel et al. showed several potential mechanisms 
underlying the protective effect of these MVs. Firstly, there was an increased clearance of 
bacteria from the lungs, which was explained by stimulation of monocyte phagocytosis 
[134]. Secondly, MVs could affect monocyte and alveolar macrophage activities by sup-
pressing cytokine-induced lung injury and lung protein permeability [134]. Another 
suggested mechanism includes the effect on metabolism of alveolar epithelial type 2 cells, 
where MVs carrying metabolic enzymes could facilitate microbial clearance [134]. 

In short, MVs serve as messengers between the host and the pathogen and are also 
used for defense. It is very important that pathogen-derived MVs carrying pathogen 
particles could elicit a host immune response by activating immune cells including 
monocytes, macrophages, T cells and NK cells [184–186]. Thus, MVs could be considered 
as a potential vaccine candidate against infectious diseases.  

9. MVs in Vaccine Applications against Infectious Diseases 
Recent studies have demonstrated the potency of MVs as a vaccine delivery system, 

using MVs derived from bacteria to deliver immunogenic epitopes [12,187]. For example, 
bacterial outer membrane vesicles (MVs), naturally produced by Gram-negative bacteria, 
were shown to have nano-sized lipid-bilayer vesicular structures composed of multiple 
immunostimulatory components (Figure 3) [187,188]. MVs derived from Neisseria men-
ingitides and Vibrio cholera have been incorporated into licensed vaccine formulations 
[189–191]. However, it should be noted that non-commensal, pathogen-derived MVs as 
vaccine delivery systems currently have several limitations including unintended tox-
icity, low expression of some heterologous antigens, and variable efficacy depending on 
source and formulation [187]. Bioengineering bacteria-derived MVs has been addressed 
in several studies with the aim that MV-based vaccines could have more therapeutic ap-
plications and overcome these limitations [67,192,193]. For example, LPS is a potent 
immune system activator, but it can induce severe immunotoxicity [194]. Some tech-
niques that depend on detergent treatment of bacteria have been used to achieve LPS 
detoxification, and therefore production of MV vaccines lack LPS, such as the current 
meningococcal vaccine [195]. Otherwise, Zariri et al. have genetically detoxified LPS with 
potent activation of the innate immune system by TLR4 [196]. Additionally, Price et al. 
have developed a bioengineered bacteria-derived MV-expressing heterologous glycan 
antigen instead of a protein antigen to elicit appropriate immunity against the pathogen 
of interest [197]. Alternatively, commensal non-pathogenic bacteria-derived MVs could 
be used to reduce toxicity and improve safety. Non-pathogenic Gram-negative bacteria 
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have been engineered to target specific antigens either in the MV lumen or on the MV 
surface (Figure 3) [12,198,199].  

 
Figure 3. Schematic representation of the application of bacteria-derived MVs in vaccines. MVs can be obtained from 
Gram-Negative Bacteria naturally by budding or by detergent extraction. MVs can carry native antigens (including pro-
teins, glycans and glycoproteins) or can be engineered to carry foreign antigens fused with outer-membrane proteins or 
cytosolic proteins. The next step is to isolate and purificate MVs and then collect them in large scale amounts.The MVs’ 
amount has to be suitable for using in the vaccination process. Then, the MV-based vaccine is performed on animals in 
non-invasive ways with the possibility of a booster dose. 

The efficacy of antigen delivery by MVs could be improved by presenting antigens 
on their surface, and there are several approaches that could ensure antigen localization 
on the surface. One method includes displaying the target protein on the membrane by 
fusion with surface anchor heterologous proteins [197,200]. This was demonstrated by 
Rappazzo et al. when a ClyA surface protein of MVs was fused with the ectodomain of 
influenza A matrix protein 2 [201]. This vaccine containing tandem heterologous M2e 
peptides (M2e4xHetOMV) ensured 100% survival against lethal doses of the 
mouse-adapted H1N1 influenza strain PR8 by triggering TLR1/2, TLR4, and TLR5. 
Moreover, passive transfer of antibodies from M2e4xHet-OMV vaccinated mice to un-
vaccinated ones also resulted in 100% survival [201]. 

In another approach, target proteins were displayed on the surface of MVs by 
over-expression of the outer-membrane proteins of the pathogen. For example, it was 
shown that over-expression of the N. meningitidis outer-membrane recombinant protein, 
NspA, increased its packaging into MVs [202]. Also, expression of the target antigen as a 
fusion with periplasmic signal proteins was shown as an alternative approach to target 
antigens on the surface of MVs [198]. This method was demonstrated by Muralinath et al. 
when a MV-derived vaccine was developed by expressing the PspA protein of S. pneu-
moniae fused with a periplasmic signal protein [203].  
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MVs have many advantages compared with both live and inactivated vaccines 
[12,187]. MVs can be administered in non-invasive ways (orally or nasally, without using 
needles), thus making a booster dose possible and enabling mass vaccination programs 
in challenging environments and at relatively low cost [12]. Moreover, MV-based vac-
cines can specifically target mucosal sites, which are often not targeted by other injectable 
vaccines [12]. Importantly, they can also induce innate and adaptive immune responses 
[12,204]. The safety of these vaccines is based on their non-cellular form and the absence 
of infectious components [12]. One of the indisputable advantages of MV-based vaccines 
is their stability in liquid and frozen forms [205]. Furthermore, MV-based vaccines, es-
pecially bacteria-derived MVs, have been considered as an emergency vaccine for ar-
resting the spread of future epidemics [206,207]. These MVs can be rapidly manufactured 
and modified as well as quickly up-scaled with low technological complexity, high flex-
ibility for producing a wide range of vaccines at low cost and potential thermo-stability 
of the formulated product [12,205,207–209].  

10. Potential Clinical Applications of MVs 
Given that MVs can serve as biomarkers for various diseases and can often contrib-

ute to their pathogenesis, they therefore have the potential to be diagnostic and thera-
peutic tools [210–213]. It has been suggested that MVs could be used as biomarkers for 
the progression of neuropathologies and malignancies [214]. Mege et al. have demon-
strated the use of tumor-derived MVs to monitor colon and rectal cancer progression 
[215]. In another study, Colombo et al. demonstrated that MVs in cerebrospinal fluid 
could be used to monitor infections of the nervous system and the progression of multi-
ple sclerosis [94]. MVs could also serve as markers of regeneration and repair, as 
demonstrated in cases of acute kidney injury and liver fibrosis [98,100,216,217]. 

The ability of MVs to deliver cargo is an attractive model for the delivery of thera-
peutics to sites commonly hard to access via conventional delivery routes [58,104]. For 
example, Tang et al. have assessed the delivery potential of tumor-derived MVs when 
used to transport chemotherapeutic drugs [66]. In addition, Usman et al. have reported 
that red blood cell-derived MVs can carry RNA drugs, including antisense oligonucleo-
tides, Cas9 mRNA and guide RNAs [20]. RNA drug delivery with these MVs possessed 
highly robust microRNA inhibition and CRISPR–Cas9 genome editing in both human 
cells and xenograft mouse models [20]. Additionally, Wang et al. have demonstrated that 
MVs can be used to upload and transport p53, an anti-tumor therapeutic protein [58]. 
Although MVs were shown to possess a high potency for both vaccine and drug delivery, 
they still face challenges concerning storage conditions, low yield production, quality 
control and targeted delivery [218,219]. 

11. Conclusions 
We have highlighted the potential of MVs as key carriers of molecular information 

and their role in providing functional information on physiological and pathological 
processes. Depending on the natural and unique properties related to their origin, MVs 
have been used as delivery vehicles toward specific cells and tissues. Here, we reviewed 
the role of MVs in therapeutics against infectious diseases and highlighted the potential 
of MVs as antigen-carrying systems that can improve vaccine efficacy and overcome 
potential classical vaccine limitations. Biological safety and low-cost production are in-
disputable advantages of this approach to vaccine delivery. Additionally, this method 
expands on the excellent opportunity for immunogenic cargo delivery on a large scale. 
The possible modification of MVs with specific antigens to induce innate and adaptive 
immunity is an attractive feature of MVs. Indeed, MV-induced immune responses could 
be more robust than classical vaccine delivery methods since MVs protect their contents 
from degradation when delivering cargo to target cells. Still, there are several limitations 
in the application of MV-based vaccines, including low yields under natural conditions. 
We have discussed some techniques to improve MV production, such as MSCs. We 
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highlighted that MVs can be used as future tools for diagnosis, treatment, and prophy-
laxis against several diseases. Therefore, the development of novel approaches for 
standard isolation, purification, and mass production remains important for future ap-
plications of MVs as vaccine delivery and therapeutic vehicles. 
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