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Abstract: Cancer is one of the leading causes of death globally, accounting for an estimated 8 million 
deaths each year. As a result, there have been urgent unmet medical needs to discover novel oncol-
ogy drugs. Natural and synthetic lactones have a broad spectrum of biological uses including anti-
tumor, anti-helminthic, anti-microbial, and anti-inflammatory activities. Particularly, several natu-
ral and synthetic lactones have emerged as anti-cancer agents over the past decades. In this review, 
we address natural and synthetic lactones focusing on their anti-tumor activities and synthetic 
routes. Moreover, we aim to highlight our journey towards chemical modification and biological 
evaluation of a resorcylic acid lactone, L-783277 (4). We anticipate that utilization of the natural and 
synthetic lactones as novel scaffolds would benefit the process of oncology drug discovery cam-
paigns based on natural products. 

Keywords: natural lactones; synthetic lactones; anticancer activities; natural product synthesis; drug 
discovery 
 

1. Introduction 
Cancer, the second leading cause of death worldwide, has become one of the greatest 

challenges to global health. The mortality rate that results from cancer is still unacceptably 
high over the last two decades, responsible for about 8 million deaths per year, and it is 
predicted to increase to 13 million by 2030 [1,2]. Hence, there is a consistent and urgent 
need for the discovery of novel and potential chemotherapeutic agents to combat cancer. 

Cancer is frequently correlated with disruption in key signaling pathways, which 
involve extracellular ligands, transmembrane receptors, intracellular signaling protein ki-
nases, and transcription factors, causing aberrant cell proliferation and defective apopto-
sis induction [3,4]. Recently, the targets and molecular mechanisms of natural product-
derived anticancer agents have been extensively investigated [5,6]. Furthermore, the effort 
has eventually led to the emergence of various natural lactones and their derivatives as 
potential lead compounds for anticancer therapeutics on account of their potent bioactiv-
ities, including cytotoxicity against cancer cells and anti-neoplastic efficacy in in vivo 
studies [7–9]. 

Lactones are basically chemical entities constituted of cyclic carboxylic esters. Natu-
ral and synthetic lactones exhibit a broad spectrum of biological activities such as anti-
helminthic, anti-microbial, anti-inflammatory, and anti-tumor activities. Radicicol (1), for 
instance, is a macrocyclic resorcylic acid lactone and its first isolation dates back to 1953 
[10]. Initial biological activity of resorcylic acid lactones, however, did not draw much 
attention from the researchers until kinase inhibition by cis-enone-containing resorcylic 
acid lactones is reported in the late 1990s [11].  

Starting from a series of resorcylic acid lactones (RALs), several classes of natural 
lactones including sesquiterpene lactones (SLs), diacylglycerol lactones (DAGLs), and 

Citation: Kim, Y.; Sengupta, S.; Sim, 

T. Natural and Synthetic Lactones 

Possessing Antitumor Activities. Int. 

J. Mol. Sci. 2021, 22, 1052. https:// 

doi.org/10.3390/ijms22031052 

Academic Editor: Czesław 

Wawrzeńczyk 

Received: 30 November 2020 

Accepted: 16 January 2021 

Published: 21 January 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Int. J. Mol. Sci. 2021, 22, 1052 2 of 69 
 

 

diterpene lactones (DLs) received much attention as potential anticancer agents over the 
past few decades [12–16]. Nevertheless, the development of those natural products into 
drug discovery programs is still somewhat limited due to complexity in structures and 
low pharmacokinetic profile resulted from relatively high lipophilic properties. For this 
reason, great efforts were made to complete total syntheses of biologically important nat-
ural lactones and to establish synthetic approaches to modify complex natural lactone 
structures [17–19]. In the expectation that natural products-based structures would be am-
ply exploited as powerful tools in designing strategies of anticancer drug discovery pro-
grams, we herein provide a comprehensive review on the biological activities and chem-
istry of representative natural and synthetic lactones that are known to exhibit anticancer 
activities.  

2. Biological Activities and Chemistry of Natural and Synthetic Lactones 
2.1. Reosorcylic Acid Lactones 

The resorcylic acid lactones (RALs) are mucotoxins belonging to a family of benzan-
nulated macrolides, which are isolated from various types of fungi. A structural feature 
of RALs is characterized by a β-resorcylic acid scaffold annulated to a 12–14 membered 
macrolactone [20]. RALs had not been recognized as a significant class of compounds until 
the late 1990s that molecular targets of a few RALs were revealed. Research on RALs was 
delighted with the discovery of radicicol (1) as an Hsp90 inhibitor in conjunction with the 
identification of hypothemycin (2) and L783277 (3) as kinase inhibitors [11,21,22]. Espe-
cially, cis-enone moiety containing RALs are prone to undergo 1,4-Michael addition with 
a conserved cysteine residue in the ATP-binding site of the kinases leading to covalent 
inhibition of the target kinase. The most recognized compounds of this type are hypo-
themycin (2), LL-Z1604-2 (3), and L783277 (4). 

2.1.1. Biological Activities of Radicicol (1) 
Radicicol (1) provided the foundation for research on macrocylic lactones as anti-

cancer agents. In 1953, Radicicol (1) was isolated from the fungus Monosporium bonorden 
as the first example of RALs [10]. In 1992, radicicol (1) was initially reported to act as an 
src kinase inhibitor, which triggered research interest in RALs and other classes of mac-
rocyclic lactones [23]. However, radicicol (1) was later revealed to selectively inhibit 
HSP90 function by binding to its N-terminal ATP pocket and the effects of radicicol (1) on 
modulating protein kinase activity turned out to be indirect as many protein kinases re-
quire HSP90 for proper folding [24]. Although radicicol (1) does not possess direct kinase 
inhibitory activity, it provided the foundation for research on macrocylic lactones as anti-
cancer agents. Owing to radicicol (1), there are currently several examples of well-studied 
RALs, namely: hypothemycin (2), LL-Z1640-2 (3), and L-783277 (4) that are known to in-
hibit mitogen-activated protein kinases by the use of a cis-enone moiety in an ATP-com-
petitive manner (Figure 1). 

 
Figure 1. Structures of representative resorcylic acid lactones. 



Int. J. Mol. Sci. 2021, 22, 1052 3 of 69 
 

 

2.1.2. Chemistry of Radicicol (1) 
Affirmation of the structure was achieved by the total synthesis accomplished by Lett 

and Lampilas in early 1992 and followed by some improvement and modification. Lett’s 
synthetic protocol utilized a key intramolecular Mitsunobu reaction to construct the 14-
member macrocycle (Scheme 1). Cyclization precursor 9 would be synthesized through a 
palladium-catalyzed coupling reaction of chlorinated isocoumarin 8 and vinyltin sub-
strate 7. Compound 7 was obtained through the addition of lithium vinyltin 6 to aldehyde 
5 already carrying the epoxide with the desired stereochemistry in place. involved 18 lin-
ear steps resulting in a 4.7% overall yield [25]. 

 
Scheme 1. The total synthesis of radicicol (1) according to Lett and Lampilas [25]. 

In 2000, the Danishefsky group did concise asymmetric syntheses of radicicol (1) and 
monocillin I [26]. Their synthetic strategy relies on a convergent three-stage assembly of 
the 14-membered lactone which has, as a key transformation, a novel ring-forming me-
tathesis reaction utilizing a vinyl epoxide (Figure 2). 

 
Figure 2. Retrosynthetic analysis according to Danishefsky et al. [26]. 

The synthesis commenced with construction of the chiral homochiral allylic alcohol 
11 from methyl (R)-3-hydroxybutyric acid (13) in 8 steps in 49% yield (Scheme 2).  

 
Scheme 2. Synthesis of intermediate 11 [26]. 
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The allylic dithiane 12 was prepared in one step from commercially available 2,4-
hexadienal 14 with 64% yield (Scheme 3).  

 
Scheme 3. Synthesis of intermediate 12 [26]. 

Formylation followed by oxidation and conversion of the alcohol to chloride was ef-
fected with 3,5-dimethoxybenzyl alcohol 14 to give the desired acid 15 (Scheme 4). Inter-
mediate 16 was synthesized in 2 steps from 15 with 48% yield. Ruthenium-based olefin 
metathesis catalyst was used to get the desired 14-membered lactone 18 stereospecifically 
in 55% yield. Oxidation and crude monosulfoxide was exposed to the action of Ac2O, Et3N, 
and H2O to give the desired ketone dimethyl monocillin I (19, 70%). Regiospecific chlorin-
ation of the aromatic ring then produced radicicol dimethyl ether (20). 

 
Scheme 4. Synthesis of radicicol dimethyl ether (20) [26]. 

However, they were able to reform the natural products via the similar strategy used 
before except the modification of protection groups in the aromatic ring 21 (Scheme 5). 
They obtained the final radicicol (1) by treatment with base, in 7.5% yield over 14 steps 
(longest linear sequence) [27].  

 
Scheme 5. Synthesis of radicicol (1) according to Danishefsky et al. [27]. 
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Winssinger’s total synthesis of radicicol (1) was reported in 2005 [28]. 2-hydroxy to-
luic acid 22 under Mitsunobu condition with 23 and protection gave 24 (Scheme 6). Reac-
tion of toluate 24 using two equivalents of LDA followed by addition of Weinreb amide 
25 afforded cyclization precursor, which after elimination and Grubbs reaction produced 
26 with 64% yield in 3 steps. Radicicol (1) was obtained from intermediate 26 in 3 steps 
with 43% yield. 
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Scheme 6. Synthesis of radicicol (1) according to Winssinger et al. [28]. 

Later the Danishefsky group decided to “edit” the epoxide and replace it with a cy-
clopropyl group in a highly convergent and efficient three-stage protocol for the syntheses 
of radicicol (1) and cycloproparadicicol (32) [29]. The Hsp90 inhibition activity dropped 
somewhat from the natural product (IC50 = 20–23 nM for radicicol (1) vs. IC50 = 160 nM for 
cycloproparadicicol (32)), yet cycloproparadicicol (32) was still very potent. As with the 
epoxide, inversion of the cyclopropane stereochemistry diminishes the activity (Scheme 
7).  

The central element of their plan was the building of an “ynolide” intermediate and 
its advancement to the benzomacrolide by a Diels–Alder cycloaddition. Reformatsky-like 
condensation of propargyl bromide 27 with 28, followed by protection and subsequent 
reaction of the lithium alkynide ion, gave them the acid intermediate 29, which under 
Mitsonobu condition, furnished ester 30. Cyclopropane-containing cobalt complex of 30 
cyclized to give 31 in 39% yield, as a 2:1 mixture of two diastereomers and finally after 6 
steps provided them cycloproparadicicol (32). 

 
Scheme 7. Synthesis of cycloproparadicicol (32) [29]. 
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Unfortunately, radicicol (1) exhibited no in vivo activity, which might be due to the 
highly sensitive functionality present in the molecule, including an epoxide and a conju-
gated dienone, both of which are readily metabolized. As a result, significant efforts have 
focused on synthesizing radicicol (1) analogs, which retain the potency, but with im-
proved metabolic stability (Figure 3). 

 
Figure 3. Radicicol (1) analogs as Hsp90 inhibitors [30]. 

A series of halohydrin and oxime derivatives of radicicol (1) were prepared and eval-
uated for their antitumor activities in vitro and in vivo (Figure 3) [31]. Although halohy-
drin derivative 38 was inactive, oxime derivatives showed in vivo antitumor activities, 
with hydroxime 39 being the most active. KF25706 (39) was further evaluated for its anti-
tumor activity against various tumor models by iv (intravenous) injections (Figure 4). 

 
Figure 4. Halohydrin and oxime derivatives of radicicol (1) [31]. 

Triazole derivative (35) was synthesized by a copper-mediated cycloaddition between 
benzyl azide 43 and alkyne 41, prepared from 40 in 8 steps, gave triazole 45 in near quanti-
tative yield. Base-promoted formation of the macrocycle and subsequent deprotection af-
forded the RAL triazole 35 in an efficient and highly convergent synthetic route (Scheme 8). 
Despite the additional H-bonding potential, a decrease in Hsp90 inhibition activity was ob-
served (IC50 = 400 nM for 35 vs. 20–23 nM for radicicol (1)), although the compound dis-
played significant in vivo activity. In a similar manner, the Danishefsky group incorporated 
a triazole ring into RAL analogs, whilst retaining the carbonyl at the 9-position. None of the 
triazole-containing analogs displayed significant activity [32]. 
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Scheme 8. Synthesis of triazole derivative (35) of radicicol (1) [32]. 

A synthesis of resorcylic acid macrolactam analogs of the natural product radicicol 
(1) is described in which the key steps are the acylation and ring opening of a homoph-
thalic anhydride to give an isocoumarin, followed by a ring-closing metathesis to form the 
macrocycle. Synthesis of macrolactam analogs of radicicol reported by Moody group in 
2014 [33].  

Addition of the malonate-derived acid chloride 47 to anhydride 46 gave the acylated 
intermediate, which spontaneously underwent a cyclization/retrocyclization, with the 
loss of CO2, giving the isocoumarin 48 in 75% yield (Scheme 9). This was readily converted 
into both the NH and NMe macrolactams 49 and 50, respectively, and allowed for the 
incorporation of amide and ester functional groups at C10 (51 and 52, respectively), giving 
additional H-bonding potential. 

 
Scheme 9. Synthesis of macrolactam analog (49–52) [33]. 

The macrolactams were indeed more metabolically stable (43% metabolism for mac-
rolactam 50 vs. 84% for radicicol (1) after 15 min with human liver microsomes and 
NADH/NADPH) and, significantly, were also often superior to the corresponding other 
natural macrolactones in terms of activity [34]. 
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2.1.3. Biological Activities of Hypothemycin (2) and LL-Z1640-2 (3) 
Hypothemycin (2) is a cis-enone containing natural macrocylic resorcylic acid lac-

tone, which is an antifungal metabolite isolated from Hypomyces trichothecoides. A compre-
hensive study conducted by groups of Tanaka and Sonoda reported that treatment of hy-
pothemycin (2) on v-KRAS-transformed NIH3T3 (DT cells) dramatically decreased the 
amount of cyclin D1 protein [35,36]. The groups also suggested cyclin D1 as a key mole-
cule involved in RAS downstream signaling and hypothemycin (2) might act as a RAS-
signaling pathway inhibitor by facilitating ubiquitinating process of cyclin D1 in DT cells. 
Another study of hypothemycin (2) on its kinase specificity revealed that most kinases 
inhibited by hypothemycin (2) contained a conserved cysteine residue at kinase active site, 
which is corresponding to the cysteine 166 of ERK1/2 and they were inhibited in a time-
dependent manner suggesting covalent inhibition of the kinases through the formation of 
a Michael adduct [37]. Particularly, hypothemycin (2) displayed low nanomolar Ki values 
against five kinases (MEK1, MEK2, FLT1, and KDR) and high nanomolar Ki values on 
TRKB. These findings furnished explanations of the behavior of hypothemycin (2) as a 
RAS-signaling pathway inhibitor [36]. Moreover, it is also of significance that hypothemy-
cin (2) could not inhibit GSK3β, which possesses a conserved cysteine [37]. 

LL-Z1640-2 (3), also known as C292 and 5-(Z)-7-oxozeaenol), is a radicicol-related 
anti-protozoan isolated from an unidentified fungi source. LL-Z1640-2 (3) can selectively 
inhibit transforming growth factor (TGF)-β-activated kinase 1 (TAK1) with high potency 
(TAK1, IC50 = 8.1 nM) [38]. TAK1 belongs to the upstream of mitogen-activated protein 
kinases (MAPK) called MAPKK-K family. TAK1 is mainly involved in the activation of 
JNK and P38 MAPK by activating the following MKKKs: MKK3, MKK4, MKK6, and 
MKK7. LL-Z1640-2 (3) strongly inhibited JNK/p38 pathway, however, it did not display 
any effect on ERK kinase activation induced by epidermal growth factor (EGF) in Hela 
cells. This provided evidence that LL-Z1640-2 (3) does not directly block JNK/p38 path-
way, but rather acts at the upstream of the MAPKK level. The JNK/P38 pathways are im-
portant in biological responses such as inflammation, apoptosis, and cell differentiation 
and their aberration might bring about diseases related to inflammatory disease, neuro-
degenerative disorder, and cancer progression [39]. Therefore, LL-Z1640-2 (3) is regarded 
as a potential therapeutic agent to treat such diseases and can also be used as a great 
toolbox for signal transduction research [40]. 

2.1.4. Chemistry of Hypothemycin (2) and LL-Z1640-2 (3) 
The first total synthesis of LL-Z1640-2 (3) was reported by Tatsuta and co-workers in 

2001 [41]. Their synthesis commencing from the addition of tris-MOM-protected D-ribose 
53 and lithiated TMS-acetylene to propargylic alcohol 54 followed by protection, which 
was then undergone a Sonagashira reaction to aromatic iodo 55 to get 56 and after 6 steps 
generate propargylic alcohol 57 (Scheme 10). Target structure produced by a Mukaiyama 
macrolactonization reaction of a protected seco acid 58 in 3% overall yield for the longest 
linear sequence of 19 steps (from D-ribose). 
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Scheme 10. Synthesis of LL-Z1640-2 by Tatsuta et al. [41]. Reagents and conditions: (a) TMS-acetylene, n-BuLi, BF3·Et2O, 
THF, −78 °C, rt; (b) Pd(OAc)2, CuI, Ph3P, Et3N, 2 h; (c) ClC(O)OEt, pyridine, 0 °C, 1 h. 

An alternative approach to the synthesis of LL-Z1640-2 (3) and hypothemycin (2) has 
been reported by Selles and Lett [42]. Here, the macrocyclic framework of hypothemycin 
(2) and LL-Z1640-2 (3) would be constructed either through Mitsunobu-based macrolac-
tonization from seco acid 59 or, alternatively, through a Suzuki-type macrocyclization of 
ester 60. Both 59 and 60 would be derived from o-bromo benzoic acid 61 and intermediate 
62 (Figure 5). The synthesis developed by Selles and Lett provided LL-Z1640-2 (3) and 
hypothemycin (2) in overall yields of 1% and 0.17%, respectively, in 26 steps for the long-
est linear sequence.  

 
Figure 5. Retrosynthesis of hypothemycin (2) and LL-Z1640-2 (3) according to Selles and Lett [42]. 

In 2007, the Winssinger group developed a concise synthesis of LL-Z1640-2 (3) and 
related resorcylic acid lactones using a combination of fluorous tag-isolation and polymer-
bound reagents, thus making the chemistry amenable to high throughput synthesis [43]. 
In the synthetic scheme their advanced intermediate 64, was alkylated in excellent yield 
with aromatic fragments 63 previously deprotonated by LDA (Scheme 11). The selenide 
was then oxidized and eliminated to afford compounds 65 and purification done by using 
simply loaded on fluorous-silica columns. The PMB group was removed by DDQ, while 
the TMSE ester was removed with TBAF. The hydroxyacids thus obtained were engaged 
in Mitsunobu macrocyclisations using fluorous-tagged triphenyl phosphine and diazo di-
caboxylate, thus yielding the macrocycles 66 after a fluorous solid-phase extraction. Fi-
nally, deprotection and oxidation yielded a natural product, LL-Z1640-2 (3) in good yield 
[43]. 
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Scheme 11. Concise synthesis of LL-Z1640-2 (3) by Wissinger et al. [43]. 

Total synthesis of LL-Z1640-2 (3) utilizing a late-stage intramolecular Nozaki–
Hiyama–Kishi reaction was reported by Thomas et al. in 2010 [44]. Their route depended 
on an aryl selenide nucleophile for a precedented sequence of alkylation, oxidation, and 
elimination to generate the requisite trans-olefin scaffold (Scheme 12). Subsequent 
Mitsunobu esterification would provide access to an advanced intermediate 68 and 69 
poised for macrocyclization with the intramolecular Nozaki–Hiyama–Kishi (NHK) reac-
tion. Finally, oxidation and deprotection completed natural product LL-Z1640-2 (3) syn-
thesis.  

 
Scheme 12. Total Synthesis of LL-Z1640-2 (3) by Thomas et al. [44]. Reagents and conditions: (a) 
CrCl2, NiCl2 (cat.), DMF; (b) Dess–Martin periodinane, CH2Cl2, rt; (c) BCl3, CH2Cl2. 

In 2010, Barrett group reported total synthesis of LL-Z1640-2 (3) via consecutive mac-
rocyclization and transannular aromatization [45]. According to their synthetic protocol 
thermolysis of diketo-dioxinone 71 resulted in generation of ketene intermediate, which 
was efficiently trapped intramolecularly by the alcohol to provide the 18-membered mac-
rocyclic lactone 72 (Scheme 13). Regioselective methylation, followed by deprotection and 
oxidation gave LLZ1640-2 (3) in 51% yield over three steps. 15-step biomimetic total syn-
thesis of the TAK-kinase inhibitor LL-Z1640-2 (3) from commercially available starting 
materials was reported. 
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Scheme 13. Total synthesis of LL-Z1640-2 (3) by Barret et al. [45]. 

In 2007, a number of semi-synthetic derivatives of this natural product hypothemycin 
(2) and their biological assessment has been reported [46]. Interestingly, derivatives 74a–
d showed similar antiproliferative activity as hypothemycin (2) in most cases investigated, 
which indicates that substituents on C4-O do not interfere with target protein binding and 
may thus be used to modulate the physico-chemical properties of hypothemycin (2) with-
out impairing the desired biological activity (Scheme 14).  

 
Scheme 14. The synthesis of semi-synthetic derivatives of hypothemycin (2) [46]. 

Herein, divergent syntheses of resorcylic acid lactones were reported, presenting an 
effort on accessing macrocycles bearing an alkene, or epoxide at the benzylic position from 
a common benzylic sulfide intermediate to access both LL-Z1640-2 (3) and hypothemycin 
(2) [47]. Starting from resin-bound intermediate 75, the toluate position was alkylated with 
iodide 76 to obtain polymer-bound intermediate 77 (Scheme 15). Mitsunobu cyclisation 
followed by the release of sulfur resin under oxidative condition gave 78 which was oxi-
dized to the desired cis-enone under slightly more forceful conditions by using DMP in 
CH2Cl2 under reflux and led to final compounds both natural products LL-Z1640-2 (3) and 
hypothemycin (2). 

 
Scheme 15. Divergent synthesis of hypothemycin (2) and LL-Z1640-2 (3) [47]. 
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In 2009, a serum and plasma-stable resorcylic acid analog of ER-803064 (79) was dis-
covered [48]. The addition of the (S)-Me group at C4 has resulted in a dramatic improve-
ment in metabolic stability with retention of bioactivity (Scheme 16). Aromatic ester 80 
and aliphatic iodo 81 were coupled and further steps were employed to get aldehyde 82 
in 5 steps which after 8 synthetic steps gave final ER-803064 (79). 

 
Scheme 16. Synthesis of ER-803064 (79) [48]. 

In 2010, the Wang group reported a potent in vitro lead compound, 83 and 84, fully 
synthetic analogs of natural product LL-Z1640-2 (3). The analog 84 maintained the meta-
bolic stability, regained full in vitro potency similar to natural product, and had significant 
improvement in in vivo potency (Scheme 17). Their synthesis started from commercially 
available methyl orsellinate (85) and after 5 steps afforded aromatic selenide intermediate 
86 which was then coupled with acyclic iodide in the presence of LiHMDS followed by 
mCPBA oxidation, TBAF deprotection, and lactone cyclization under the influence of 
Mukaiyama’s reagent to provide lactone 87. Deprotection followed by C14 substitutions 
was done through Mitsunobu reaction and benzoyl group was then deprotected under 
basic conditions to produce allylic alcohol 11. Finally, oxidation followed by deprotection 
led to final analog 83 and 84 [49]. 

 
Scheme 17. Synthesis of LL-Z1650-2 (3) analogs (83 and 84) [49]. Reagents and conditions: (a). (i). LiHMDS, acyclic iodide, 
(ii). mCPBA, Et3N, (iii). TBAF, (iv). 2-Cl-1-Me pyridinium iodide; (b). (i). TBAF, (ii). Mitsunobu reaction, (iii). NaOH; (c). 
(i). PCC/Swern reaction, (ii). HCl. 

In 2014, synthesis and biological studies of a triazole analogue (90) of LL-Z1640-2 (3) 
were reported by the Chen group in 6 linear steps in 18% overall yield [50]. The triazole 
analog (90) showed good activity (IC50 = 7.2 μM) against MNK2 kinase, which is an emerg-
ing target for cancer chemotherapy (Scheme 18). Azido intermediate 91 which was syn-
thesized from 2-deoxy d-ribose acetonide and phloroglucinol carboxylic acid treated with 
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excess (S)-pent-4-yn-ol, under the standard CuSO4/sodium ascorbate conditions, led to a 
smooth click reaction to afford the desired triazole 92 followed by successful macrocy-
clization and intramolecular transesterification with NaH. Final deprotection of the ace-
tonide 93 concluded a concise synthesis of the triazole analog 90. 

 
Scheme 18. Synthesis of triazole derivative (90) of LL-Z1650-2 (3) [50]. Reagents and conditions: 
(a). (i). CuSO4·H2O, t-BuOH/H2O, sodium ascorbate; (b). NaH, THF; (c). 1 N HCl, MeOH/THF. 

In 2016, an efficient synthesis of an exo-enone analog (94) of LL-Z1640-2 and evalua-
tion of its protein kinase inhibitory activities were reported by the Chen Group [51]. The 
synthesis has been achieved using a Ni-catalyzed regioselective reductive coupling mac-
rocyclization of an alkyne–aldehyde as a key step (Scheme 19). The synthesis of 94 com-
menced with the reported intermediate alkene 95 which after protection and transesteri-
fication in the presence of NaH gave intermediate 96 in nearly quantitative yield. Alkyne–
aldehyde 97 was readily synthesized in 3 steps from 96. As per reported condition 97 un-
der moderate dilution (0.013 M), gratifyingly provided the desired macrocyclization prod-
uct 98 in 57% isolated yield. This reaction proceeds via an alkenylnickel species formed 
by a regioselective hydronickelation of the alkyne. Finally, oxidation and deprotection 
furnished the required exo-enone analog 94. 

 
Scheme 19. Synthesis of exo-enone analog (94) of LL-Z1640-2 (3) [51]. Reagents and conditions: (a). (i). TBSCl, imidazole, 
(ii). NaH, THF; (b). (i). MOMCl, NaH, (ii). TBAF, THF, (iii). DMP, DCM; (c). NiCl2, CrCl2, PPh3, H2O, DMF; (d). (i). DMP, 
DCM, (ii). HCl, MeOH. 
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2.1.5. Biological Activities of L-783277 (4) 
L-783277 (4) is a naturally occurring 14-membered resorcylic acid lactone isolated 

from Helvella acetababulum, a species of fungus in the family Helvellaceae. L-783277 (4) is 
especially known for its highly potent inhibitory activity against MEK (IC50 of 4 nM). The 
unexceptional binding affinity of L783277 (4) to kinases is mainly due to the presence of 
the electrophilic cis-enone moiety that forms Michael adducts with conserved cysteine 
residue residing near the DFG motif of the kinases. As a good comparison, a C7′-C8′ trans-
enone analog of L-783277 (4), exhibited 75-fold decreased activity against MEK (IC50 of 
300 nM). Moreover, L-783277 (4) was reported to possess potent inhibitory activities 
against several kinases including VEGFR2/3, FLT1/3/4, MEK1/2, KDR, and PDGFRα but 
with low kinome selectivity [47,52]. 

We investigated the effects of a structural nature of L-783277 (4) on kinase inhibitory 
activities in three subsequent researches [52–54]. In an effort to expand our MEK kinase 
program and to conduct a detailed SAR study with L-783277 (4) derivatives, we devel-
oped an efficient synthetic route toward L-783277 (4) [54]. With this effective synthetic 
approach distinctive from those reported in precedent literature at the time, we were able 
to obtain tens of milligrams of L-783277 (4) by simple purification method using flash sil-
ica chromatography [47,55].  

We noticed an observation that hypothemycin (2) could not inhibit GSK3β possessing 
a conserved cysteine while it could inhibit kinases without conserved cysteines (Src, TrkA, 
and Trk) [37]. Accordingly, we further investigated the structure of L-783277 (4), based on 
our postulation that the reversible binding of RALs might also play a key role in deter-
mining the inhibitory activities and overall selectivity toward kinases. To test the hypoth-
esis, we synthesized a reversible version of L-783277 (4), 99, in which the alkene moiety of 
the cis-enone of L-783277 (4) was saturated and a number of analogs derived from 99 (Fig-
ure 6). Kinome-wide selectivity profiling and biochemical assays were conducted with 99 
and results showed that 99 inhibits activin A-like kinase 1 (ALK1) more potently than its 
parent compound, L-783277 (4), does and it displayed a better kinase selectivity against a 
panel of 342 kinases. ALK1 is a serine threonine kinase expressed predominantly in endo-
thelial cells and it functions as a receptor for bone morphologic protein 9 (BMP9). Binding 
of the ligand to ALK1 activates Smad4 by phosphorylating Smad1/5/8, which upregulates 
transcription of various target genes involved in angiogenesis [56,57]. Due to the signifi-
cance of ALK1 in regulation of tumor angiogenesis, it has been regarded as a potential 
therapeutic target for the development of anticancer agents [58]. Although dorsomorphin 
and LDN193189 showed inhibitory activities against BMP type I receptor kinase and 
could inhibit BMP-related Smad and non-Smad signaling, inhibitory activities displayed 
by the two were so broad that it also inhibited other signaling pathways, inducing adverse 
events brought by off-target effects. In this study, we reported that 99 is a potent and se-
lective ALK1 inhibitor, which acts by selectively blocking BMP9-induced ALK1 signaling 
in C2C12 cells [52]. It is also highly noteworthy that ALK1 is one of the kinases that has 
no conserved cysteine residue equivalent to Cys168 of ERK2. Therefore, the selectivity of 
99 is achieved by its inability to form a Michael adduct with the most kinases. Moreover, 
greater conformational flexibility of 99 enables it to adopt superior binding mode, which 
is the reason that the 99 shows higher activity relative to L-783277 (4) against ALK1 (IC50 
ALK1 = 62 nM and 126 nM for 99 and L-783277 (4), respectively).  
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Figure 6. Structures of L-783277 (4) derivatives (99 and 100). 

Our experience in discovering the first reversible version of L-783277 (4) as a potent 
and selective ALK1 inhibitor encouraged us to focus on further development of L-783277 
(4) analogs with increased kinome-wide selectivity. We previously observed that L-783277 
(4) strongly inhibited VEGFR3/2 and FLT3 but it displayed poor kinome-wide selectivity. 
The tyrosine kinase vascular endothelial growth factor receptor3 (VEGFR3) and its hom-
olog, VEGFR2, take part in tumor lymphangiogenesis [59] and angiogenesis [60], respec-
tively. Because inhibiting both angiogenesis and lymphangiogenesis is claimed to be a 
reasonable strategy to treat cancer [61,62], we aimed to discover novel L-783277 (4) deriv-
atives that selectively inhibit VEGFR2/3 and FLT3 with high potency. Our strategy imple-
mented in order to achieve this goal was to rigidify the structure of 14-membered lactone 
scaffold of L-783277 (4), anticipating that structural rigidity could potentially enhance ki-
nome-wide selectivity of L-783277 (4). We synthesized 11 novel L-783277 (4) derivatives 
containing a phenyl ring incorporated in the 14-membered chiral resorcylic acid lactone 
ring system to assess this hypothesis. Among these derivatives, 100 exhibited the highest 
potencies against VEGFR3, VEGFR2, and FLT3 and excellent kinome-wide selectivity [54]. 
Moreover, results of corneal assay conducted with 100 demonstrated effective suppres-
sion of both lymphangiogenesis and angiogenesis, indicating that 100 is a potential and 
unique template to be used in the development of therapeutically active and selective 
compound, targeting both lymphangiogenesis and angiogenesis [54]. 

Most natural macrocyclic lactones exert physiological effects by covalently binding 
to various biological targets. This, however, is often regarded as a major reason behind 
poor selectivity among substrates and undesired dose-dependent toxicities. Our findings 
obtained during the course of structural modification and biological evaluation of L-
783277 (4) indicate that simple transformation made on a macrocyclic lactone can dramat-
ically increase substrate specificity and potency against a certain protein of interest. It is 
also of significance that exploration of such an effort was firstly demonstrated by our 
group [52,54]. Furthermore, we anticipate that our works on L-783277 (4) and its deriva-
tives (99 and 100) provide a promising basis for further developments of natural and syn-
thetic lactones, along with other natural products, as potential anticancer agents. 

2.1.6. Chemistry of L-783277 (4) 
The first synthesis of L-783277 (4) was achieved by Altmann et al. in 2008, through 

the successful exploration of Suzuki coupling and a late-stage macrolactonization reaction 
[55]. Their synthesis commenced from isopropylidene-D-erythrono-1,4-lactone 101 as a 
chiral starting material to intermediate 102 in 10 steps with 27% yield (Scheme 20). TMS-
ethyl ester was obtained from the corresponding methyl ester 103 via ester cleavage with 
TMSOK under microwave conditions followed by Suzuki coupling with 102 gave 104 in 
60% yield. Hydrogenation of 104 under Lindlar condition and deprotection gave the seco 
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acids 105 in good yield. Cyclization under Mitsunobu conditions followed by deprotec-
tion and oxidation with polymer-bound IBX led to a mixture of L-783277 (4) and a second 
mono-oxidized product whose exact structure was uncertain, separated by flash chroma-
tography. 

 
Scheme 20. First total synthesis of L-783277 (4) by Altmann et al. [55]. 

In 2009, the Winssinger Group reported the synthesis of L-783277 (4) together with 
the synthesis of LL-Z1640-2 (3), and hypothemycin (2) as a part of their divergent synthetic 
approach towards resorcylic acid lactones [47]. According to their synthetic route, vinyl 
bromide 107 could be obtained in 4 steps from the less expensive methyl 3-hydroxybutyr-
ate 106 (Scheme 21). Another commercially available protected deoxyribose 108 was con-
verted to protected aldehyde 109 in 3 steps which was further converted to intermediate 
110 in 4 synthetic steps with 72% yield.  

 
Scheme 21. Synthesis of intermediates of L783277 (4) by Winssinger et al. [47]. 

Toluate position of resin-bound 111 was alkylated with iodide 110 to obtain polymer-
bound intermediate 112 followed by removal of the PMB and the TMSE. Macrolactoniza-
tion under Mitsunobu conditions followed by reductive conditions to get macrocycle 113 
after benzoate hydrolysis (Scheme 22). The natural products L-783277 (4) could be ob-
tained by straightforward diazomethane treatment of compounds 114 (>90% conversion 
based on LC/MS, 63–74% isolated yield after HPLC purification). It should be noted that 
their final product isolated by HPLC were typically contaminated with small amounts 
(>5%) of a side product that is tentatively ascribed to the trans-enone isomer. 
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Scheme 22. Synthesis of L783277 (4) by Winssinger et al. [47]. 

In 2010, our group successfully accomplished efficient and enantioselective total syn-
thesis of L-783277 (4), based on convergent assembly of one aromatic unit and two chiral 
building blocks with efficient orthogonal protection-deprotection strategy [53]. Three key 
steps composed of olefin cross metathesis, addition of acetylene derivative to aldehyde, 
and Yamaguchi macrolactonization were subsequently employed to construct the frame-
work of L-783277 (4) (Scheme 23). The fragment 118 was prepared from commercially 
available 2,4,6-trihydroxybenzoic acid 115 in 4 steps with 23% yield. Trihydroxybenzoic 
acid 115 was treated with TFA and TFAA in acetone to afford the corresponding acetonide 
116 on the basis of modified Danishefsky’s method which after two-step protection deliv-
ered 117 and finally Stille coupling reaction to furnish styrene 118 was obtained.  

 
Scheme 23. Synthesis of fragment 118 by Sim et al. [53]. 

D-(R)-glyceraldehyde acetonide 120 was prepared from D-mannitol 119 in two steps 
according to the literature method [63]. The asymmetric Brown allylation of aldehyde 120 
using (−)-Ipc2BOMe yielded the desired allylic alcohol 121 in high diastereoselectivity 
(92:8) (Scheme 24). The deprotection of the acetonide group generated 122 and protection 
of TBDPS and acetonide then produced fragment 123 in 38% yield from glyceraldehyde. 

 
Scheme 24. Synthesis of fragment 123 by Sim et al. [53]. 
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The preparation of the third alkyne fragment 124, commenced with commercially 
available (S)-(−)-propylene oxide 125, which underwent ready conversion into secondary 
alcohol 126 upon treatment with lithium trimethylsilylacetylene (Scheme 25). Protection 
and deprotection gave us alkyne fragment 124 with a 93% yield in 2 steps.  

 

Scheme 25. Synthesis of fragment 124 by Sim et al. [53]. 

Olefin cross metathesis strategy between fragments 118 and 123 using Grubbs 2nd 
generation catalyst furnished the styrene 127 (cis:trans = 3:7) which hydrogenated to get 
128 (Scheme 26). The transesterification of the compound was conducted with NaOMe to 
provide methyl ester 129, which after protection and deprotection generated primary al-
cohol 130 with 17% yield in 5 steps.  

 
Scheme 26. Synthesis of fragment 130 by Sim et al. [53]. 

The primary alcohol 130 was smoothly oxidized to the corresponding aldehyde and 
attacked by lithium acetylide to afford allylic alcohol 131 in 42% yield over two steps 
(Scheme 27). Hydrogenation reaction using Lindlar catalyst to give the corresponding cis-
olefin 132, which after protection and deprotection generate 133 with 86% yield in 3 steps. 
Saponification followed by cyclization under Mukaiyama condition generated 134 in 
moderate yield. Finally, deprotection followed by oxidation and global deprotection fur-
nished natural product L-783277 (4) with 63% yield in 3 steps. 
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Scheme 27. Synthesis of L-783277 (4) by Sim et al. [53]. 

Recently, The Nanda Group reported an asymmetric total synthesis of L-783277 (4) 
through intramolecular base-mediated macrolactonization reaction [64]. The synthesis 
was initiated with D-galactose 136, which after 7 synthetic steps gave 137 in 40% yield and 
further reduction generate 138 in 80% yield (Scheme 28). Their desired sulfone 139 for 
Julia precursor can be obtained from 138 in 2 steps with 85% yield.  

 
Scheme 28. Synthesis of fragment 139 by Nanda et al. [64]. 

The aromatic fragment 140 can be prepared in 4 steps starting from 2,4,6-trihydroxy 
benzoic acid 141 as starting material (Scheme 29).  

 
Scheme 29. Synthesis of fragment 140 by Nanda et al. [64]. 
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Sulfone 139 and aromatic aldehyde 140 was then subjected to JK olefination to furnish 
the ‘E’-olefin 142 in 78% yield which after 3 steps gave aldehyde intermediate 143 with 
73% yield (Scheme 30).  

 
Scheme 30. Synthesis of intermediate 143 by Nanda et al. [64]. 

Alkyne 144 which was obtained through nucleophilic addition reaction of 143 with 
alkyne 145, after 5 steps gave 146 with 45% yield in 5 steps. Deprotection and oxidation 
then furnished natural product L-783277 (4) with 47% yield in 3 steps (Scheme 31). 

 
Scheme 31. Complete synthesis of L-783277 (4) by Nanda et al. [64]. 

A trans-isomer of L-783277 (4) was also isolated but RALs bearing the cis-enone moi-
ety such as hypothemycin (2), LL-Z1640-2 (3), and L-783277 (4) are more potent than the 
trans-enone L-783290 (147) (Figure 7). Banwell’s group reported the first synthesis of L-
783290 (147, the E-counterpart of L-783277 (4), Figure 6) through the exploitation of Heck 
coupling and intramolecular Weinreb ketone synthesis followed by other synthetic ma-
nipulation [65]. 

 
Figure 7. Structure of L-783290 (147). 
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A chemoenzymatic pathway was employed where they used enantiomerically pure 
and commercially available cis-1,2-dihydrocatechol 148 derived from the whole-cell bio-
transformation of chlorobenzene to get Weinreb amide fragment 149 in 7 steps (Scheme 
32).  

 
Scheme 32. Synthesis of fragment 149 by Banwell et al. [65]. 

The reaction of commercially available dimethoxyaniline 150 to a Sandmeyer reac-
tion followed by Vilsmeier–Haack conditions afforded benzaldehyde 152 in 2 steps with 
44% yield (Scheme 33).  

 
Scheme 33. Synthesis of Fragment 152 by Banwell et al. [65]. 

The Heck coupling reaction of aryl iodide 152 and terminal alkene 149 gave 153, 
which after 2 steps produced 154 for a Mitsunobu reaction with 155 to give ester/amide 
156, which was treated with Grignard reagent to get 157. Finally, Grubbs metathesis and 
deprotection furnished target macrolide 147 in 10% yield (Scheme 34). 

 
Scheme 34. Synthesis of L-783290 (147) by Banwell et al. [65]. 
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5′-Deoxy analog (158) of L-783277 (4) was synthesized stereoselectively in 2011 by 
Altmann group [66]. This analog retains almost the full kinase inhibitory potential of nat-
ural L-783277 (4), with low nanomolar IC50 values against the most sensitive kinases, and 
it exhibits essentially the same selectivity profile (within the panel of 39 kinases investi-
gated). In contrast, removal of both the 4′- and the 5′-hydroxyl groups leads to a more 
significant reduction in kinase inhibitory activity. 

Intermediate 160 was prepared from TBS-protected 3-hydroxy propanal 159 in a 
high-yielding four-step sequence (69% overall yield) involving Keck allylation (Scheme 
35). After some synthetic steps, intermediate 160 was converted to 161, which was coupled 
with aromatic fragment 162 by Suzuki coupling to get 163. Mitsunobu cyclization, protec-
tion, deprotection steps were used to furnished 5′-deoxy analog (158) of L-783277 (4) in 4 
steps.  

 
Scheme 35. Synthesis of 5′-deoxy analogue (158) by Altmann et al. [66]. 

Our group synthesized a saturated analog (99) of L-783277 (4) [52]. Our synthetic 
route comprises three key steps involving a Suzuki cross-coupling reaction between an 
aromatic triflate and olefin, the addition of an acetylene to an aldehyde, and Mitsunobu 
macrolactonization (Scheme 36). Triflate 164 and olefin 165, prepared from commercially 
available 2,4,6-trihydroxybenzoic acid and 1,2,5,6-bis-O-(1-methylethylidene)-D-manni-
tol, respectively (structures not shown), would be joined by the use of a Suzuki cross-
coupling reaction to produce the key intermediate 166.  

 
Scheme 36. Synthesis of key intermediate 166 by Sim et al. [52]. 

The propargylic alcohol 167 was prepared from 166 using the same sequence of re-
actions described in our previous report [53]. Lindlar hydrogenation, deprotection, and 
saponification generated seco acid 168, which was cyclized under Mitsunobu condition to 
deliver a diastereomeric mixture of 169 (Scheme 37). 
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Scheme 37. Synthesis of intermediates 169A and 169B by Sim et al. [52]. 

Oxidation of a mixture 169 gave pure keto derivative which after final deprotection 
furnished target lactone 99 (Scheme 38). It is noteworthy to mention that advanced inter-
mediates 169 and 170 in the route for synthesis of 99 were also used for preparation of the 
trihydroxy analogs of L-783277 (4), 171, 172, and external olefin containing analog 173 
(Scheme 38). 

 
Scheme 38. Synthesis of analogs (99, 172–173) from intermediates 169A and 169B by Sim et al. [52]. 

Next, we synthesized phenyl ring incorporated derivatives of L-783277 (4) in expec-
tation that these derivatives would improve kinome-wide selectivity of the parent com-
pound 4 [54]. The key reactions employed in the synthetic sequences are Suzuki coupling, 
Sharpless asymmetric dihydroxylation, alkyne addition to an aldehyde, Lindlar reduc-
tion, and Mitsunobu cyclization.  

Our route began with Suzuki coupling between triflate 174 and boronic acid 175 to 
produce biphenyl derivative 176 firstly (Scheme 39). Oxidation followed by Wittig ole-
fination formed trans form of 177. Sharpless asymmetric dihydroxylation followed by pro-
tection and trans-esterification produced 178 in 4 steps which after 4 synthetic steps pro-
duced 179. PMB-ether protection followed by TBS-ether deprotection then generated 180 
in 2 steps, the important cyclization precursor.  
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Scheme 39. Synthesis of the cyclization precursor 180 by Sim et al. [54]. 

Subsequently, 180 underwent saponification followed by cyclization under 
Mitsunobu condition and deprotection to get 181 in 3 synthetic steps with good yield 
(Scheme 40). Oxidation of 181 formed the corresponding ketones 182 as a single stereoi-
somer, which was finally deprotected to form target 100. Other derivatives also we syn-
thesized by using a similar synthetic strategy to expand the scope of the SAR study. 

 
Scheme 40. Synthesis of rigidified analogue of L-783277 (100) by Sim et al. [54]. 

2.2. Sesquiterpene Lactones 
Sesquiterpene lactones (SLs) are a sub-class of sesquiterpenoids, which are natural 

products synthesized in several organs of plants such as leaves, shoots, and roots [67,68]. 
In addition, SLs comprise a large and diverse group of secondary metabolites isolated 
from diverse plant families [69,70] with the greatest number occurring in members of 
Asteraceae [69–71]. Extracts of SLs, like other natural products, have been broadly used 
in folk medical practices for fever, headache, rheumatoid arthritis, and menstrual irregu-
larities [72]. SLs are usually characterized by the presence of α-methylene-γ-lactone group 
(αMγL), which mainly contributes to the underlying biological activity of SLs through 
irreversibly forming a Michael adduct with nucleophilic amino acid residues in proteins, 
causing alterations in protein activity [73]. This is regarded as the primary mechanism of 
cytotoxicity induced by SLs (Figure 8). 
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Figure 8. Structures of representative sesquiterpene lactones. 

2.2.1. Biological Activities of Parthenolide (183) 
Parthenolide (183) is a naturally occurring sesquiterpene lactone derived from 

Tanacetum parthenium, also known as feverfew [74]. It is regarded as a recognized can-
didate for drug development due to notable anti-cancer and anti-inflammatory proper-
ties. Parthenolide (183) contains an α-methylene-γ-butyrolactone group and an epoxide 
group, which participate in interactions with protein targets to exert multiple therapeutic 
effects [75]. To date, parthenolide (183) has been reported to vitiate cancer pathogenicity 
in various types of cancer including myeloma, colorectal, liver prostate, pancreatic, thy-
roid, and breast cancers [76–79]. Especially, parthenolide (183) showed effects on suppres-
sion of MDA-MB-231 breast cancer cells and reduction in tumor size in a mouse xenograft 
model, when it was used in combination with docetaxel [80]. Interested by cytotoxicitiy 
of parthenolide (183) across a wide range of human cancers and its high tolerability in 
humans [81], several researches focused on the identification of molecular targets of par-
thenolide (8). Kwok et al., in 2001, reported that one of the primary targets that induces 
the anti-cancer activity is IκB kinase β (IKK-β) wherein both IKK-β and nuclear factor κB 
(NF-κB) signaling are impaired due to modified cysteine 179 [82]. In addition, more find-
ings indicate that parthenolide affects additional cell signaling pathways such as induc-
tion of oxidative stress and apoptosis, focal adhesion kinase 1 (FAK1) signaling, mitogen-
activated protein kinase signaling, and mitochondrial function [82–86]. Recently, Berdan 
et al. reported that parthenolide (183) shows inhibitory activity on FAK1 signaling path-
way by targeting cysteine 427 of FAK1 [87]. 

However, parthenolide (183) is quite lipophilic in nature and, accordingly, poor bio-
availability caused by low solubility has risen as a critical issue. Therefore, a dimethyla-
mino group containing derivative of parthenolide, DMAPT (190) (Figure 9), was devel-
oped to overcome poor solubility of parthenolide (183) without losing the original anti-
tumor activity [88]. The hydrophilic parthenolide analog, (190), did not only increase 
pharmacokinetic properties compared to the parent compound, but it was also able to 
selectively eliminate acute myeloid leukemia (AML) stem cells, which led to the initiation 
of a clinical trial for its use in hematologic cancer [89]. 

 
Figure 9. Structure of dimethylamino parthenolide, DMAPT (190). 
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2.2.2. Chemistry of Parthenolide (183) 
The first total synthesis of parthenolide (183) and its analogs was reported by Long 

and co-workers in 2014 [90]. In their initial retro-synthetic analysis of parthenolide (183) 
(Scheme 41), it was anticipated that parthenolide (183) could be obtained by the known 
compound 191 through three key intermediates. The crucial reaction step conceived by 
Long et al. for the target molecule included intramolecular Barbier-type cyclization of B 
to form A [91], which then undergoes lactonization to generate parthenolide (183). 

 
Scheme 41. Retrosynthesis of parthenolide (183) according to Long et al. [90]. 

The primary attempt of the group to synthesize parthenolide (183) is summarized in 
Scheme 42. The synthesis was initiated with known compound 191, which was obtained 
from farnesol in three steps [92]. 191 was treated with methyl acrylate and 1,4-diazabicy-
clo[2.2.2]octane (DABCO) to produce substituted acrylate 192. This was followed by chlo-
rination with simultaneous double bond isomerization to provide only (Z)-193 and 
TBDPS was deprotected by using HF-pyridine. It should be noted that TDBPDS deprotec-
tion of 193 did not proceed under standard TBAF or TFA conditions [90]. The primary 
alcohol of 193 underwent Sharpless asymmetric oxidation (SAE) reaction to yield com-
pound 194, which was subsequently oxidized to give corresponding aldehyde 195. Au-
thors have investigated the cyclization of 195 by means of reductive Barbier-type coupling 
conditions to form the desired 10-membered ring. Under CrCl2 in degassed DMF, 
amongst other conditions, such as Zn0, In0, and SmI2, only gave out the cyclized product 
196. Unfortunately, the lactone 196 was revealed to be the C-7 epimer of parthenolide (183) 
after an analysis of X-ray co-crystal data [90]. 

 
Scheme 42. Synthesis of intermediate 196 by Long et al. [90]. Reagents and conditions: (a) methyl 
acrylate, DABCO, RT, 77%; (b) CCl4, n-Bu3P, 83%; (c) HF-pyridine, THF, 91%; (d) 4 Å MS, Ti(OiPr)4 
(0.1 equiv), (–)-DIPT (0.12 equiv), TBHP (1.5 equiv), CH2Cl2, −40 °C to −18 °C, 93%, ee = 92%; (e) 
Dess–Martin periodinane, NaHCO3, CH2Cl2, 92%; (f) CrCl2, DMF; (g) DBU, CH2Cl2, 41% over 2 steps. 
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Long et al. have designed and synthesized cyclization precursors 197a and 197b via 
8 steps, based on their speculation that the configuration of the two new stereogenic cen-
ters might be highly affected by the geometric configuration of 1,10-double bond (Scheme 
43) [90]. From nerol, compound 198 was obtained in 5 steps [93,94]. After protecting alco-
hol of 198 with TBDPS, C10-C11 double bond was cleaved to afford aldehyde 199, which 
underwent Baylis–Hillman reaction, then chlorination to produce 200a and 200b in 3:1 
ratio. Lastly, 200a and 200b were used to obtain the cyclization precursors 197a and 197b. 
A reaction condition of an umpolung allylation optimized by Baran et al. was utilized in 
the transformation of 197a to 6,7-cis 201 and the desired 6,7-trans 202 in a ratio of 2.8:1 in 
16% yield [95]. Surprisingly, the ratio of 6,7-trans 202 reaction yield was much improved 
when the relatively low reactive allylic chloride was converted into allylic iodide prior to 
Barbier reaction using CrCl2 in THF. This two-steps procedure produced an increased ra-
tio of 6,7-trans 202 (1:1) and a moderate yield (52%) [90]. 

 
Scheme 43. Synthesis of trans-intermediate 202 by Long et al. Reagents and conditions: (a) TBDPSCl, 
imidazole; (b) NBS, THF/H2O, then K2CO3, MeOH; (c) H5IO6, NaIO4, 63% over 3 steps; (d) acryloni-
trile, DABCO, RT; (e) CCl4, n-Bu3P, 73% over 2 steps, 27a/b = 3:1; (f) HF-Pyridine, THF; (g) 4 Å MS, 
Ti(OiPr)4 (0.1 equiv), (–)-DIPT (0.12 equiv), TBHP (1.5 equiv), CH2Cl2, −40 °C to −18 °C; (h) Dess–
Martin periodinane, NaHCO3, CH2Cl2, for 28a 3 steps, 81%, ee = 97%, for 28b 3 steps, 76%, ee = 95%; 
(i) NaI, acetone (b) CrCl2, THF, rt [90]. 

Scheme 44 provided the target compound parthenolide (183). Hydrolysis of 201 and 
202 by using basic hydrogen peroxide produced compounds 203, 204, and 205 (Scheme 
44). Lactone 206 was obtained by refluxing compound 203 in benzene with DBU. Moreo-
ver, another side product 204 could be converted to the desired intermediate 205 upon 
stirring with DBU in CH2Cl2. The target molecule 183 was successfully obtained upon ir-
radiating 205 with UV light (254 nM) in 58% conversion and 77% yield [90]. 

 
Scheme 44. Synthesis parthenolide (183) and its analog (206). Reagents and conditions: (a) K2CO3, 
H2O2, DMSO/THF, 86%; (b) DBU, CH2Cl2, rt, 92%; (c) DBU, benzene, reflux, 91%; (d) hv (254 nm), 
benzene, conversion: 58%, yield: 77% based on recovered starting material [90]. 



Int. J. Mol. Sci. 2021, 22, 1052 28 of 69 
 

 

Overall, Long et al. have demonstrated the first effective synthetic route, which can 
be used to synthesize parthenolide (183) and its analogs. Moreover, insights acquired from 
this investigation on synthetic routes of parthenolide (183) may provide general strategies 
to synthesize trans-germacronolide analogs with high medical relevance. 

In an effort to overcome poor water solubility of parthenolide (183) without compro-
mising its anti-leukemic activity, Neelakantan and coworkers carried out the synthesis 
and structure-activity relationship studies of a series of aminoparthenolide analogs deriv-
ied from various aliphatic primary and secondary amines [88]. It is of significance that R-
configuration at the newly formed C-11 chiral center was conserved after the Michael-
type addition of parthenolide (183) with aliphatic amines (Scheme 45). Authors have con-
cluded that the protonation of the enolate formed during the reaction, which occurs from 
the exo face of the molecule, causes the conservation of R-conformation at C-11 in the 
product. During the course of investigation, dimethylamino analog (190) was identified 
as the representative compound exhibiting significant anti-leukemic activity in the AML 
assay [88]. However, aminoparthenolide analogs showed low metabolic and chemical sta-
bility. Especially, it was prone to the cytochrome P450 (CYP450)-catalyzed oxidation, 
which significantly decreases the bioactivity of the compound [96]. Therefore, additional 
research to reduce the effect of CYP450-catalyzed oxidation was necessitated. 

 
Scheme 45. Synthesis of dimethylamino-parthenolide analog (190). Reagents and conditions: (a) 
dimethylamine, MeOH, rt; (b) Fumaric acid, diethyl ether. [88]. 

In addition, Yang et al. reported the asymmetric total synthesis of germacrane ring 
207, inspired by the biosynthetic route of sesquiterpene lactones (Figure 10) [97]. A more 
detailed description on the synthetic route used to afford the germacrane ring 207 will be 
provided in the chemistry of costunolide (186) section (see Section 2.2.8). The key inter-
mediate 207 can be served as a great starting point to prepare the natural lactones par-
thenlide (183) and costunolide (186). 

 
Figure 10. Preparation of parthenolide (183) and costunolide (186) from 207 [97]. 

Moreover, trifluoromethylated germacrane skeleton 208 can be used to synthesize 
analogs of the aforementioned lactones, such as trifluoromethylated analogs (209 and 210) 
(Scheme 46). Based on literature findings [98–100], authors expected that replacing 14-
methyl group with an electron-withdrawing group such as a trifluoromethyl moiety 
would protect against oxidation by CYP450 oxidases. Both analogues showed a compara-
ble anti-cancer activity to their natural product counterparts, parthenolide (183) and 
costunolide (186), respectively. Moreover, 210 was less acid-labile than parthenolide (183) 
and exhibited metabolic stability equivalent to that of parthenolide (183) [97]. 
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Scheme 46. Synthesis of trifluoromethylated analogs (209 and 210) from 208. Reagents and condi-
tions: (a) MnO2, CH2Cl2, r.t., 8 h, 25% over 3 steps; (b) m-CPBA, CH2Cl2, 25 °C, 3 h, 91%. [97]. 

2.2.3. Biological Activities of Alantolactone (184) 
Alantolactone (184) is a potent anticancer compound for various tumor cells, which 

is mainly obtained from the medical herb Inula helenium [101–103]. However, the under-
lying mechanism of anti-cancer activity of alantolactone (184) is still not clearly deter-
mined. Liu et al. investigated antiangiogenic effect alantolactone and its molecular mech-
anism. Alantolactone (184) exhibits an IC50 value of 40 μM against MDA-MB-231 cells and 
14.2 μM against human umbilical vein endothelial cells (HUVEC) cells. This indicates se-
lective nature of alantollactone (184) on active endothelial cells. VEGFR2 phosphorylation 
plays a key role in tumor angiogenesis and authors demonstrated alantolactone (184) sup-
presses VEGFR2 phosphorylation and its downstream signals, including PLCγ1, FAK, 
Src, and AKT [104]. Hence, alantolactone (184) can work as a VEGFR2 inhibitor and ex-
hibit antiangiogenic activity. Xing Kang et al. suggested in their study of alantolactone 
(184) on HepG2 (description) that ROS-AKT pathway might participate in apoptosis in-
duced by alantolactone (184) [105]. In addition, alantolactone (184) can penetrate the blood 
brain barrier (BBB) and act as a therapeutic agent for CNS neoplasm. Alantolactone (184) 
induces apoptosis in glioblastoma cells by inhibiting NFkB/COX-2 signaling pathway. Ex-
pression of COX-2 in glioblastoma cells was suppressed mainly due to inhibition of IKKβ 
by binding of alantolactone (184) to the ATP-site [106]. 

2.2.4. Chemistry of Alantolactone (184) 
The stereoselective total synthesis of racemic alantolactone (184) was reported in 1965 

by Marshall et al. [107]. To the best of our knowledge, there were no other reports illus-
trating the enhanced synthetic approaches to alantolactone (184), but a number of groups 
have reported semi-synthetic derivatives of the natural product and their biological eval-
uation. Probably, this is because there are abundant available sources of alantolactone in 
nature, including Inula helenium L., Inula japonica, Aucklandia lappa, Inula racemosa, and so 
on, where it can be isolated at ease by means of different chromatographic techniques 
[108–111]. 

Three key reaction steps categorized by Marshall and coworkers are as follows: first, 
the construction of the carboxylic scaffold by cationic olefin cyclization (212 to 213), sec-
ondly, modification of the carbon framework to afford 222, and lastly, formation of α-
methylene-γ-butyrolactone (222 to 184). The actual synthesis of Alantolactone (184) is 
summarized in Scheme 47, commencing with unsaturated ketone 211 afforded from 4-
bromobutene in two steps [107]. Ketone 211 then was reacted with ethereal methylithium 
to give alcohol 212, which was cyclized to generate formate 213 according to a procedure 
previously developed by Johnson and co-workers for analogous compounds [112]. Alco-
hol 214 produced from saponification of the resulting formate 213 was oxidized with chro-
mic acid reagent giving octalone 215 [113]. Upon treatment of ethyl bromacetate to 215 via 
Stork enamine procedure and saponification of the crude mixture, keto acid 216 was af-
forded in 53% overall yield [107]. It should be noted that steric effects around C-9 rendered 
the alkylation difficult and thus formed Δ7-isomer more predominantly than Δ7-isomer, 
which eventually led to the formation of C-alkylation product 216 in high yield [114]. Keto 
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acid 216 underwent esterification to furnish, after reduction with methanolic potassium 
borohydride, unsaturated lactone 219. Photo-oxygenation of 219 as stated in the proce-
dure by Nickon and Bagli gave hydroperoxide 220 [115], which was directly reduced to 
alcohol 221 due to stability issue [107]. The key intermediate 222 was obtained by unsat-
uration of the alcohol 221 upon treatment with thionyl chloride in pyridine according to 
the procedure described by Benesova et al. [116]. Lactone 222 was converted to lactone 
ester 223 via carbomethoxylation with sodium hydride in dimethyl carbonate. 223 was 
then reduced without further purification to yield diol 224. Finally, diol 224 was subjected 
to oxidation with manganese dioxide in benzene to afford racemic alantolactone (184). 
The stereoselective total synthesis of racemic alantolactone (184) elucidated by Marshall 
and co-workers provided an approach to related sesquiterpene lactones [107]. 

 
Scheme 47. Total synthesis of alantolactone (184) according to Marshall et al. [107]. 

Kaur and co-workers have recently reported a number of semi-synthetic derivatives 
(225–228) of the natural product and their biological evaluation [117]. Alantolactone (184), 
upon reaction with diazomethane, afforded pyrazoline derivative 228 as a major product 
(Scheme 48). Alantolactone (184) underwent epoxidation reaction with trifluoroacetic acid 
in dichloromethane as a solvent to generate compound 229 [118]. Moreover, alantolactone 
(184), like other α-methylene-γ-lactone moiety containing sesquiterpene lactones, was 
readily reacted with various amines to yield amine adduct 230 in a stereoselective manner 
[119]. Shul’ts et al. investigated the pharmacological properties caused by an arylidene 
fragment in the lactone ring [120]. Thus, aromatic substituents at position C-13 was intro-
duced via Heck reaction with aryl iodides. Compound 231 having (E)-configuration was 
afforded by arylation with iodoarenes in the presence of Pd(OAc)2/(2-MeC6H4)3 and tri-
methylamine in DMF. The configuration of the C(11)=C(13) double bond of 231 was de-
termined by analysis of 13C NMR spectrum. 
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Scheme 48. Synthetic transformations of alantolatone (184). Reagents and conditions: (a) CHBr3, 
50% aq. KOH, TEBAC, 5 h; (b) NaBH4, MeOH, 25 min; (c) Mg, dry MeOH, 3 h; (d) TEA, diazome-
thane, overnight; (e) CF3CO3H, Na2CO3, DCM, 0 °C; (f); (g) Pd(OAc)2/(2-MeC6H4)3, trimethylamine, 
DMF [117,119,120]. 

2.2.5. Biological Activities of Deoxyelephantopin (185) 
Deoxyelephantophin (DET) (185) is the major sesquiterpene lactone component pre-

sent in extracts of medicinal herb Elephantopus scaber, which has long been used as a rem-
edy for various types of diseases such as hepatitis, arthritis, asthma, and cancer [121,122]. 
Recent studies showed that DET exhibits a broad spectrum of antitumor activities includ-
ing nasopharyngeal [123], cervical [124], colorectal [125], lung [126], skin [127], and par-
ticularly in breast cancer [128]. Characteristic structural feature of DET is a functionalized 
germacranolide skeleton, which is a 10-membered ring with a trans-fused α-methylene-
γ-lactone. It is widely accepted that an α, β-unsaturated ketones, and an α-methylene-γ-
lactone group of this natural product attribute to a variety of biological effects by acting 
as a Michael acceptor for nucleophilic amino residues like a cysteine [129]. 

Although inhibitory activities of DET (185) on NK-κB pathways and partial agonistic 
inhibition of PPARγ were previously described [130,131], covalent targets of DET (185) 
were not clearly assessed. Lagoutte et al. sought to find out direct cellular targets of DET 
(185) with the use of a proteome-wide identification technique. During the investigation, 
they were able to identify several cellular targets of DET (185) (RBP4, GSTA2, SLC26A3, 
LIPA, and ANXA1) and reported DET (185) as the first example of a small molecule that 
modulates a pharmacologically important nuclear receptor, PPARγ [132,133], activity by 
engaging a zinc finger through Michael addition [134]. 

In addition, Nakagawa-Goto et al. reported the design and synthesis of deoxy-
elephantophin derivatives (DETDs) and conducted a comprehensive structural-activity 
relationship study of DETDs on triple-negative breast cancer (TNBC) cell lines. TNBC ac-
counts for around 15% of breast cancers and notorious for having a poor prognosis 
[135,136]. TNBC, as its name implies, lacks conventional molecular targets usually found 
in breast cancers namely: estrogen receptor (ER), progesterone receptor (PR), and human 
epidermal growth receptor2 (HER2). This makes effective treatment for TNBC extremely 
challenging. Among all derivatives synthesized, DETD-35 (232) containing a naphthyl 
group attached to the ketone by a methylene linker showed the most potent activity and 
no toxicity towards normal cells in vitro (GI50 of DETD-35 (232) against MDA-MB-231, a 
TNBC cell line = 3.5 μM, Figure 11). Moreover, the effects of DET-35 (232) on inhibiting 
cell migration, invasion, and motility of MDA-MB-231 cells were shown to be better than 
that of the parental compound DET (185). Lastly, a combination of DETD-35 (232) with a 
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cytotoxic drug, paclitaxel, showed synergistic effects on MDA-MB-231 cells, suggesting 
that DETD-35 (232) could be further developed as a potential compound to complement 
chemotherapeutic drugs used for TNBC [137]. 

Besides, in another study carried out by the group, it was demonstrated that DETD-
35 (232) also shows synergism with other BRAFV600E inhibitors, vemurafenib (PLX4032), to 
overcome acquired vemurafenib resistant BRAFV600E mutant melanoma in a mouse model 
[127]. These findings further reinforce the significance of DETD-35 (232) as a novel chem-
ical entity for anti-cancer drug discovery campaign. 

 
Figure 11. Structure of DETD-35 (232). 

2.2.6. Chemistry of Deoxyelephantopin (185) 
Deoxyelephantopin has received much interest because of its impressive in vitro and 

in vivo activities. However, total synthesis of deoxyelephantopin (185) has not been re-
ported up-to-date, probably for the same reason as in the case of alantolactone (184). 
Lagoutte et al. profoundly explored the synthesis in regard to deoxyelephantopin (185) as 
part of their endeavor to develop synthetic methodologies to provide analogs of the nat-
ural compound, including alkyne tagged probes to be used in target identification [134]. 
According to the retrosynthetic analysis provided by the group (Figure 12), deoxy-
elephantopin (185) and its analogs were envisioned to be obtained via Barbier-type allyla-
tion of fragment 234 and bromolactone 235, followed by a late-stage ring-closing metath-
esis (RCM) on substrate 233. Barbier-type allylation, which serves as the key reaction step 
in the synthetic route, enables the diastereoselective coupling of the intermediate 235 with 
diverse aldehydes [19]. 

 
Figure 12. Retrosynthetic analysis of Deoxyelephantopin (185) [19]. 

The synthesis commenced with the esterification of alcohol 236 providing the acry-
late 237, which is subsequently converted to allylic alcohol 238 under Morita-Baylis-Hill-
man conditions (Scheme 49). RCM of triene 238 mediated by Grubbs II as catalyst gener-
ated endo-butenolide 239, which is then converted to key intermediate 235 under Appel 
conditions. It should be noted that the allylic alcohol of 238 needs to be conserved to ac-
complish RCM at an appreciable rate [19]. The second fragments (234, 242) required for 
Barbier-type allylation were prepared in 5 steps from 240 and 241, respectively. 
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Scheme 49. (a) Synthesis of bromolactone 235; (b) synthesis of fragment 234 [19]. 

As expected, the zinc-mediated Barbier-type allylation of fragments 234 and 235 pro-
vided secondary alcohol 243 in moderate yield [138]. However, the resulting alcohol 243 
did not undergo RCM to produce the cyclized product (Scheme 50). Authors assumed 
that presence of free alcohol might interfere with the intermediate ruthenium carbene, 
hindering formation of the desired RCM product 244. Therefore, alcohol 243 was esteri-
fied to give methacrylate 233, which, however, also did not provide the product 246 upon 
submission to various RCM conditions [19]. RCM was not proceeded with the silyated 
compound 245 as well, suggesting the presence of free alcohol might not be responsible 
for this failure. 

 
Scheme 50. RCM attempts by Lagoutte et al. [19]. 
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Formation of a medium-sized tri-substituted olefin under RCM conditions is known 
to be particularly difficult [139,140]. Authors attempted to investigate whether the failure 
resulted from the presence of the methyl group or the ring tension. For this purpose, RCM 
precursor 248, which lacks a methyl group, was used in the reaction (Scheme 51). Upon 
treatment with Grubbs I in refluxing dichloromethane, 248 was successfully converted to 
the ring closed product as a single diastereomer, nordeoxyelephantophin 249. Lastly, 249 
was treated with meta-chloroperbenzoic acid (mCPBA) to generate norelephantopin 250. 
Further investigation to cyclize the carbon skeleton of deoxyelephantopin is well elabo-
rated in the reference [19]. 

 
Scheme 51. Synthesis of nordeoxyelephantophin (249) and norelephantophin (250) by Lagoutte et 
al. [19]. 

In addition, Lagoutte et al. synthesized deoxyelephantopin-related probes 254–256 
and simplified analogs 258 and 260, which were utilized to indirectly demonstrate inter-
action between deoxyelephantopin and PPARγ [134]. Although synthetic access to deox-
yelephantopin (185) could not be elucidated despite their efforts, preparation of deoxy-
elephantopin-related analogs and probes, by means of a short and divergent synthetic 
design, was comprehensively described during the journey towards deoxylelephantopin 
(Scheme 52). 

 
Scheme 52. Synthesis of DET-related probes (254–256) and analogs (258, 260) [134]. 

Nakagawa-Goto et al. reported a number of semi-synthetic derivatives of the natural 
product and their biological assessment [137]. The synthesis commenced with hydrolysis 
of deoxyelephantopin (185) with NaOH followed by acidic treatment (Scheme 53). Ac-
cording to a previous report on cnicin [141], the group expected C-8 alcohol 263 to be 
generated. However, C-7-C-8 lactonization of carboxylic acid 261 solely provided less ste-
rically hindered C-6 alcohol 262. 
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Scheme 53. Synthesis of DET-derivatives by Nakagawa-Goto et al. [137]. 

Amongst synthesized fifty-eight ester analogs of DET (185), an analog with naphtha-
lene acetate, DETD-35 (232), was identified as the most potent compound possessing anti-
TNBC effects in vitro and in lung metastasis xenograft mouse model (Scheme 54). More-
over, DETD-35 inhibited cell migration, invasion, and motility of MDA-231 cells in a con-
centration-dependent manner, suggesting that DETD-35 (232) might be a potential candi-
date as a complementary or sensitizing agent to be used in TNBC chemotherapy [137]. 

 
Scheme 54. Synthesis of DETD-35 (232). Reagents and conditions: (a) RCOOH, EDCI, DMAP, 
CH2Cl2, rt [137]. 

2.2.7. Biological Activities of Costunolide (186) 
The sesquiterpene lactone, costunolide (186), which belongs to a member of the ger-

macranolide subclass, was reported to be first isolated from roots of Saussrea lappa Clarke, 
also known as costus [142]. Costunolide (186) can be found in extracts of a number of 
medicinal plants including Vladimiria souliei Ling, Alucklandia lappa Decne, and Laurus no-
bilis L. as well [143]. Furthermore, costunolide (186) is served as a common biosynthetic 
precursor to three main types of sesquiterpene lactones such as germacranolide, eudes-
manolide, and guianolide [144,145]. 

Costunolide (186), like many other naturally occurring lactones, exhibits a variety of 
biological effects, including anti-cancer, anti-inflammation, anti-oxidant, anti-ulcer, and 
so on [146–149]. Anti-cancer effects of costunolide (186) have been extensively explored in 
recent researches [150–152]. Costunolide (186) is reported to modulate cyclin-dependent 
kinases (CDKs) and block G2/M phase of the cell cycle to exert anti-proliferative effects 
on various tumor cells [153,154]. To date, researches indicate that costunolide (186) in-
duces apoptosis in three different apoptotic pathways, which eventually influences one 
another: (a) Mitochondria-mediated (intrinsic) pathway [153–155], (b) Death receptor-me-
diated pathway [156], and (c) Endoplasmic reticulum stress pathway [157,158]. 

According to studies conducted by Jeong et al., costunolide (186) reduced vascular 
endothelial growth factor (VEGF)-induced proliferation [159]. VEGF is an angiogenic mol-
ecule involved in formation of new blood vessels, which is particularly important for sur-
vival of cancer cells. Costunolide (186) showed inhibitory effects on VEGF-stimulated ne-
ovascularization in mouse corneal mouse pocket analysis [159]. Moreover, it was reported 
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in another study that costunolide (186) was able to reduce VEGF receptor1 (VEGFR1) and 
VEGFR2 expression at both mRNA and protein levels, suggesting the potential anti-angi-
ogenic activities of costunolide (186) [160]. 

Migration of cancer cells into surrounding tissues and distant sites in the body to 
develop tumors in new locations is called metastasis, which is the leading reason for the 
mortality of many patients with cancer [161]. Lymphatic metastasis, of other various 
forms of cancer metastasis, is known to be an important determining factor in cancer stag-
ing and therapy. Jeong et al. suggested, in part of their investigation, that costunolide (186) 
might provide clinical benefits as an anti-lymphoproliferative agent during tumor metas-
tasis, based on the observed inhibitory activities of the compound on proliferation and 
capillary formation of temperature-sensitive mouse lymphoid endothelial (TL-LE) cells 
[162]. 

In an effort to improve cytotoxic effects of costunolide (186) on cancer cells, Sri-
vastava, et al. synthesized a number of 13-amino costunolide derivatives by means of Mi-
chael-type addition between costunolide (186) and various amines [163]. Among the de-
rivatives, 3-methyl piperidine derivative (264) possessed 2-fold better cytotoxicity (GI50 = 
3.3 μM) than that of costunolide (186) (GI50 = 7.8 μM) on SW-620 colon cancer cells (Figure 
13). Two derivatives of hydroxyl piperidine series (structures not shown) also showed 
also increased cytotoxicity against MIAPaCa2, K-562, and PA-1 cell lines. Moreover, it is 
noteworthy that the replacement at position-13 with an acyclic N,N-dimethyl group (265) 
increased cytotoxicity in all cancer cell lines except for A-549 and SW-620. Authors sug-
gested that the amino substituents at position-13 of cosutnolide (186) might play an im-
portant role in eliciting cytotoxicity [163]. 

 
Figure 13. Structures of Costunolide Derivatives. 

More recent study on the structure and activity relationship of costunolide (186) was 
conducted by Vadaparthi, et al. [164]. The group was able to synthesize a series of analogs 
by utilizing Heck reaction conditions with various aryl iodides and cytotoxic activities of 
the compounds were examined against a panel of human cancer cell lines, including cer-
vical cancer (HeLa), breast cancer (MCF-7), lung cancer (A-549), melanoma (B-16), and 
prostate cancer (DU-145) cell lines in vitro. Amongst derivatives, compound 266c and 266j 
displayed potent activity against Hela, DU-145, and MCF-7 cell lines [164]. Further inves-
tigation to establish concrete effects brought by incorporating aromatic and hetero-aro-
matic rings on costunolide (186) scaffold would be indispensable. 

Taken all together, costunolide (186) is a potential anti-cancer agent with cytotoxic, 
anti-angiogenic, and anti-lymphoproliferative activities. Therefore, structural modifica-
tions of costunolide (186) might provide more opportunities in developing new natural 
lactone-based cancer therapeutics. 

  



Int. J. Mol. Sci. 2021, 22, 1052 37 of 69 
 

 

2.2.8. Chemistry of Costunolide (186) 
The first total synthesis of (+)-costunolide (186) via the Cope rearrangement of syn-

thetic dehydrosaussurea lactone (267) was reported by Grieco et al. in 1976 (Scheme 55) 
[165]. 

 
Scheme 55. Synthesis of costunolide (186) from dehydrosaussurea (267). Reagents and conditions: 
(a) 210 °C [165]. 

The synthesis began with the keto-lactone 269, which was obtained from santonin 
268 in two steps (Scheme 56). Keto-lactone 269 was treated with tosylhydrazine to provide 
the corresponding hydrazone, which was subsequently treated with lithium diisopropyl-
amide to afford olefin 270. The resulting olefin underwent ozonolysis followed by treat-
ment with sodium borohydride to yield diol 271. Authors expected bis-o-nitrophenyl sele-
nide 272 would be directly obtained from the diol 271, which would, after oxidation, result 
in the formation of saussurea lactone 273. However, this reaction with 271 only provided 
a side product illustrated in ref. [165]. 

 
Scheme 56. Initial synthetic route for (+)-costunolide (186) According to Grieco and Nishizawa. Re-
agents and conditions: a, TsNHNH2, PhH, BF3·Et2O; b, LDA, THF, −78 → 0 °C, 65%; c, O3, CH2Cl2-
MeOH (1:1), −78 °C; d, NaBH3, −78 → 25 °C, 91%; e, NO2C6H4SeCN, PBu3, THF [165]. 

Gratifyingly, diol 271, upon treatment with o-nitrophenyl selenocyanate, tribu-
tylphosphine in tetrahydrofuran-pyridine (1:1), provided mono-selenide 274 exclusively 
(Scheme 57). However, no bis-selenide could be isolated, in spite of their attempt to con-
vert 274 to bis-selenide 272 by previously described reaction condition. In two subsequent 
reactions, saussurea lactone 275 was afforded from 274. Selenylation of the lactone 275 
followed by treatment with 30% hydrogen peroxide in tetrahydrofuran provided key in-
termediate dehydrosaussurea lactone 277, which, upon thermolysis, provided a 20% yield 
of costunolide (186) [165]. 
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Scheme 57. Revised synthetic route for (+)-costunolide according to Grieco and Nishizawa. Rea-
gents and Conditions: a, NO2C6H4SeCN, Bu3P, THF-Py (1:1); b, LDA, (PhSe)2, HMPA, THF, −78 °C 
to 20 °C; c, 30% H2O2 in THF; d, 210 °C [165]. 

The second synthesis of costunolide (186) was reported by Kitagawa et al. [166]. The 
synthesis also commenced with a readily available terpenoid, E,E-farnesol (278), which 
was converted to ω-bromo-farnesal (279) in three steps (Scheme 58). The key reaction step 
involved in the synthesis is the intramolecular C-C bond formation of ω-bromo-farnesal 
(279) to generate a racemic germacrane-skeletone (280), which was mediated by a low 
valent chromium reagent. Dihydrocostunolide (281) obtained in 2 steps from germacrane-
skeletone (280), was then treated with lithium diisopropylamide (LDA), diphenyl sele-
nide, and hydrogen peroxide to afford costunolide (186) as a racemic mixture. 

 
Scheme 58. Synthesis of costunolide (186) according to Kitagawa et al. Reagents and conditions: (a). 
CrCl3-LiAlH4 (2:1), DMF, 42%; (b). (i). TBDMSCl, (ii). 9-BBN, (iii). H2O2/−OH, 72%; (b). (i). LDA, (ii). 
(PhSe)2, (iii). H2O2, 49% [166]. 

More recently, the highly stereo-controlled total synthesis of costunolide (186) by uti-
lizing a synthetic germacrane skeletone has been reported [97]. Yang et al., inspired by the 
biosynthetic route of sesquiterpene lactones, utilized the 6,7-trans-germacrane ring system 
(207) as the key intermediate [167]. An intramolecular α-alkylation was employed as the 
crucial step involved in the synthesis of 207. The synthesis began with known compound 
282, which underwent a Horner–Wadsworth–Emmons (HWE) reaction with diethylpho-
phonoacetic acid to generate the sulfonate 283 in 58% yield over 2 steps (Scheme 59). Sub-
sequently, another fragment, aldehyde 285, was prepared by oxidation of the alcohol 284 
in 88% yield. 
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Scheme 59. Synthesis of fragments 283 and 285 by Yang et al. [97]. 

Since the aldol reaction between 283 and 285 unfortunately resulted in poor regiose-
lectivity, with expected 286a obtained as a minor product, an alternative approach was 
necessitated (Scheme 60). The approach selected by the authors presumably proceeded 
through a chelated transition state to generate 286a as the major product over 2 steps. 

 
Scheme 60. Synthesis of intermediate 286 [97]. 

Next, the cyclization precursor 288 was obtained over 7 steps. In order to achieve the 
intramolecular cyclization of 288, various bases were explored: NaHMDS, LiHMDS, and 
KHMDS, among which 4 equivalent of KHMDS provided the cyclized product 289 with 
the best yield (84%) (Scheme 61) [97]. The sulfone group of 289 was removed with treat-
ment of Mg/MeOH to afford 290 in 73% yield, which was then treated with pyridinium p-
toleunesulfonate (PPTS) in MeOH to give the key intermediate 291 in 78% yield. Lastly, 
oxidation of 291 with MnO2 in CH2Cl2 produced (+)-costunolide (186) in 82% yield. 

 
Scheme 61. Synthesis of (+)-costunolide (186) from the key intermediate 291. Reagents and condi-
tions: (a) KHMDS, THF, 0 °C, 25 h, 85%; (b) Mg, MeOH, rt, 16 h, 74%; (c) PPTS, MeOH, rt, 20 min, 
78%; (d) MnO2, CH2Cl2, rt, 48 h, 82% [97]. 



Int. J. Mol. Sci. 2021, 22, 1052 40 of 69 
 

 

Srivastava et al. synthesized and evaluated 13-amino costunolide derivatives. Simple 
Michael-type reaction with secondary amines were used to synthesize the derivatives 
(Scheme 62). The stereochemistry at position-11 has been assumed, based on the following 
literature finding in the reference [168]. With 264 and 265 as the most potent compounds, 
authors indicated that N,N-dimethyl substituation at position-13 of costunolide (186) 
plays a significant role in improving the cytotoxicity of the parent compound (186) [163]. 

 
Scheme 62. Synthesis of 13-amino costunolide derivatives 264 and 265 [163]. 

Another synthesis of costunolide (186) derivatives was reported by Vadaparthi et al. 
[164]. The α-methylene-γ-lactone moiety was arylated by means of the Pd (II)-catalyzed 
Heck coupling reaction. In this study, costunolide (186) was coupled with various aryl 
iodides under standard Heck reaction condition (Scheme 63). The reaction seamlessly pro-
vided the E-olefin products (266a–266l), exclusively. The C11-C13 olefin was determined 
to be the E-configuration based on the observed diagnostic vinyl proton at C-13, with a 
range of 7.57–7.97 ppm [164]. Moreover, no structural reorganization or decomposition 
occurred during the reaction process [164]. Among the derivatives, 266c, 266d, and 266j 
were highly active against Hela (cervical cancer), DU-145 (prostate cancer), and MCF-7 
(breast cancer) cell lines. 

 
Scheme 63. Synthesis of arylated costunolide derivatives (266a–266l) [164]. 

Overall, those fruitful researches carried out on the chemistry of costunolide (186) 
provided new insight with regard to the efficient synthesis and structural modification of 
the natural lactone (186). 

2.2.9. Biological Activities of Antrocin (187) 
Antrocin (187) is a sesquiterpene lactone mainly present in the extracts of Antrodia 

camhorata (also known as Antrodia cinnamomea), a medical mushroom widely used as a 
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dietary supplement for cancer prevention and hepatoprevention in Asia [169]. Antrodia 
camhorata has been traditionally used as a remedy for drug intoxication, abdominal pain, 
food poisoning, and cancer [170]. Currently, antrocin (187) is identified as the compound 
that contributes to the pharmacological efficacy of Antrodia camhorata [169]. Rao et al. ex-
plored antrocin (187) and its biological mode of action [171]. During the evaluation of an-
trocin (187) on cell proliferation, antrocin exhibited the most potent inhibitory activity 
against breast cancer line MDA-MB-231 cells with a GI50 value of 0.6 μM [171]. Moreover, 
authors insisted antropin (187) might be a novel molecule with efficacy as dual Akt/mTOR 
inhibitor, based on their observation that the natural lactone inhibits cancer cell prolifera-
tion by promoting apoptosis through down-regulation of AKt/mTOR/GSK-3β/NF-κB sig-
naling pathways [171]. 

The group subsequently sought to investigate the capability of antrocin (187) to inac-
tivate other survival signaling pathways [172]. In this study, the effect of antrocin (187) on 
a panel of non-small cell lung cancer (NSCLC) cells was examined. H1975 and H441 being 
two representative cell lines exhibited high sensitivity to antrocin (187) (36–78% inhibition, 
49–85% inhibition, respectively) [172]. Antrocin (187) also inactivated STAT3 and pre-
vented its nuclear localization in H441 cells, indicating its action as a JAK/STAT3 signaling 
inhibitor. Furthermore, antrocin (187) suppressed tumorigenesis in lung cancer mouse 
xenograft in vivo and enhanced tumor inhibitory response upon combinatorial treatment 
of antrocin (187) and JAK2 inhibitor [172]. 

More recently, Chen et al. reported antrocin (187) as an anti-TNBC agent without 
apparent systematic toxicity, based on their preliminary toxicological evaluation per-
formed with antrocin (187) in a 28-day rat study (at 37.5 mg/kg) [173]. In addition, another 
study demonstrated that antrocin (187) effectively enhances sensitization radio-resistant 
prostate cancer cells to radiation [174]. Given together, antrocin (187) has the capability to 
be a therapeutic and sensitizing agent for various cancers. 

2.2.10. Chemistry of Antrocin (187) 
A concise and asymmetric synthesis of antrocin (187) has been reported by Li et al. 

[175]. The synthesis began with the naturally abundant carnosic acid as a chiral pool. After 
subjection of carnosic acid (292) to ozonolysis, followed by reduction with NaBH4, opti-
cally pure lactone 293 was afforded in 58% yield (Scheme 64). Lactone 293 was directly 
converted to hydroxyl lactone 295 in two steps, which was subsequently treated with I2 in 
the presence of PPh3 and imidazole to produce iodide 296. Lastly, treatment of 296 with 
DBU afforded antrocin (187) in 50%. The asymmetric synthesis of antrocin (187) as 
achieved by the group with a 16.1% overall yield in five steps [175] 

 
Scheme 64. Synthesis of antrocin (187) from (+)-carnosic acid (292). Reagents and conditions: (a) 
O3, CH2Cl2/MeOH (3/1), 78 °C, 1.5 h, then NaBH4 (6.0 equiv.), 78 °C to rt, 1 h (58%); (b) Ph3P (1.3 
equiv), I2 (1.5 equiv), imidazole (1.5 equiv), THF, 0 °C to rt, 1 h (99%); and (c) DBU (10.0 equiv), 
toluene, 80 °C, overnight (50%) [175]. 
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Recently, the total synthesis of natural (−)-antrocin (187) and its enantiomer has been 
reported [176]. Despite remarkable antitumor activities, the difficulties to prepare (−)-an-
trocin (187) triggered researchers to find a synthetic alternative. Since there was no avail-
able simple and inexpensive synthetic method for (−)-antrocin (187) until recently, authors 
focused on developing a synthetic approach using inexpensive, readily available starting 
material 6-methoxy-2-tetralone 297 and simple chemical operations. 

From commercially available starting material 297, trans-cyano bicyclic ketone (±)-
298 was obtained as a major product over 4 steps (Scheme 65). Resolution of the com-
pound (±)-298 was performed by utilizing (+)-dimethyl tartrate (DMT), which yielded sep-
arable 1:1 diasteromic mixture of ketal (−)-299 and (+)-300. 

 
Scheme 65. Synthesis of intermediate (−)-299 [176]. 

Ketal (−)-299 was selected for further reaction to complete the synthesis of antrocin 
(187). Keto aldehyde (+)-301 was prepared from (−)-299 over 3 steps (Scheme 66). Next, α-
hydroxymethylation of (+)-301 by reacting with lithium enolate with gaseous formalde-
hyde in THF yielded a single lactol (+)-302. The authors proposed that this reaction is 
controlled kinetically [176]. Lactol (302) was then oxidized with silica-supported pyri-
dinium chlorochromate (PCC) to give lactone (−)-303. Authors attempted both standard 
and modified Wittig olefination (Ph3PCH2 and THF, 0 °C and Ph3PCH2, toluene, and t-
BuOH, rt) [177], which ended up with a poor conversion rate (30–30%). Gratifyingly, an-
other attempt with non-basic Lombardo’s reagent (Zn, TiCl4, CH2Br2) led to successful 
olefination of ketone (−)-303 to antrocin (187) in excellent yield (98%) [178]. 

 
Scheme 66. Complete Synthesis of antrocin (187) [176]. 

2.2.11. Biological Activities of EM23 (188) and Brevilin A (189) 
EM23 (188) is a natural sesquiterpene lactone derived from Elephantopus mollis. Shao 

et al. investigated anticancer effects of EM23 (188). EM23 (188) exhibited growth inhibitory 
activity against various cancer cell lines, including A549 (lung cancer), MCF-7 (breast can-
cer), TE-1, EC109, and EC9706 (esophageal cancer), CaSki and SiHa (cervical cancer), and 
HL-60 and K562 (leukemia) [179]. EM23 (188) showed the most potent anti-proliferative 
activity against CaSki and SiHa with a GI50 value of 5.8 and 6.6 μM, respectively. Further-
more, the authors proposed the mechanism of EM23-induced apoptosis. Thioredoxin re-
ductase (TrxR) catalyzes the reduction of thioredoxin (Trx), which participates in various 
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cellular processes [180]. Overexpression of Trx/TrxR is found to be related in the develop-
ment and progression of cancer [181,182]. EM23 (188) inhibits the expression levels of 
TrX/TrxR to facilitate ROS accumulation, which results in the dissociation of ASK1 from 
complex with Trx and activation of downstream JNK signaling pathway [179]. Taken to-
gether, EM23 (188) can be potentially applied as an anticancer agent for human cervical 
cancer by a structural modification to achieve further enhancement in potency. 

Brelivin A (189) is a bioactive component mainly present in Centipeda minima (L.) A 
[183]. It has been reported to display anticancer activities. In acute promyelocytic leuke-
mia HL-60 cells, Brevilin A (189) induced apoptosis through a mitochondrial/caspase 
pathway [184]. Moreover, treatment of Brevilin A (189) reversed vincristine resistance in 
multidrug-resistant colorectal cancer cell line HCT-8/VCR by inhibiting the intracellular 
accumulation of YB-1 and down-regulating MDR1 expression, two important factors 
closely related to multidrug resistance. This suggests Brevilin A (189) as a potential anti-
cancer drug adjuvant to reverse drug resistance in chemotherapy [185]. In addition, Chen 
et al. reported that Brevilin A (189) acts as a STAT3 signaling inhibitor [186]. Persistent 
STAT3 activity is associated with cancer progression, most of which show aberration of 
JAKs, Src, or other receptor tyrosine kinases. Brevilin A (189) inhibited both constitutively 
activated-STAT3 driven DU145 (prostate cancer) and MDA-MB-468 (breast cancer) cell 
lines [186]. It is also noteworthy that Brevilin A (189) specifically inhibits JAKs without 
other signaling proteins such as p65, AKT, GSK-3β, and Src. A number of Brevilin A (189) 
derivatives were synthesized and their anticancer potential was evaluated in a structure-
activity relationships study conducted by Lee et al. [187]. During the course of the study, 
it was found out that the alkene or carbonyl of the enone moiety is crucial in achieving 
cytotoxicity. Most notably, introducing different substituents to the α-position of the γ-
lactone ring exhibited a significantly increased cytotoxicity in the tested cancer cell lines. 
In the MDA-MB-231 and A549 cell lines, BA-9 (304) and BA-10 (305) displayed a GI50 value 
of 4.647 μM and 6.385 μM against MDA-MB-231 and 6.239 μM and 6.392 μM against A549, 
respectively (Figure 14). These values exhibited by the derivatives are roughly two-fold 
greater than that of the parent compound Brevilin A (189) (GI50 in MDA-MB-231 = 7.03 
μM, A549 = 10.09 μM), indicating potential of BA-9 (304) and BA-10 (305) as promising 
candidates for further development as cancer therapeutics [187]. 

 
Figure 14. Structure of Brevilin A (189) derivatives BA-9 (304) and BA-10 (305). 

2.2.12. Chemistry of EM23 (188) and Brevilin A (189) 
To the best of our knowledge, there are no reports elucidating total synthesis of EM23 

(188) and Brevilin A (189) up-to-date. Semi-synthetic derivatives of Brevilin A (189) were 
prepared by Lee et al. [187]. Key intermediate BA-8 (306) was obtained via aldol reaction 
between Brevilin A (189) and paraformaldehyde in the presence of sodium carbonate 
(Scheme 67). Subsequently, C11-hydroxylmethyl of BA-8 (306) was actylated with p-nitro-
bezoyl chloride and methacrylic anhydride to yield BA-9 (304) and BA-10 (305), respec-
tively. 
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Scheme 67. Synthesis of Brevilin A (11) derivatives 304 and 305 [187]. 

2.3. Diacylglycerol Lactones 
Diacylglycerol lactones (DAGLs) are synthetic lactones derived from syn-1,2-diacyl-

glycerol (DAG), which is a key lipid second messenger that binds to the C1 domain in 
many regulatory proteins [188]. This lipophilic second messenger plays a key role in sig-
nal transduction pathways [14]. DAG especially acts as an endogenous activator by bind-
ing to the C1 domain of protein kinase C (PKC). Upon binding, it allosterically activates 
the enzyme in the presence of phospholipid [189]. The PKC family can be classified into 
three isoenzyme groups: conventional (α, βI, βII, and γ), novel (δ, ε, η, and θ), and atypical 
(ζ and ι/λ) [189]. Only conventional and novel isoenzymes contain C1 regions. PKC 
isoforms constitute the most prominent family of signaling proteins that control cellular 
functions such as proliferation, survival, motility, tumorigenesis, and metastasis [189]. 
Therefore, their significance in pathogenesis has driven much interest in the C1 domain 
as a therapeutic target [189]. Furthermore, implication of PKCs in a range of cancer in 
different organs increases its potential as a therapeutic target [190–192], which eventually 
led to a thorough investigation on DAG-based small molecule PKC modulators. 

2.3.1. Biological Activities of Diacylglycerol Lactones 
DAG binds to the C1 domain of PKC isoenzymes containing a cysteine-rich, zinc fin-

ger-like motif [193]. However, competence between DAG and phorbol esters might occur 
because they share the same binding site. The binding affinity of phorbol esters is higher 
than that of DAG by at least 3 orders of magnitude [14]. Upon binding of the phorbol 
esters, PKC activation bypasses the normal physiological signal-mediated mechanism, in 
which responses irrelevant to DAG could be activated [194]. To overcome this challenge, 
the group of Blumberg and Marquez designed a series of structurally simple cyclic DAG-
based molecules to surpass the binding affinity of DAG to PKC [14]. They reasoned that 
the low binding affinity of DAG is caused by the flexible nature of the glycerol backbone 
and, therefore, giving it an entropy penalty by restricting the conformation would increase 
the binding affinity towards PKC. With this rationale, Kang et al. obtained 4,4-disubsti-
tuted-γ-butyrolactone as an ideal glycerol template [189]. Their extensive SAR studies 
based on pharmacophore-guided and receptor guided approaches provided notable find-
ings to increase binding affinity from DAG (307, Ki ≈ 1 μM) through cyclization to the 
structurally constrained 5-tetradecanoyl DAG-lactone (308, Ki ≈ 138 nM), shifting of the 
hydrophobic alkyl chain from the 5-acyl to the 3-alkylidene position (309, Ki ≈ 30 nM), and 
incorporating highly branched alkyl chain (310, Ki ≈ 2.9 nM) (Figure 15). 
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Figure 15. DAG-Lactones as PKC ligands [189]. 

Moreover, the authors envisioned that an additional conformational restriction of the 
remaining 5-acyl group would achieve further enhancement in binding activity [189]. To 
this end, macrocyclization strategy to link the two terminal alkyl ends of the 5-acyl and 3-
alkylidene groups was used. They expected that this strategy would allow the ester to 
adopt the preferred S-trans configuration for ring sizes greater than ten, as well as render-
ing the physicochemical properties of the ligand suitable as drug candidates [189]. Among 
synthesized macrocyclic DAG-bis-lactones evaluated, compound 311 exhibited in Ki value 
of 6.07 nM against PKCα (Figure 16). In addition, the molecular docking study of 311 with 
PKCα suggests that the macrolactone 311 exclusively binds in the sn-1 binding mode to 
the C1b domain of the protein [189]. 

 
Figure 16. Structure of macrocyclic DAG-bis-lactones 311 [189]. 

Kang et al. synthesized and investigated a series of DAG-lactones with polar 3-alkyli-
dene substituents as PKCα and antitumor agents (Figure 17). The structure-activity rela-
tionships revealed that compounds 312, 313, and 314 with an ether side chain have high 
binding affinities (Ki = 3–5 nM) and excellent antitumor effects on colon cancer (Colo205, 
GI50 = 0.120–0.260 μg/mL) and leukemia cancer (K562, GI50 = 0.140–0.200 μg/mL) cell lines 
[195]. 
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Figure 17. Structure of DAG-lactones with polar 3-alkylidene chain (312–314) [195]. 

Individual PKC isotypes show different patterns of tissue distribution, subcellular 
localization, substrate specificity, and biological functions [196,197]. Consequently, it is an 
important issue to discriminate PKC isotypes to avoid an undesired effect. Ann et al. fo-
cused on protein kinase C epsilon (PKCε), a calcium-independent but phorbol ester/di-
acylglycerol dependent PKC isotype [198]. PKCε, along with other frequently expressed 
PKCs (PKCα and PKCδ), is reported to trigger mitogenic/tumor promoting or conversely 
anti-mitogenic/tumor suppressor responses [14]. They have identified AJH-836 (315) (Fig-
ure 18), which has the sn-2 carbonyl substituted with a saturated-branched alkyl chain 
with an E-conformation, as a selective ligand for PKCε (Ki of PKCα = 46 nM, Ki of PKCε = 
1.43 nM). Moreover, it should be noted that the selectivity was further enhanced in the 
nuclear membrane conditions, indicating strengthened interactions between the DAG-lac-
tone side chain and the protein-membrane interface [198]. With the help of chemically 
modified DAG-lactone, AJH-836 (315), additional efforts were made to highlight the im-
portance of PKCs in the transcriptional gene regulation in lung cancer cells [199]. Authors 
have added that the discovery of selective C1 domain ligands may lead to promising ther-
apeutic leads and pharmacological tools for identifying pathophysiological mechanism of 
diseases [199]. 

 
Figure 18. Structure of AJH-836 (315). 

2.3.2. Chemistry of Diacylglycerol Lactones 
Synthesis of DAG-bis-macrolactone commenced with condensation reaction of γ-lac-

tone with aldehydes 317–320 to afford β-hydroxylactones, which were converted into 3-
alkylidene γ-lactone (321–327) as mixtures of E/Z isomers (Scheme 68). With the key in-
termediate 328–334 obtained over 3 steps, macrolactonization was utilized according to 
Keck and Boden’s method to yield 13, 17, 21, and 25-membered macrolactones (335–341), 
respectively [200]. Lastly, benzyl group was removed to provide the target macrolactones 
(311, 342–347) [189]. 
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Scheme 68. Synthesis of DAG-bis-macrolactones [189]. Reagents and conditions: (a) (i) LiHMDS, 
THF, −78 °C; (ii) RCHO (13–16); (b) (i) MsCl, NEt3, CH2Cl2; (ii) DBU, 45–52% in 2 steps; (c) DMAP, 
DMAP/HCl, DCC, CH2Cl2, 60–70%; (d) BCl3, CH2Cl2, 80–92%. 

Due to high lipophilicity of synthesized DAGLs, it was attempted to reduce the lip-
ophilicity by incorporating more polar side substituents in the 3-alkylidene chain. DAG-
lactones with polar 3-alkylidene chains were synthesized by alkylation of the protected 
5,5-disubstituted γ-lactone with various polar side chains (Scheme 69) [195]. 

 
Scheme 69. Synthesis of hydroxyl and ether DAG-lactone analogs [195]. Reagents and conditions: 
(a) CAN, CH3CN–H2O, 0 °C; (b) (CH3)3CCOCl, Et3N, DMAP, CH2Cl2; (c) LiHMDS, CH3(CH2)12CHO 
for 350–351, RO(CH2)nCHO for 352–362, TrO(CH2)nCHO for 363–366, THF, −78 °C; (d) (i) MsCl, 
NEt3, CH2Cl2, (ii) DBU; (e) BCl3, CH2Cl2, −78 °C; (f) CF3CO2H, CH2Cl2, 0 °C. 

AJH-836 (315), a PKCε selective DAG-lactone, was synthesized by Ann et al. [198]. 
The synthesis started with p-methoxyphenyl (PMP) and benzyl (Bn) protected racemic 
lactone (Scheme 70). Aldehyde 368 was reacted with the 367 to form olefin 369 via aldol 
condensation. After removal of PMP protection, the intermediate 370 was reacted with 
acyl chloride 371, followed by benzyl deprotection to afford the target molecule 315. 



Int. J. Mol. Sci. 2021, 22, 1052 48 of 69 
 

 

 
Scheme 70. Synthesis of AJH-836 (315). Reagents and conditions: (a). (i) LiHMDS, THF, R2CHO, −78 
°C. (ii) MsCl, CH2Cl2, DBU; (b) BCl3, CH2Cl2, −78 °C or CAN, CH3CN/H2O; (c) EDC, DMAP, CH2Cl2, 
r.t.; (d) BCl3, CH2Cl2, −78 °C or CAN, CH3CN/H2O [198]. 

2.4. Diterpene Lactones 
Diterpenes are classes of natural products mostly originated from microbes or sec-

ondary metabolites of fungal sources. Diterpenes can be further classified into subdivi-
sions according to its structural feature (bicyclic, tricyclic, and tetracyclic diterpenes). This 
class of compounds attracted researchers due to their potential biological activities includ-
ing anti-cancer, anti-oxidant, and anti-inflammatory effects [201,202]. 

2.4.1. Biological Activities of Andrographolide (373) 
Andrographolide (373) is a simple bicyclic labdane diterpene lactone belonging to 

the isoprenoid family of natural products and is a well-known medicinal plant, which has 
been widely used in Asia [203]. The lactone is isolated from the stem and leaves of An-
drographis paniculata (Burm.f.) Nees, also known as King of Bitters. [204]. The characteristic 
structural features of andrographolide (373) include: α,β-unsaturated γ-butyrolactone 
ring, three hydroxy groups (at C-3, C-14, and C-19), and two olefin bonds (Δ8(17) and Δ12(13)). 
Biological responses elicited by andrographolide (373) is mainly due to its ability to form 
H-bonds with biological substrates by utilizing the hydroxyl group [205]. Andro-
grapholide (373) having potent cytotoxic effects against various cancer cells, it has been 
reported that andrographolide (373) exerts the anti-cancer effects by modulating several 
cancer-related pathways and proteins including JNK-signaling pathway, NF-κB and PI3K 
signaling pathway, cyclins and cyclin-dependent kinases (CDKs), metalloproteinases 
(MMPs) and tumor suppressor proteins (p53 and p21) [206]. 

Dai et al. demonstrated that andrographolide (373) prevents proliferation of human 
gastric cancer cell line SGC-7901 by blocking cell cycle progression, promoting intrinsic 
apoptosis, and/or repressing invasive activity [207]. Upon increasing concentrations of 
andrographolide (373) (10, 20, and 40 μg/mL), cell-cycle inhibitory proteins (cyclin B1 and 
CDC2) and proapoptotic protein (Bax) were upregulated and antiapoptotic protein (Bcl-
2) was downregulated [207]. 19-triisopropyl andrographanolide (374), an analogue of an-
drogrphanolide (373), showed potent cytotoxic activity against gastric cancer cell lines 
with a GI50 value of 6.3 μM and 1.6 μM for MKN-45 and AGS cell lines, respectively (Fig-
ure 19). On the other hand, the parent andrographanolide (373) is shown to be less potent 
than the analog (374) with the GI50 values of >50 μM in MKN-45 and 11.3 μM in AGS cell 
lines [208]. 
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Andrographanolide (373) is also found to suppress tumor proliferation in prostate 
cancer cells by modulating proimflammatory cytokines (interleukin (IL)-6) and chemo-
kines (CXCl11, CXCR3, and CXCR7) [209]. Moreover, administration of androgra-
phanolide (373) to DU145 (prostate cancer cell)-xenografted mice delayed tumor growth 
without obvious toxicity [210]. SRJ23 (375), another andrographanolide (373) analog, was 
synthesized to improve the antitumor activity of the parent compound (373) against pros-
tate cancer cell lines (Figure 19). SRJ23 (375) selectively inhibited a prostate cancer cell 
(PCa) with a 50-fold improved GI50 (0.4 μM) than that of the parent compound androgra-
phanolide (373) (GI50 = 19.95 μM) [211]. 

Colorectal cancer is a frequently diagnosed solid tumor. The main issue in this cancer 
is the high recurrence rate caused by acquired resistance to chemotherapies such as 5-
fluorouracil (5-FU) and cisplatin [212,213]. In a study conducted by Wang et al. [212], an-
drographanolide (373), when treated to 5-FU-resistant colorectal cancer cell line 
(HCT116/5-FUR), synergistically enhanced 5-FU-induced apoptosis. This suggests that 
andrographanolide (373) could reverse chemotherapy resistance and act as a sensitizing 
agent in colorectal cancer Moreover, the clinical relevance of andrographanolide (373) in 
combination with capecitabine is being investigated, which initiated a clinical trial in 2014 
[214]. 

Another type of cancer highly related to poor prognosis and high recurrence rate is 
non-small-cell lung cancer (NSCLC). Andrographanolide (373) showed synergistic anti-
tumor activity with chemotherapeutic agents cisplatin and paclitaxel, although the molec-
ular mechanism behind this synergism is still unclear [215,216]. Lim et al. reported an 
andrographanolide (373) analog, 3,14,19-tripropionylandrographolide (SRS06, 376), 
which shows a distinct inhibitory activity against A549 NSCLC cell line. SRS06 (376) was 
able to suppress cancer cell proliferation by downregulating the levels of NF-κB protein 
and inhibiting p65 DNA binding activity at a concentration of 5 μM [217]. 

Despite various antitumor activities of andrographanolide (373), poor solubility and 
relatively low potency still remained to be the main hurdles for further advancement into 
clinical development. To overcome this challenge, more efforts in modification and opti-
mization of the chemical structures would be needed. 

 
Figure 19. Structure of andrographolide analogs. 

2.4.2. Chemistry of Andrographolide (373) 
Gao et al. reported the first total synthesis of (−)-andrographolide (373) via biomi-

metic cyclization approach, in which an epoxy homoiodo allylsilane precursor (381) was 
utilized [218]. The synthesis commenced with geraniol 377, which was readily converted 
to epoxide 378 in 79% yield over 5 steps (Scheme 71). For the efficient preparation of the 
key precursor 381, authors optimized the protocol based on their previous protocol, which 
includes 3 reaction steps [219]. Cyclopropyl ketone (378) underwent chemoselective 1,2-
addition with (phenyldimethylsilyl)methylcerium chloride to afford cyclopropyl carbinol 
(379), which, upon exposed to MgI2, provided intermediate 380 as a crude mixture. Next, 
the resulting crude intermediate 380 was briefly treated with K2CO3 in methanol to give 
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the key intermediate 381. Moreover, the authors found out that reaction temperature is 
critical for Julia-type cyclopropane ring-opening of 379 [218]. 

 
Scheme 71. Synthesis of key intermediate 381 [218]. Reagents and conditions: (a). (i) 
PhMe2SiCH2MgCl, CeCl3, THF, 0 °C–23 °C; (ii) 2.5 equiv MgI2·(OEt2)n (0.25 M in Et2O/PhH (1:1)), 
PhH, 50 °C, 15 min; (iii) K2CO3, MeOH, 23 °C, 65%. 

The key reaction step utilized in this study is the biomimetic cation-olefin annulation 
of epoxy homoiodo allylsilane precursor 381 to form bicyclic iodide 382 (Scheme 72). By 
using the optimized cyclization condition (SnCl4 in CH2Cl2 at −40 °C), bicyclic iodide 382 
was furnished as a mixture of C9 epimers (α/β 0.7:1). Subsequently, bicyclic iodide 382 was 
converted to bicyclic aldehyde 383 over 4 steps, which underwent aldol condensation with 
the corresponding lithium enolate of (S)-(−)-β-hydroxy butyrolactone (384) to give dihy-
droxy lactone 385 as a mixture of C-12 epimers. Compound 385 was then selectively O-
silyated via the mesylate intermediate to provide E-configurated lactone 386 in a regio- 
and stereoselective manner [218]. Lastly, desilylation and acetonide cleavage of 386 pro-
vided (−)-andrographolide (373), which was spectroscopically identical to the natural an-
drographolide [220]. 

 
Scheme 72. Synthesis of andrographolide (373). Reagents and conditions: (a) 2.0 equiv SnCl4, 
CH2Cl2, −40 °C, ca. 1 min.; (b) 1.6 equiv (S)-(−)-β-hydroxy-γ-butyrolactone, 3.2 equiv LDA, 
THF/HMPA (4:1), −78 °C–30 °C, 64% (80% brsm); (c) TBSCl, imidazole, DMF, 23 °C, 76%; (d) MsCl, 
Et3N, CH2Cl2, −78 °C–0 °C, 1 h; then iPr2NEt, CH2Cl2, 23 °C, 55%; (e) TBAF, THF, 23 °C, 57%; (f) 
HOAc/H2O (7:3), 23 °C, 89% [218]. 
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A more concise and convergent enantioselective total synthesis of andrographolide 
was recently reported by Yang et al. [221]. Key transformations utilized in the synthesis 
include: (1) formation of quaternary C4 stereocenter via iridium-catalyzed carbonyl re-
ductive coupling, (2) establishment of the trans-decaline skeleton via diastereoselective 
alkene reduction, and (3) installation of the α-alkylidene-β-hydroxy-γ-butyrolactone via 
carbonylative lactonizaition. The synthesis began with preparation of acetonide 389, 
which was achieved via a 6-step reaction (Scheme 73). The authors predicted that 389 
would undergo cycloaddition diastereoselectively from the convex face of the bicycle. As 
expected, cycloadduct 390 was obtained as a single stereoisomer from Diels–Alder cy-
cloaddition of 389 with dimethylacetylene dicarboxylate (DMAD) [221]. For the construc-
tion of the trans-decalin ring, manganese-catalyzed hydrogen atom transfer (HAT) was 
chosen because it enables diastereselective hydrogenation of the targeted alkene [222]. 
However, HAT reduction of cycloadduct 390 exclusively provided the cis-decalin 391 in-
stead. 

 
Scheme 73. Synthesis of cis-Decalin 391 [221]. 

This result is presumably due to conformational constraint caused by the acetonide 
moiety, as diol 392 smoothly underwent HAT reduction to afford trans-decalin (393) as a 
single diastereomer [221], which subsequently converted to iodide 394 over 4 steps 
(Scheme 74). The authors found installation of the α-alkylidene-β-hydroxy-γ-butyrolac-
tone especially challenging because of competing elimination to form diene by-products 
or halide reduction. Pleasingly, diol 395 was obtained in 54% yield via chemoselective 
cross-coupling at the terminal vinyl bromide upon treatment with 2-thienyl(cyano)copper 
lithium followed by exposure to vinyl bromide 396. Lastly, bromoalcohol 395 underwent 
carbonylative lactonization to furnish α-methylene-β-hydroxy-γ-butyrolactone, which 
upon removal of the triisopropylsilyl ethers provided the target compound andro-
grapholide (373). Moreover, it is noteworthy that the described route accomplished the 
synthesis of andrographolide (373) in 14 steps, which is 10 steps lesser than the previous 
report [218,221]. 



Int. J. Mol. Sci. 2021, 22, 1052 52 of 69 
 

 

 
Scheme 74. Synthesis of andrographolide (373) [221]. 

2.4.3. Anti-Cancer Activities of Nagilactones 
Nagilactones belong to the group of bioactive terpenoids, which was first isolated 

from the evergreen tree, Podocarpus nagi (Tunb.) Zoll. et Moritz in the late 1960s [223]. To 
date, a number of nagilactones, assigned from A to L, have been isolated from various 
Podocarpus species [16]. Among those, only nagilactone C (397), E (398), F (399), and G (400) 
are known to exhibit anticancer activities (Figure 20). 

 
Figure 20. Structures of Nagilactone C, E-G (397–400). 

In the study conducted by Qi et al., nagilactone C (397) showed potent antiprolifera-
tive activity against cancer cell lines such as MDA-MB-231, AGS (gastric cancer), and Hela 
cell lines, with a GI50 value of 2–5 mM, whereas nagilactone F (399) and G (400) displayed 
even more potent activity than nagilactone C (397) against the same cancer cell lines (IC50 
≈ 1 mM) [224]. In another study, nagilactones were reported to possess cytotoxic effects 
against P-388 leukemia cells in vitro (GI50 of nagilactone G (400) ≈ 0.25 mM and nagilactone 
E (398) = 0.25 mg/mL) [225]. Moreover, in a recent study, nagilactone E (398) was found to 
dose-dependently reduce the growth of human NSCLC cells A549 and NIC-H1975, with 
a GI50 value of 5.2 and 3.6 μM, respectively [226]. Although there is still scarce information 
regarding efficacy of nagilactones in vivo, Guo et al. lately demonstrated in vivo efficacy 
of nagilactone E (398) in an A549 cell lung cancer xenograft mouse model [227]. The intra-
peritoneal injection of 10 mg/kg/d nagilactone E (398) suppressed tumor growth by 62% 
and inhibited tumor metastasis, without obvious toxicity. Furthermore, the authors have 
suggested RIOK2 as a potential target of nagilactone E (398) after carefully reviewing their 
Kaplan–Meier analysis and molecular docking study results [227]. RIOK2 is an atypical 
serine/threonine protein kinase related to the biogenesis of ribosome. Moreover, the ex-
pression level of RIOK2 is reported to be correlated with clinical outcome in NSCLC, in-
dicating its clinical significance [228]. However, low solubility of nagilactone E (398) might 
prevent it from further development despite the potent anticancer effects. Therefore, fu-
ture works should focus on structural modification to increase drug-like properties of 
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nagilactones and, more importantly, further validation of possible protein targets of nagi-
lactones. 

2.4.4. Chemistry of Nagilactones 
Synthesis of nagilactone F (399) has been extensively studied in comparison to other 

nagilactones, being only one among nagilatone series with an available recent report. The 
first total synthesis of Nagilactone F (399) was reported by Hayashi et al. [229]. The syn-
thetic approach by the group started with (+)-podocarpic acid, stereochemistry of which 
was already established, and structure of all intermediates formed during the course of 
reaction was fully characterized by the authors (Scheme 75). (+)-podocarpic acid methyl 
ether (401) was converted to the enolide (402) over 9 steps, which was treated with potas-
sium t-butoxide in DMSO to give a diene-carboxylic acid (403). The authors presumed the 
configuration of the 8:14-double bond in 403 to be in more thermodynamically stable “E” 
form because 403 was produced under an equilibrium condition [229]. The diene-carbox-
ylic acid (403) was irradiated with medium pressure mercury lamp in 95% ethanol to af-
ford 8:9-enolide (404) as a single product. The enolide (404) underwent bromination with 
NBS and subsequent debromination with Zn in DMF to afford dienolide ester 405, which 
was then hydrolyzed with conc. H2SO4 to furnish a dienolide acid 406. The diene acid 406 
was treated with excess Pb(OAc)4 in benzene to produce a γ-lactone in 50% yield, which 
was found out to be completely identical with natural nagilactone F (399) in IR and 1H-
nmr comparisons [229]. 

 
Scheme 75. Total synthesis of nagilactone F by Hayashi et al. [229]. Reagents and conditions: (i) t-
BuOK, DMSO; (j) hν; (k) NBS, CHCl3; (l) Zn, DMF; (m) H2SO4; (n) H2O; (O) Pb(OAc)4, hν. 

Fascinatingly, Hanessian et al. reported the asymmetric total synthesis of nagilactone 
F from a common precursor, which also provided access to CJ-14,445, LL-Z1271γ, and 
oidilolactones A, B, C, and D (structures not shown) [230]. In this review, we will focus on 
the synthesis of nagilactone F from the intermediate 19. The important synthetic strategies 
employed by the authors to obtain a tricyclic lactone key intermediate 19 include: (1) a 
Morita–Baylis–Hillman reaction, (2) a stereocontrolled bromolactonization reaction, and 
(3) a catalytic Reformatsky-type reaction. According to the retrosynthetic analysis pro-
vided by the group, the tricyclic lactone skeleton was sequentially prepared via construc-
tion of the AB podolactone ring, followed by the formation of D and C lactone ring (Figure 
21). 
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Figure 21. Retrosynthetic analysis of nagilactone F (399), CJ-14,445, LL-Z1271γ, Oidiolactones A-D 
according to Hanessian et al. [230]. 

The AB ring system was accomplished as a single enantiomer from the readily avail-
able Wieland-Miescher ketone (407) following the methods reported by Theodorakis and 
Danishefsky groups [231,232], which led to the fully functionalized AB ring of podolac-
tone (408) over 9 steps (Scheme 76). Next, with the intermediate (408) in hand, construc-
tion of the D lactone ring across C-4 and C-6 was attempted. To achieve this, 408 under-
went a Morita–Baylis–Hillman reaction, utilizing formaldehyde and dime-
thylphenylphosphine, to give 410 in excellent yield. Based on the reaction sequence de-
veloped by Welch and co-workers [233], obtained 410 was then subjected to bromolac-
tonization, followed by elimination to give the corresponding tricyclic γ-lactone core 411, 
which was isolated as the TES ether 412. During the introduction of the δ-lactone moiety, 
γ-lactone ring opening, elimination, and poor yield occurred as major problems. This chal-
lenge was overcome by the use of intramolecular Reformatsky reaction, which had seldom 
been utilized in natural product synthesis [230]. The Reformatsky-type reaction between 
enone 412 and ethyliodoacetate in the presence of NiCl2(PPh3)2 and Et3Zn furnished the 
desired tertiary alcohol 409 as a single isomer. 

 
Scheme 76. Synthesis of the common tricyclic precursor 409 [230]. 

Toward the synthesis of nagilactone F, the common intermediate (409) was hydro-
lyzed under acidic conditions and subsequently oxidized with DMP to provide aldehyde 
413, which was further treated with the Burgess reagent followed by HCl in THF to give 
lactol 414 (Scheme 77). Thus, the obtained lactol 414 was treated with isopropylmagne-
sium bromide following the protocol reported by Barrero and co-workers [234], which, as 
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opposed to expectations, led to low yield and moderate selectivity. Hence, the authors 
sought to circumvent this problem. Gratifyingly, treatment of 414 with isopropenyl-
magnesium bromide afforded dilactone 415 in good yield and high diasteroselectivity, 
which in turn underwent homogeneous hydrogenation in the presence of Wilkinsons’s 
catalyst to furnish nagilactone F (399). 

 
Scheme 77. Synthesis of nagilactone F (399) from the intermediate 409 [230]. 

Significance of this work is that it provided access to seven related norditerpenoid 
dilactones, including nagilactone F (399), from one common precursor. We envision that 
additional development of such convergent and divergent synthetic approaches would 
be necessary for the synthesis and derivatization of bioactive natural products. 

3. Summary 
The biological activities of RALs, SLs, DAGLs, and DLs, including available patent 

information, are summarized in Table 1. Based on the research described above, the lac-
tones covered in this review have proved to be valuable compounds with promising bio-
activities. For instance, L-783277 (4) exhibits a highly potent inhibitory activity against 
MEK (IC50 = 4 nM), however, it displayed low kinome-wide selectivity. This selectivity 
issue was overcome by rationally designed derivatives 99 and 100. 99 is a selective ALK1 
inhibitor (IC50 = 62 nM) and it is shown to effectively block BMP-9 induced ALK1 signaling 
in C2C12 cells. 100 is a dual VEGFR3 and VEGFR2 inhibitor (VEGFR3 IC50 = 1.15 nM, 
VEGFR2 IC50 = 3.56 nM) and its anti-lymphangiogenic and anti-angiogenic ability was 
demonstrated both in 3D microfluidic tumor lymphangiogenesis assay and in vivo cor-
neal assay. 

Table 1. Biological activities of resorcylic acid lactones (RALs), sesquiterpene lactones (SLs), diacylglycerol lactones 
(DAGLs), and diterpene lactones (DLs). 

Class Compound Summary of Biological Activities Patents References 

RALs Radicicol (1) 

It selectively inhibits HSP90 function (IC50 = 20–23 
nM). 
Poor in vivo activity, probably due to chemical in-
stability in serum and its rapid conversion into in-
active metabolites. 

[235–238] [24] 

RALs 32 
It selectively inhibits HSP90 function (IC50 = 160 
nM). [239] [29] 

RALs KF25706 (39) 

Significant growth-inhibitory activity against hu-
man breast carcinoma MX-1 cells transplanted into 
nude mice at a dose of 100 mg/kg twice daily for 
five consecutive iv injections. 

[240] [31] 
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RALs Hypothemy-
cin (2) 

RAS-signaling pathway inhibitor.  
It also inhibits the production of several cytokines 
such as IL2, IL6, IFNγ, and TNFα.  
It inhibited the growth of HT29 and HCT116 cells  
in serum-free defined medium, IC50 = 0.078 mM  
and 0.90 mM, respectively. 

[241–243] [35] 

RALs 
LL-Z1640-2 

(3) 

It selectively inhibits (TGF)-β-activated kinase 1 
(TAK1) with high potency TAK1, (IC50 = 8.1 nM).  
Strongly inhibition JNK/p38 pathway.  
It also inhibits MEK1 (IC50 = 411 nM) and  
three other MAPKKKs (IC50 ≥ 268 nM against 
MEKK1, ASK1, and MEKK4).  
It can be applied clinically to CNS autoimmune 
disorders. 

[244–246] [38] 

RALs 74a-d Its activity is comparable to 3, but with improved 
solubility and pharmacokinetic properties. 

 [46] 

RALs ER803064 
(79) 

Increased metabolic stability and reduced potency 
than 3, active in vivo,  
but the ED50 value (13.2 mg/kg, iv) was fairly high 
in regard to TNF-α suppression 

[246,247] [48] 

RALs 83 and 84 

A MEK1 and MEKK1 inhibitor. 
Similar in vitro potency to natural product 3 and  
improved in vivo potency by iv administration. 
TNFα-PLAP IC50s: 32 nM for 83, 15 nM for 84. 
ED50: 6.5 mg/kg for 84. 

[247,248] [49] 

RALs 90 Active against MNK2 kinase (IC50 = 7.2 μM).  [50] 

RALs L-783277 (4) 

Highly potent inhibitory activity against MEK  
(IC50 of 4 nM).  
Potent inhibitory activities against several kinases 
including VEGFR2/3, FLT1/3/4, MEK1/2, KDR, and 
PDGFRα but with low kinome selectivity. 

[241,243,249,250] [47,52] 

RALs 99 

A selective and potent ALK1 inhibitor 
It inhibits ALK1 with an IC50 value of 62 nM and 
activates Smad4 by phosphorylating Smad1/5.  
It acts by selectively blocking BMP9-induced ALK1 
signaling in C2C12 cells. 

 [56–58] 

RALs 100 

Potent dual VEGFR3 and VEGFR2 inhibitor  
(VEGFR3 IC50 = 1.15 nM, VEGFR2 IC50 = 3.56 nM).  
It effectively suppresses both lymphangiogenesis 
and angiogenesis in a 3D-microfluidic tumor lym-
phangiogenesis assay and in vivo corneal assay. 

[251] [54] 

SLs Parthenolide 
(183) 

IC50 values against SiHa and MCF-7 cells  
(8.42 and 9.54 μM, respectively). It prevents re-
sistance of MDA-MB-231 to doxorubicin and mito-
xantrone. 
Cytotoxicity in a wide variety of human cancers, 
targeting IKK-β, and FAK 1 inhibition 
In a mouse xenograft model, it decreased tumor 
size in combination with docetaxel. 

[252] [80–83,253] 
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SLs DMAPT 
(190) 

It selectively eliminates AML stem cells. 
DMAPT (190) significantly suppressed PC-3 tumor 
growth until day 95 compared with control (P = 
0.0007) and resulted in greater tumor control than 
that observed with docetaxel (P = 0.007). 
In A549 subcutaneous xenograft, it reduced tumor 
growth by 54% (100 mg/kg/day, po). 
In UMUC-3 (transitional carcinoma) xenograft, it 
suppressed tumor growth by 63%  
(100 mg/kg oral twice/day). 
It has an increased PK profile compared to 183 

[252,254] [89,255,256] 

SLs Alantolac-
tone (184) 

IC50 values against MDA-MB 231 and HUVEC cells 
(40 μM and 14.2 μM, respectively). 

[257] [104] 

SLs 
Deoxy-

elephantopin 
(185) 

IC50 values against HCT116 (colorectal), K562 
(CML), KB (oral), and T47D (breast) cancer cell 
lines are 7.46, 4.02, 3.35, 1.86 μg/mL, respectively. 
IC50 values against PC-3, CNE, and HL-60 cells are 
4.6, 2.6, and 0.9 μM, respectively. 
It is an inhibitor of NF-κB and targets PPAR-γ. 

[258,259] [130,131,260,261] 

SLs DETD-35 
(232) 

IC50 value against MDA-MB-231 is 3.5 μM. 
In combination with paclitaxel, 
it shows synergistic effects on MDA-MB 231 cells.  
It also synergistic effects with vemurafenib to over-
come BRAFV600E mutant melanoma in a mouse 
model 

[262] [127,137] 

SLs Costunolide 
(186) 

It shows inhibitory activities on TR-LE cells. 
IC50 value against SW-620 cells is 7.8 μM. 
IC50 value against BGC-823 cells at 24 and 48 h is 
32.80 and 23.12 μM, respectively. 

[263] [162,163,264] 

SLs 264 IC50 value against SW-620 cells is 3.3 μM.  [163] 

SLs 
Antrocin 

(187) 

IC50 value against MDA-MB-231 cells is 0.6 μM. 
IC50 values against H441 (wt-EGFR) and H1975 
(EGFRT790M) are 0.75 μM and 0.83 μM, respectively. 
It suppressed tumorigenesis in lung cancer mouse 
xenograft in vivo and enhanced tumor inhibitory 
response in treatment with JAK2 inhibitor. 
It showed no apparent systematic toxicity in a 28-
day rat study (at 37.5 mg/kg). 

[246,265–267] [171–173] 

SLs EM23 (188) IC50 values against Caski and SiHa cell lines are 5.8 
and 6.6 μM, respectively. 

 [179] 

SLs 
Brevilin A 

(189) 

It selectively inhibits growth of DU145  
and MDA-MB-468. 
It inhibits JAK-STAT signaling pathway by attenu-
ating JAKs activity and blocking STAT3 signaling  
(IC50 = 10.6 μM) in cancer cells. 

[268] [186] 

DAGLs 
AJH-836 

(315) 
It is a selective ligand for PKCε.  
(Ki of PKCα = 46 nM, Ki of PKCε = 1.43 nM)  [14], [199] 

DLs 
Andro-

grapholide 
(373) 

IC50 value against PCa cells is 19.95 μM. 
IC50 value against A549 cells of PTX + 30 μM 373 is 
0.5 nM, showing significant synergy. 

[205,269] [207,211,212,216] 



Int. J. Mol. Sci. 2021, 22, 1052 58 of 69 
 

 

DLs 

19-triisopro-
pyl andro-
grapholide 

(343) 

IC50 = 6.3 μM and 1.6 μM for MKN-45 and AGS cell 
lines, respectively. 

 [208] 

DLs SRJ23 
(375) 

50-fold improved IC50 for PCa cells (0.4 μM) than 
373.  

 [211] 

DLs Nagilactone 
C (397) 

IC50 = 2–5 mM against MDA-MB-231, AGS, and 
Hela cell lines. 

 [224] 

DLs Nagilactone 
E (398) 

IC50 = 5.2 and 3.6 μM against A549 and NIC-H1975, 
respectively. 
In an A549 xenograft mouse model 
(10 mg/kg/d, ip), it suppressed tumor growth by 
62% 
and inhibited tumor metastasis without apparent 
toxicity 

 [226,227] 

Among sesquiterpene lactones reviewed in this work, parthenolide (183) inhibited 
growth of SiHa and MCF-7 cells with an IC50 value of 8.42 and 9.54 μM, respectively. Fur-
thermore, parthenolide (183), in combination with docetaxel, enhanced survival, and re-
duced metastases in a mouse xenograft model of breast cancer without any observed ap-
parent toxicity [80]. In addition, Parthenolide (183), as a main component of feverfew, un-
derwent a phase 1 clinical trial to assess its pharmacokinetics and toxicity [81,270]. Pre-
existing poor solubility and bioavailability issues of parthenolide (183) led to develop-
ment of DMAPT (190). Methods for preparation of parthenolide (183) derivatives are pa-
tented by Fusan R., et al. and Crooks, P., et al. [252,253]. DMAPT (190) has an increased 
PK profile compared to parthenolide (183) and significantly suppressed tumor growth in 
subcutaneous xenografts of A549 and UMUC-3 (transitional carcinoma cells) in athymic 
nude mice by 54% (100 mg/kg/day, oral) and 63% (100 mg/kg twice/day, oral), respectively. 
DMAPT (190) is reported to be in a phase 1 clinical trial in hematological malignancies in 
the United Kingdom [89,271,272]. DETD-35 (232), a derivative of deoxyelephantopin (185), 
inhibits growth of MDA-MB-231 cells with an IC50 value of 3.5 μM. Notably, it shows syn-
ergistic effects with vemurafenib to overcome BRAFV600E mutant melanoma in a mouse 
xenograft model. Antrocin (187) inhibits growth of EGFR-harboring cell lines H441 (wt-
EGFR) and H1975 (EGFRT790M) with an IC50 value of 0.75 and 0.83 μM, respectively. It sup-
pressed tumorigenesis in lung cancer mouse xenograft in vivo. Moreover, it showed no 
apparent systematic in a 28-day rat study (at 37.5 mg/kg). 

Among diterpene lactones, andrographolide (373) inhibited growth of PCa cells 
with an IC50 value of 19.95 μM and enhanced 5-FU induced apoptosis in 5-FU resistant 
cancer cells (HCT116/5-FUR). Use of andrographolide (373) derivatives in the manufac-
ture of medicaments and structural modification of the natural product to increase bio-
logical activities are patented [205,269]. Andrographolide (373) is reported to be in a phase 
2 clinical trial as treatment in colorectal neoplasms [273]. Nagilactone E (398) suppressed 
tumor growth by 62% in an A549 xenograft mouse model (10 mg/kg/day) and inhibited 
tumor metastasis without apparent toxicity. 

Overall, it may be said that these natural and synthetic lactones of various classes, 
given the activities described in this review, possess suitable properties to initiate further 
preclinical and clinical studies leading to advancement into new drugs. 

4. Conclusions and Future Prospects 
The pharmacologically significant natural products have been providing inspiration 

and guidance to make a paradigm shift for innovative drug development strategies, which 
serve as a great starting point for initiation of drug discovery programs. Taking into ac-
count the researches elucidated above, the natural and synthetic lactones addressed in this 
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review strongly suggest that they are promising therapeutic leads for oncology drug dis-
covery program. Moreover, the synthetic studies of above-mentioned natural products 
and their useful analogs will open up a whole new research field, contributing to the foun-
dation of intriguing new realm in the design and synthesis of natural products and their 
analogs as well. 

In this review, we mainly focused on recognized natural and synthetic analogs of 
lactones in each classification (RALs, SLs, DAGLs, and DLs) with notable antitumor ac-
tivities and we described their recent advancements made in the field of drug discovery. 
However, to reach a clinically viable drug from a potent natural product/-derived com-
pound, there are still several remaining challenges to be overcome: (a) difficulties in so-
phisticated synthetic modification due to structural complexity, (b) relatively poor drug-
like properties and target specificity, and (c) elusive exact biological targets and mecha-
nism of action. In this light, our extensive study on structural modification of L-783277 (4) 
demonstrated that simple changes in chemical structure such as saturation or rigidifica-
tion bring about significant improvements in terms of potency, target-selectivity, and 
pharmacokinetic property. In addition, the research mentioned above exemplified identi-
fication of possible cellular targets of DET (185) by using synthetic DET-related probes. 
We believe that ongoing studies on the synthesis and biological evaluation of such com-
pounds result in the establishment of novel methods for innovative drug design strategies 
and target identification. Furthermore, we anticipate that these findings would provide 
biologists as well as chemists with valuable insights and resources to achieve the ultimate 
goal towards cancer drug discovery program. 

5. Materials and Methods 
A comprehensive search was accomplished by using the following databases to ob-

tain the recent and relevant references in regards to natural and synthetic lactones: Pub-
Med, Science-Direct, Springer, ACS, NIH, Google Scholar, MEDLINE, EBSCO, Web of Sci-
ence, ClinicalTrials.gov, and Sci-Finder from 1946 to 2020. The keywords used include 
‘natural lactones’, ‘synthetic lactones’, ‘macrocyclic lactones’, ‘resorcylic acid lactones’, 
‘sesquiterpene lactones’, ‘diacylglycerol lactones’, and ‘diterpene lactones’ alone or com-
bined with the keywords ‘derivatives’, ‘anticancer’, ‘signaling pathway’, ‘apoptosis’, ‘cell 
cycle’, ‘necrosis’, ‘mutation’, ‘angiogenesis’, ‘metastasis’, ‘kinase inhibition’, ‘PI3K’, 
‘MAPK’, ‘ROS’, ‘target identification’, and ‘drug discovery’. 

Exclusively, references in English were included in this review due to language bar-
rier. Compound entries and references were selected according to the following criteria: 
availability of researches focused on (a) anticancer activities, (b) total synthesis, (c) syn-
thetic derivatives, (d) in-vitro and in-vivo studies, and (e) clinical studies. On the other 
side, compound entries and references were ruled out according to the following criteria: 
(a) researches, which are not focused on anticancer activity, (b) researches without suffi-
cient information on synthesis, and (c) researches without sufficient information on bio-
logical evaluation. In addition, only 4 resorcylic acid lactones have been selected as repre-
sentative because biology and chemistry of resorcylic acid lactones are generally well 
summarized in previous reviews [12,21]. 
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