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Abstract: Pancreatic cancer (PC) is difficult to detect in the early stages; thus, identifying specific
and sensitive biomarkers for PC diagnosis is crucial, especially in the case of early-stage tumors.
Circulating microRNAs are promising non-invasive biomarkers. Therefore, we aimed to identify
non-invasive miRNA biomarkers and build a model for PC diagnosis. For the training model, blood
serum samples from 63 PC patients and 63 control subjects were used. We selected 39 miRNA markers
using a smoothly clipped absolute deviation-based penalized support vector machine and built a PC
diagnosis model. From the double cross-validation, the average test AUC was 0.98. We validated the
diagnosis model using independent samples from 25 PC patients and 81 patients with intrahepatic
cholangiocarcinoma (ICC) and compared the results with those obtained from the diagnosis using
carbohydrate antigen 19-9. For the markers miR-155-5p, miR-4284, miR-346, miR-7145-5p, miR-5100,
miR-661, miR-22-3p, miR-4486, let-7b-5p, and miR-4703-5p, we conducted quantitative reverse
transcription PCR using samples from 17 independent PC patients, 8 ICC patients, and 8 healthy
individuals. Differential expression was observed in samples from PC patients. The diagnosis model
based on the identified markers showed high sensitivity and specificity for PC detection and is
potentially useful for early PC diagnosis.
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1. Introduction

Pancreatic cancer (PC) is one of the leading causes of cancer-related mortality, as the
symptoms of PC seldom appear in the early stages of the disease, and the cancer is mostly
detected after it has metastasized to other organs. According to cancer statistics in 2020, the
five-year survival rate of patients with PC is 9%, although that of patients with localized
PC is higher than 37%, based on patients diagnosed with pancreatic cancer between 2009
and 2015 [1].

The most effective strategy for reducing PC-related mortality is early diagnosis and
treatment. However, the lack of reliable markers for PC detection reduces the efficacy
of screening strategies in at-risk populations, such as those with chronic pancreatitis [2].
Carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) are the most
commonly used serological biomarkers; however, they lack sufficient sensitivity and
specificity for the detection of PC [3]. To improve the prognosis of patients with this form
of cancer, it is important to identify diagnostic biomarkers for PC.

Recently, microRNAs (miRNAs), which are small non-coding RNA molecules, have
been reported to play important roles in post-transcriptional regulation in cancer [4].
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Increasing evidence has shown that miRNAs are essential for the development, diagnosis,
and prognosis of cancer, suggesting that these RN As have potential for use as diagnostic
markers in cancer [5]. To date, nearly 100 miRNAs have been identified to be associated
with PC using tissue samples [2]. However, it is difficult to perform tissue biopsies in every
patient suspected of having PC. Therefore, the optimal biomarkers would be non-invasive
and derived from blood, such as circulating miRNAs, which may be readily collected from
the patient. Another reason for using circulating miRNAs as biomarkers is their remarkable
stability in plasma and serum. They are protected from RNAse degradation as they can be
packaged in microparticles (e.g., exosomes) or bound to Argonaut proteins or high-density
lipoproteins [6-10].

Currently, highly sensitive and specific invasive biomarkers are not available for
the detection of PC. Therefore, the primary objective of this study was to identify non-
invasive miRNA biomarkers and to build a prediction model for the diagnosis of PC. In
this study, 63 PC patients and 63 control subjects were used for the identification of miRNA
biomarkers, and an additional 25 PC samples and 81 intrahepatic cholangiocarcinoma (ICC)
samples were used for the validation of our proposed prediction model. For comparison,
we also obtained diagnosis results based on serum levels of CA19-9 in the same blood
samples. For additional validation, quantitative reverse transcription PCR (qRT-PCR) was
conducted using additional RNA samples from 17 patients with PC, 8 patients with ICC,
and 8 healthy individuals.

2. Materials and Methods
2.1. Study Design

The present study included 105 patients with PC, 109 patients with ICC, 7 patients with
stomach cancer (5C), 5 patients with colorectal cancer (CRC), 2 patients with gastrointestinal
stromal tumor (GIST), 10 patients with cholelithiasis (Ch), and 27 healthy subjects who had
been clinically classified at the time of participation. A case-control study was designed to
identify differentially expressed miRNAs (DEmiRNAs) between the case-control groups
and to build a diagnostic model for PC. For cases, 63 PC patients were used, and for
controls, two types of control groups were used.

The first type of control group consisted of 19 healthy subjects and 10 Ch patients.
The second type of control group, the non-PC group, included samples from patients
with other cancers as well as those from non-cancer subjects. In particular, we included
20 ICC patients, 7 SC patients, 5 CRC patients, and 2 GIST patients. We set aside 25 PC
and 81 ICC samples for the validation study. The clinical characteristics of the samples
in the microarray experiments and the grouping details are presented in Table 1. qRT-
PCR was conducted using samples from 17 PC patients, 8 ICC patients, and 8 healthy
individuals. The purpose of our study was not only to identify biomarkers for PC but also
to build a prediction model. Therefore, although the age of the subjects was significantly
different between the case and control groups, we decided to use the model without the
covariate, as the model with the covariate had a similar prediction performance to the
model without the covariate. The study protocol conformed to the ethical guidelines of the
1975 Declaration of Helsinki, and the Ethical Committee and Institutional Review Board of
Yonsei University College of Medicine approved the protocol of serum acquisition from the
patients’ specimens. Written informed consent was obtained from all participating patients
and healthy controls (IRB approval code 4-2012-0528, 20 September 2012).
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Table 1. Clinical characteristic of the samples used for the identification and validation of the diagnostic markers.

Training Cohort Validation Cohort
Variables
PC ICC CRC SC GIST Ch N PC ICC
Count 63 20 5 7 2 10 19 25 81
Age 63.0 £9.6 66.4 + 10.5 66.2 +5.2 60.0+144 5454106 60.2+12.1 46.8 +9.8 66.0 + 8.1 64.6 + 7.1
Female 19 (30.2) 8 (40.0) 2 (40.0) 1(14.3) 1 (50.0) 6 (54.5) 6 (30.0) 7 (28.0) 6 (33.3)
Stage *
I 4 1 1 1 2 1 7
1I 12 7 2 1 4 18
111 13 - 1 - 8 8
v 34 - 2 4 - 12 48
CA19-9,
U/mL
Median 336.5 + 1815+ 62.1 + 1969 + 45.8 +
level 6055.7 gg1] 00EBZ 5y 8.91+9.89 10.1£55 50855 5287.2
<37 16 (25.4) 6 (30.0) 4 (80.0) 3 (42.9) 2 (100) 19 (100) 7 (28.0) 37 (46.8)
>37 47 (74.6) 14 (70.0) 1(20.0) 4 (57.1) 0(0) 0(0) 18 (72.0) 42 (53.2)
Overall
Survival, 15.4 19.6 32.8 62.4 259 - 12 21.9
months

* Tumor stages were based on the staging classification of the 7th edition of the American Joint Committee on Cancer. Variables are expressed
as mean =+ standard deviation, median & standard deviation, or n (%). PC, pancreatic cancer; ICC, intrahepatic cholangiocarcinoma;
SC, stomach cancer; CRC, colorectal cancer; GIST, gastrointestinal stromal tumors; Ch, cholelithiasis; N, normal; SD, standard deviation;
CA19-9, carbohydrate antigen 19-1.

2.2. Sample Preparation

Patient samples were prospectively obtained from consenting individuals who under-
went a detailed clinical examination and were diagnosed at the Severance Hospital, Yonsei
University College of Medicine. Serum samples from 63 patients with PC, 63 non-PC
control subjects, and another 25 patients with PC and 81 patients with ICC were collected
in 10-mL BD serum tubes. Samples were centrifuged at 4 °C for 20 min at 3000x g. The
supernatant serum was then aliquoted and stored at —80 °C until further use.

2.3. MicroRNA Extraction

Total RNA containing miRNA was extracted from the serum samples using a serum
miRNA purification kit (Genolution, Seoul, Korea) according to the manufacturer’s instruc-
tions, and the RNA was resuspended in 12 puL. of RNase-free water and stored at —80 °C
until microarray or qRT-PCR analysis.

2.4. MicroRNA Microarray Experiments

For quality control, the purity and integrity of the RNA were evaluated based on
the OD260/280 ratio and analyzed using the Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Palo Alto, CA, USA). Analysis using the Affymetrix GeneChip miRNA 4.0 array
(Affymetrix, Santa Clara, CA, USA) was performed according to the manufacturer’s pro-
tocol. RNA samples (130 ng) were labeled using the FlashTag Biotin RNA Labeling Kit
(Genisphere, Hatfield, PA, USA). The labeled RNA was quantified, fractionated, and hy-
bridized to the miRNA microarray according to the standard procedures provided by
the manufacturer.

Next, the labeled RNA was heated to 99 °C for 5 min and then to 45 °C for 5 min.
RNA-array hybridization was performed with agitation at 60 rotations per minute for
16 h at 48 °C on an Affymetrix 450 Fluidics Station. The chips were washed and stained
using a GeneChip Fluidics Station 450 (Affymetrix). The chips were then scanned using
an Affymetrix GCS 3000 scanner; 232 CEL files were analyzed and normalized using
the Expression Console software. The Affymetrix GeneChip Micro 4.0 Array provides
100% miRBase v20 coverage (www.mirbase.org) using a one-color approach. This chip
contains 6658 human probe sets, which includes pre-mature miRNAs (n = 2025) and other
small RNAs (n = 1996), including internal and negative controls. For further analysis, we
extracted 2578 mature human miRNAs, from all probe sets.


www.mirbase.org
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2.5. Principal Component Analysis Based on Differentially Expressed Genes

Log2-transformed and normalized intensities for the 2578 human mature miRNAs
were analyzed for the difference in expression levels between the cases and controls. To
identify DEmiRNAs, we used a logistic regression analysis. Statistical significance was
determined using the false discovery rate (FDR) method; FDR < 0.05 was considered
significant in this analysis.

To examine the difference in miRNA profiles between the cases and controls, we
conducted a principal component analysis (PCA). The principal components of the two
groups were computed based on different sets of miRNAs: (i) all miRNAs and (ii) FDR
< 0.05. Based on this PCA model, we also predicted the principal components of the
validation samples (25 PC samples and 81 ICC samples). To visualize the pattern of each
group, we added 95% confidence ellipses of principal components in a PCA plot based on
the multivariate t distribution.

2.6. Biomarker Selection for Diagnosis

For diagnosis of PC, miRNA biomarkers were selected from the 2578 human mature
miRNAs, using the following procedure:

e  Step 1 (training/test data assigning):

O Whole data were randomly divided into 5 approximately equal-sized sub-
sets (folds).
O Each of the five folds were considered test data, and the remaining folds were

designated as training data (5-fold cross-validation).
e  Step 2 (candidate variable selection):

O Using the individualized assigned training data, logistic regression analysis
was conducted, and p-values and adjusted p-values (FDR) were computed for
each miRNA.

O First candidate miRNAs were selected (FDR < 0.05).

O By applying a smoothly clipped absolute deviation (SCAD) penalty to the
first candidate miRNAs, second candidate miRNAs with non-zero coefficients
were selected.

e  Step 3 (repetition):
O Steps 1 and 2 were repeated 200 times with random seed.
O 1000 (5-fold CV x 200 repetitions) sets of candidate miRNAs were obtained.

e  Step 4 (final variable selection by voting):

O From the 1000 sets of candidate miRNAs, the frequency of each candidate
miRNA was computed.
O The candidate miRNAs were sorted by frequency.

e  Step 5 (prediction model building):

O From the top K ranked miRNAs, the radial basis function (RBF)-kernel SVM
model was built (K=2,...,50).

O From each model (K =2, ..., 50), the optimal hyperparameters and perfor-
mance were calculated using double cross-validation.

O Optimal K was determined based on the performance of each model.

O As a final model, RBF-kernel SVM with K top-ranked miRNAs was applied
using the whole training dataset.

2.7. Double Cross-Validation

For the parametrization and validation of our diagnostic model, we used double
cross-validation [11,12], which consists of inner and outer cross validation. We conducted
the outer 5-fold cross validation to determine the optimal K and the inner 5-fold cross
validation for the hyperparameter assignment of SVM. In the inner 5-fold cross validation,
for the grid search of kernel hyperparameters, we assigned gamma values in the range of
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27105210 (210 2-9 ' 29 210) and cost values in the range of —27t027 (277,279,
...,25,27). In the outer 5-fold cross validation, the diagnostic models with K top-ranked
miRNAs were applied to the test data, and the area under the curve (AUC), sensitivity,
and specificity were calculated for each fold. We calculated these performances for several
Kvalues (K=2,...,50). This double cross-validation was repeated 20 times in random
seeds. The performance metrics were then averaged for 5 folds and 20 repetitions. Based
on this performance, we determined the final number of biomarkers (=K).

2.8. Smoothly Clipped Absolute Deviation (SCAD) Penalty

SCAD is a non-concave penalty function introduced by Fan and Li [13], and Zhang et al. [14]
considered the sparse SVM with SCAD for feature selection. The SCAD-penalized term for
each coefficient ¢; has the following form Equation (1) [14]:

Ayl if [t <A
ti|"—2aA|t;|+A2
palty) = —W if A< || <ar )
(et DA if |t;] > aA

In our analysis, Fan and Li’s suggested value for a = 3.7 was used. The parameter
A was assigned by minimizing the approximate generalized cross-validation statistics.
Among the various penalized methods for feature selection, we chose SCAD because it has
several desirable properties. For example, SCAD produces nearly unbiased estimates for
large coefficients, and the set of features selected using SCAD are asymptotically equivalent
to the set of true signal features; that is, SCAD satisfies the oracle property. We conducted
a penalized SVM with the SCAD penalty for multiple miRNA selection in the double
cross-validation in our study.

2.9. Quantitative RT-PCR

Reverse transcription and qRT-PCR were performed using a TagMan Advanced
miRNA cDNA Synthesis Kit (Applied Biosystems, Foster City, CA, USA), TagMan Ad-
vanced miRNA Assays (Applied Biosystems), and TagMan Fast Advanced Master Mix
(Applied Biosystems), according to the manufacturer’s protocols. qRT-PCR was performed
using an ABI Prism 7300 Sequence Detection System (Applied Biosystems), and primers
for the mature miRNAs were purchased from Applied Biosystems. PCR amplification
consisted of an initiation step at 95 °C for 10 min, followed by 55 cycles at 95 °C for 30s,
56 °C for 30 s, and 72 °C for 15 s. All qRT-PCR assays were performed in triplicate using
total RNA samples from 17 patients with PC, 8 patients with ICC, and 8 healthy indi-
viduals. Statistical analyses were analyzed using GraphPad 5 (GraphPad Software). The
miRNA expression between groups were calculated by a one-way ANOVA and Bonferroni
post-tests.

3. Results
3.1. Comparison between Case and Control by PCA

Upon comparing the 63 PC samples with the 29 non-cancer samples in the DEmiRNA
analysis, we identified 103 miRNAs that showed significant differences in expression
between the two groups (FDR < 0.05) (Table S1, Figure S1). When 103 miRNAs were used
in the PCA, the 63 PC samples (green dots) and 29 non-cancer samples (red dots) were well-
distinguished compared to when all miRNAs were used. Furthermore, 25 validation-PC
samples (purple dots) had similar patterns to the 63 PC samples, as shown in Figure 1a,b.
However, some of the 81 validation-ICC samples (blue points) had overlapping patterns
with the PC case samples. Thus, if we used only non-cancer samples as controls, the
biomarkers led to many false positives (for example, the biomarker could diagnose some
ICC patients as PC patients) and were not appropriate for the PC-specific diagnostic model.
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Figure 1. Principal component analysis by comparing case-control and validation samples based on different sets of miRNAs.
Red, green, blue, and purple dots represent control, case, validation-control, and validation-case samples, respectively.
(a,b) 63 pancreatic cancer (PC) cases and 29 non-cancer controls and (c,d) 63 PC cases and 63 non-PC controls. (a,c) All
miRNAs and (b,d) selected miRNAs with false discovery rate <0.05. PC, pancreatic cancer; v-PC, validated-pancreatic
cancer; FDR, false discovery rate; v-ICC, validated-intrahepatic cholangiocarcinoma.

Upon comparing the 63 PC samples with the 63 non-PC samples, we identified
149 miRNAs that showed significant differential expression between the two groups
(FDR < 0.05) (Table S2, Figure S2). When we used all the miRNA data in the PCA, the PC
and non-PC samples exhibited overlapping patterns of principal components (Figure 1c).
When the 149 differentially expressed miRNAs were used in the PCA, the clustering
patterns of the 63 PC samples and 63 non-PC samples were nearly distinguished, and
the validation samples (25 PC and 81 ICC) had similar patterns to those of the training
case-control samples, as shown in Figure 1d.

3.2. Building a Diagnostic Model Based on the Selected miRNA Markers

To build the diagnostic model, we decided to use the results of the comparison between
the PC samples and non-PC samples, including samples from patients with other cancers as
controls to obtain PC-specific diagnostic markers. For the selection of diagnostic markers,
we used 5-fold cross validation with 200 repetitions. In each fold of the cross-validation, we
conducted a logistic regression analysis without a covariate and selected a set of candidate
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miRNA markers whose FDR was less than 0.05. Then, through the use of the SVM with the
SCAD penalty function, the candidate markers were narrowed down to the markers with
non-zero coefficients.

We ranked the markers according to the selection frequency. Based on these frequen-
cies, K top-ranked miRNAs were used to build the RBF kernel SVM model. To determine
the value of K, through double cross-validation, we estimated the diagnostic performance
of the model with the K top-ranked miRNAs by varying K (K =1, ..., 50). As shown in
Figure 2, the performance measures increased as K increased and began to saturate at an
AUC of 0.98 and an accuracy of 0.93 when K was 39. Therefore, we decided to select the
top 39 miRNAs as diagnostic biomarkers for PC among the candidate miRNAs (Table 2).

uw
oy 4
o
o
O‘)_ —
[e]
w
w0 4
o
(]
oo 4
o
AUC
sensitivity
accuracy
specificity
T
50

K

Figure 2. Predictive performance based on K top-ranked markers. From 200 repetitions of 5-fold cross
validation, model prediction performance metrics, including area under the curve (AUC), sensitivity,
and specificity, were averaged with specific K. Accuracy is the average of sensitivity and specificity.

At K = 39, the mean sensitivity and mean specificity of the diagnostic model were
0.93 and 0.93, respectively, given an optimal decision threshold. The optimal threshold of
diagnosis probability was determined to be 0.55 by comparing the performance results
based on thresholds (0.5, 0.55, 0.6, 0.65, and 0.7). Among the 39 miRNAs, 28 miRNAs were
also differentially expressed between the PC samples and non-cancer samples (FDR < 0.05);
11 miRNAs were differentially expressed between the PC and non-PC samples (FDR < 0.05)
(Figure 3).

For validation, we next applied our PC-specific diagnostic model to a different set of
25 PC and 81 ICC samples. When the PC-diagnosis probability from the diagnostic model
was >0.55, we diagnosed the patient as having PC. We also applied CA19-9 diagnosis to
the same samples for comparison. When the CA19-9 value was >37, we diagnosed the
patient as having PC. As shown in Figure 4, the AUC of the proposed diagnostic model
was 1.5 times higher, the sensitivity was 1.3 times higher, and the specificity was 2 times
higher than that of the CA19-9 diagnosis model (the AUC, sensitivity, and specificity are
presented in Figure 4).
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Table 2. The identified 39 PC-specific diagnostic markers.

miRNA Selection Freq AUC Reference
hsa-miR-548ay-5p * 950 0.734
hsa-miR-155-5p * 842 0.808 [15-18]
hsa-miR-4284 836 0.708 [19]
hsa-miR-939-5p * 810 0.734 [20]
hsa-miR-642b-3p * 805 0.759 [21,22]
hsa-miR-346 * 736 0.749 [23]
hsa-miR-4690-5p * 690 0.716
hsa-miR-7154-5p 675 0.698
hsa-miR-3064-5p * 625 0.785 [24]
hsa-miR-1269b * 607 0.854
hsa-miR-4708-3p * 580 0.82
hsa-miR-5100 * 580 0.792 [25,26]
hsa-miR-548ag-3p * 580 0.76
hsa-miR-661 523 0.701 [27]
hsa-miR-4701-3p * 509 0.699
hsa-miR-1272 * 455 0.771
hsa-miR-455-3p * 454 0.732 [28,29]
hsa-miR-26a-5p 422 0.711 [30-32]
hsa-miR-22-3p * 388 0.758 [21,33]
hsa-miR-6894-3p 384 0.697
hsa-miR-3620-3p * 377 0.679
hsa-miR-4775 * 377 0.759
hsa-miR-4745-5p * 371 0.688 [29]
hsa-miR-6737-3p 371 0.673
hsa-miR-5189-3p * 357 0.693
hsa-miR-4647 356 0.741
hsa-miR-4486 * 349 0.788
hsa-miR-6865-5p * 345 0.764
hsa-miR-200b-5p * 344 0.726 [34,35]
hsa-miR-548ac * 313 0.852
hsa-let-7b-5p 298 0.676
hsa-miR-2278 * 291 0.741 [36]
hsa-miR-4703-5p * 262 0.603
hsa-miR-1226-5p 257 0.653
hsa-miR-640 * 245 0.725
hsa-miR-1277-3p 240 0.672
hsa-miR-218-5p 232 0.624 [19,37-39]
hsa-miR-512-3p * 218 0.664
hsa-miR-16-2-3p * 213 0.8

* The markers that were also differentially expressed between PC and non-cancer samples; other markers were
only differentially expressed between PC and non-PC samples.
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Figure 3. Venn diagram of the differentially expressed miRNAs and 39 selected diagnostic markers.
The top 39 miRNAs included 28 miRNAs that were differentially expressed between pancreatic
cancer (PC) samples and non-cancer samples (false discovery rate (FDR) < 0.05) and 11 miRNAs that
were differentially expressed only between the PC and non-PC samples (FDR < 0.05).
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Figure 4. Receiver-operating characteristic (ROC) curve for pancreatic cancer (PC) diagnosis based on the proposed model
and CA19-9. For validation, 25 PC samples and 81 intrahepatic cholangiocarcinoma samples were used to apply the (a)
proposed model and (b) CA19-9 diagnosis. The confidence band of the ROC curve is indicated in light blue. The blue point
represents the sensitivity and specificity based on the predefined threshold in each plot.

We also validated 10 miRNAs of the 39 diagnostic markers using qRT-PCR. For qRT-
PCR, blood samples from another 17 patients with PC, 8 patients with ICC, and 8 healthy
individuals were used (Table S3). The expression levels of miR-155-5p, miR-4284, let-346,
miR-7154-5p, miR-5100, miR-661, miR-22-3p, miR-4486, let-7b-5p, and miR-4703-5p were
analyzed using primers for mature miRNAs. The findings indicated differential expression
in PC versus ICC and healthy individuals. Decreased expression of miR-155-5p, miR-7154-
5p, miR-661, and miR-4703-5p and elevated expression of miR-5100, miR-22-3p, miR-4486,
and let-7b-5p were observed in PC patients. miR-4284 was only detected in cancer groups
and miR-346 was absent in patients with PC (Figure 5).
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Figure 5. miRNA expression determined using quantitative reverse transcription (QRT-PCR). Differential expression levels
of miRNAs selected from the chip data were further analyzed using gqRT-PCR to confirm the expression levels in the serum
samples of patients with PC (n = 17), patients with ICC (n = 8), and healthy individuals (1 = 8). The expression levels of (a)
miR-155-5p, (b) miR-4284, (c) let-346, (d) miR-7154-5p, (e) miR-5100, (f) miR-661, (g) miR-22-3p, (h) miR-4486, (i) let-7b-5p,
and (j) miR-4703-5p were analyzed using primers for mature miRNAs (* p-value < 0.05). The number of samples with
expression is indicated as (Number gxpression/ Number to,1). PC, pancreatic cancer; ICC, intrahepatic cholangiocarcinoma;

NL, normal or non-cancer.

4. Discussion

Despite multiple clinical trials and continued efforts, PC remains the most difficult
cancer to cure as it is difficult to diagnose at the early stages. In this study, we aimed to
identify circulating miRNA biomarkers for the detection of PC and to develop a diagnostic
model based on these markers. For the identification of diagnostic markers, we used
two types of control group. The first control group consisted of 29 non-cancer samples
and the second consisted of 63 non-PC samples, including those from patients with other
cancers. DEmiRNAs selected from the PC vs. non-cancer study successfully enabled
discrimination between the training-case samples and the training-control samples but
could not distinguish the validation-case samples from the validation-control samples,
possibly because the validation-control samples consisted of samples from patients with
ICC. For validation control, patients with ICC were used instead of healthy patients
to verify the specificity of PC diagnosis. PC and ICC are known to have overlapping
immunohistochemical profiles [40]. DEmiRNAs selected from the PC vs. non-PC study
differentiated the cases from the controls well, both in the training samples and in the
validation samples. As a result, we found that the PC vs. non-PC grouping was more
acceptable for identification of PC-specific diagnostic markers than the PC vs. non-cancer
grouping. Based on this grouping, we tried to identify PC-specific diagnosis markers from
2578 miRNAs. In order to consider joint effects from multiple core miRNAs and filter the
negative effects caused by irrelevant miRNAs, we conducted a penalized SVM with SCAD
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penalty. As a result, we identified 39 PC-specific diagnostic markers using SCAD-based
penalized SVM with a double cross-validation technique.

Among the 39 PC-specific markers, 15 miRNAs have been reported to serve as PC
markers in previous studies. Some of these (miR-155-5p, miR-939-5p, miR-346, miR-3064-
5p, miR-661, miR-26a-5p, miR-200b-5p, and miR-218-5p) were found to be differentially
expressed in PC tissues [15-20,23,24,27,30-32,34,35,37-39]. miR-939-5p, miR-200b-5p, and
miR-218-5p were also differentially expressed in PC cell lines. miR-642b-3p and miR-22-
3p, which have previously been reported as early diagnostic markers for PC, showed
altered levels in the blood of patients with PC [21,22,33]. miR-4284 and miR-5100 are
underexpressed in cyst fluid and saliva samples, respectively, in patients with PC [19,25,26].
miR-455-3p and miR-4745-5p have been found to be related to resistance to gemcitabine
treatment in patients with PC [28,29]. Among the 39 markers obtained, several of them have
also been reported to act as markers of other cancers, including colon, ovarian, breast, liver,
lung, and prostate cancer. These markers, individually, are not specific to PC; however, we
believe that our joint algorithm based on all 39 markers enables highly specific diagnosis
of PC.

Among the present selected diagnostic markers, 10 markers were analyzed by qRT-
PCR and differential expression was observed between cancer groups and healthy in-
dividuals. Previously reported PC markers including miR-155-5p, miR-4284, miR-5100,
miR-346, miR-661, and miR-22-3p, as well as the novel markers including miR-7154-5p,
miR-miR-4486, let-7b-5p, and miR-4703-5p, consistently showed differential expression in
the PC samples, in both the microarray and qRT-PCR.

The markers identified in the present study have potential for use in the early diagnosis
of PC and are expected to serve as a major platform for developing commercial models for
the timely diagnosis of PC.

5. Conclusions

In this study, we identified 39 circulating miRNAs as PC-specific diagnostic markers
using penalized methods. They include several novel biomarkers that have not yet been
reported for PC diagnosis. For inner validation, we estimated the sensitivity and specificity
of our diagnostic model through double cross-validation and obtained a mean sensitivity
of 0.93 and mean specificity of 0.93. We also validated the specificity using 25 independent
PC and 81 ICC samples with a PCA analysis and conducted gRT-PCR validation on several
diagnostic markers using independent samples from 17 PC, 8 ICC, and 8 healthy control
patients. qRT-PCR analysis indicated that miR-155-5p, miR-4284, miR-346, miR-7145-5p,
miR-5100, miR-661, miR-22-3p, miR-4486, let-7b-5p, and miR-4703-5p were differentially
expressed in samples from patients with PC. Overall, while we are convinced that our
identified miRNA biomarkers based on the PC-specific diagnosis model improve the
detection rate for PC, further validation studies will be needed in the future.
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