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Abstract: Chronic hepatitis B virus (HBV) infection is one of the most common factors associated
with hepatocellular carcinoma (HCC), which is the sixth most prevalent cancer among all cancers
worldwide. However, the pathogenesis of HBV-mediated hepatocarcinogenesis is unclear. Evidence
currently available suggests that the HBV core protein (HBc) plays a potential role in the development
of HCC, such as the HBV X protein. The core protein, which is the structural component of the
viral nucleocapsid, contributes to almost every stage of the HBV life cycle and occupies diverse
roles in HBV replication and pathogenesis. Recent studies have shown that HBc was able to disrupt
various pathways involved in liver carcinogenesis: the signaling pathways implicated in migration
and proliferation of hepatoma cells, apoptosis pathways, and cell metabolic pathways inducing
the development of HCC; and the immune system, through the expression and production of
proinflammatory cytokines. In addition, HBc can modulate normal functions of hepatocytes through
disrupting human host gene expression by binding to promoter regions. This HBV protein also
promotes HCC metastasis through epigenetic alterations, such as micro-RNA. This review focuses
on the molecular pathogenesis of the HBc protein in HBV-induced HCC.
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1. Introduction

Hepatitis B virus (HBV) infection is a major health problem worldwide despite the
availability of an effective vaccine and antiviral drugs. More than 295 million individuals
are chronic HBV carriers, and are at risk of developing end-stage liver diseases (cirrhosis,
liver failure, and hepatocellular carcinoma [HCC]) [1-4].

HBYV is an enveloped virus belonging to the Hepadnaviridae family with a 3.2 kb
circular and partly double-stranded DNA genome [5]. The transcriptional template of HBV
is the covalently closed circular double-stranded DNA (cccDNA), which resides inside
the hepatocyte nucleus as a chromosome-like structure. The cccDNA, which is its viral
persistence form, expresses at least six overlapping RNAs, from four overlapping open
reading frames (ORFs), leading to the production of seven proteins. The replication of HBV
implicates reverse transcription of the pregenomic RNA (pgRNA) intermediate into HBV
DNA. The four ORFs are called C, S, P, and X. The C ORF has two genes that encode the
hepatitis B core protein (HBc) and the hepatitis B e (HBe) protein. The S ORF contains
preS1, preS2, and hepatitis B surface (HBs) domains, and encodes three viral envelope
proteins, including large, middle, and small HBs antigen (HBsAg), respectively. The P and
X ORFs have viral polymerase and HBx genes responsible for expressing the polymerase
protein and the viral transactivator HBx protein, respectively. The HBV gene expression is
regulated by four promoters and two enhancer elements. Enhancer I partially overlaps the
X promoter, and enhancer II is located upstream of the core promoter [6,7].

HCC is the sixth most prevalent cancer among all cancers worldwide and ranks the
second in annual cancer mortality rates [8]. Chronic HBV infection is the dominant global
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cause of HCC accounting for 55% of HCC cases worldwide and 80% or more of these in
the Eastern Pacific region and Sub-Saharan Africa, which are the areas with the highest
tumor incidence [9,10].

Previous studies have suggested that chronic HBV infection results in the integration
of the HBV genome into the host chromosome, persistent liver inflammation, high levels
of reactive oxygen species, continual hepatocyte regeneration, and the dysregulation of
the cell death and DNA repair pathways in the liver, which may in turn contribute to the
development of HCC through hepatocyte destruction/regeneration and malignant trans-
formation [11-13]. Hepatoma formation is linked to significant changes in several cellular
signaling pathways, including the Wnt/ 3-catenin, p53, MAPK, and NF-kB pathways, and
it alters the expression of these genes [14].

To date, the molecular mechanisms of HBV malignant transformation remain to be
comprehensively elucidated. The pathogenesis of the tumor seems to be multifactorial, and
the mechanisms involved include activation of oncogenes and silencing of tumor suppres-
sor genes. Among specific proteins of HBV, much of the available evidence supports the
hypothesis that the HBx protein plays a pathogenetic role for the mechanisms underlying
HBV-induced malignant transformation [8]. HBx is a key regulatory protein of HBV that
modulates transcription, protein degradation, signal transduction, and apoptotic and cell
cycle regulatory pathways [15]. Here, we are interested in the HBc protein, another protein
of HBV that contributes in nearly every stage of the HBV life cycle due to the versatile
nature of this protein, in particular through its C-terminal arginine-rich domain and the
post-translational modifications occurring at this level [16]. HBc protein could also be
involved in the malignant transformation process. Thus, HBc is found to be associated
with the activation of cellular signaling pathways that are related to cell proliferation and
migration [14,17-19]. Some studies also suggest the role of HBc protein arising from its
gene regulatory properties [20] and HBc proteins have been found expressed in enormous
quantities in infected tissues [14]. The principal purpose of this review is to illustrate and
understand the complex role of HBc protein in HBV malignant transformation. While the
previous reviews focused on the role of HBx protein in the molecular mechanisms of HBV
malignant transformation, this review, for the first time, focuses on the involvement of HBc
protein in the development of HCC (Figure 1 and Table 1).
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Figure 1. Pleiotropic role of HBc protein in hepatocarcinogenesis. DR5: death receptor 5; NEU1: neu-
raminidase 1; hTERT: human telomerase reverse transcriptase; C5AR1: C5«x receptor 1, MAPK/ERK:
mitogen-activated protein kinase/extracellular signal-regulated kinase; IL-6: interleukine-6; HBV:
hepatitis B virus; HCC: hepatocellular carcinoma; DLC-1: deleted in liver cancer.
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Table 1. Interactions and reported mechanisms of HBc protein on the various pathways (signaling pathways involved in

migration and proliferation of hepatoma cells, apoptosis pathways, metabolic disorders, immune system), epigenetic and

genetic events.

Mechanism of HBc to Promote

Group Target Hepatocarcinogenesis Reference
Neuraminidase 1 Promote NEUl. expression inducing proliferation [18]
and migration of hepatoma cells
Src/PI3k/ Akt Activate Src/ PI31§/ Akt pathway inducing tumor [14]
formation of hepatoma cells
. . Upregulate the c-Ets2-dependent expression of
Signaling pathways hTERT hTERT inducing hepatoma cell proliferation [17]
Upregulate C5AR1 via NF-«B pathway to facilitate
Ca receptor 1 the growth and migration of hepatoma cells [19]
MAPK/ERK and Bind to gene promoters of these pathways, thus [20]
Wnt/ 3-catenin participating in the progression of HCC
Prevent hepatoma cells from anti-Fas

antibody-induced apoptosis through the [21]

p53 p53-dependent Fas/FasL signaling pathway
Anti-apoptosis Repress the p53 gene through the transcription [22]

factor E2F1 binding site in the p53 promoter
DR5 Prevent hepatocytes from TRAIL-induced apoptosis [23]

through inhibiting DR5 expression
Upregulate aminoacyl-tRNA biosynthesis and
Metabolic disorders Cell metabolism phenylalanine and glycine metabolism inducing [24]
development of HCC
Immune L6 Enhance IL-6 expression and production that [25]
system involved in pathogenesis of HBV

. . . Promote HCC metastasis through enhancing

Epigenetic miR-382-5p miR-382-5p level and reducing DLC-1 expression [26]
Disrupt human host gene expression by binding to

. Promoter . ¢ -

Genetic . promoter regions, which modulate normal functions [20]
regions .
of liver cells

Interaction with viral protein P53 Inactivate the p53 gene, thus participating in HCC [22]

as HBx protein

progress

NEUL: neuraminidase 1; hTERT: human telomerase reverse transcriptase; C5AR1: C5« receptor 1; MAPK/ERK: mitogen-activated protein
kinase/extracellular signal-regulated kinase; DR5: death receptor 5; MKKY7: mitogen-activated protein kinase kinase 7; IL-6: interleukine-6;
HBV: hepatitis B virus; HCC: hepatocellular carcinoma; DLC-1: deleted in liver cancer.

2. HBc Protein, Description, and Functions in the Viral Life Cycle

HBc protein, also named core antigen, is a structural component of the viral nucleocap-
sid. The 21 kDa HBc protein self-assembles to form the subviral nucleocapsid particles that
package the viral polymerase and pgRNA during RNA replication [27,28]. HBc assembles
first in dimers, secondly in trimers of dimers and finally into hexamers forming icosahedral
capsid particles [29]. Multimerization of 120 HBc dimers (i.e., 240 capsomeres) leads to the
production of the icosahedral capsid particle. The dimers form the icosahedral capsid with
a triangulation number T = 3 for 90 self-assembling dimers, or T = 4 for 120 self-assembling
dimers [30].

Depending on the HBV genotype (A to J), HBc is a 183 or 185 residue protein, with two
distinct domains connected by a hinge region (position 140 to position 149): the N-terminal
140 amino acid domain contains the capsid assembly domain that is sufficient for self-
assembly into capsid particles; and the C-terminal arginine-rich domain (CTD) (position
149 to position 183 or 185), which shares a high similarity with protamine and functions as
a nucleic acid-binding domain (RNA /DNA viral) [31,32]. The core protein has been found
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in both the cytoplasmic and nuclear compartments of HBV-infected hepatocytes according
to histological analysis of tissues from HBV-infected patients [33,34]. Posttranslational
modifications are important in targeting specific subcellular compartments, regulating
the folding of proteins, their stability, their interaction with ligands or other proteins, and
their catalytic activity or signaling function [35]. These modifications include C-terminal
serine phosphorylation, ubiquitination, and arginine methylation in particular [36]. Thus,
the HBc CTD plays a potential role in HBc subcellular localization. The nuclear import
of capsids is facilitated by HBc phosphorylation [16]. The HBc CTD undergoes dynamic
phosphorylation and dephosphorylation events that regulate its nucleic acid binding, sub-
cellular localization, and other functions, such as pgRNA packaging, DNA synthesis, and
virion secretion [16,37]. Arginine methylation is involved in a variety of biological pro-
cesses including chromatin regulation, transcription control, RNA processing, and nuclear
transport [36]. Therefore, the core protein contributes in nearly every stage of the HBV life
cycle, including subcellular trafficking, and release of the HBV genome, RNA metabolism,
capsid assembly, and transport, and regulation of viral reverse transcription [16]. Moreover,
several studies have suggested that HBc might function as a gene regulatory protein based
on the presence of nucleic acid-binding motifs, nuclear localization signals, phosphory-
lation sites at the serine residues of the C-terminal SPRRR motif and its localization in
the nucleus [38—40]. HBc could regulate various biological processes by interacting with
different cellular factors [41], such as human gene promoters, and could disrupt normal
host gene expression as a regulator of transcription [20].

3. HBc Protein, a Pleiotropic Role in Hepatocarcinogenesis
3.1. Interaction with Signaling Pathways Involved in Proliferation of Hepatoma Cells

The development of HBV-mediated HCC involves deregulation in many cellular
signal pathways and the identification of these pathways is important in understanding
the pathophysiological role of proliferation and migration of hepatoma cells in HCC [42].

3.1.1. Neuraminidase 1 Pathway

Neuraminidase 1 (NEU1) has been described as a major target in the sialidase-
mediated regulation of tumorigenesis. This human sialidase expressed in a variety of
tissues regulates the sialylation of multiple proteins. It participates in many physiological
processes, including cellular proliferation, migration, differentiation, and apoptosis [43,44].
NEU1 expression is elevated in HCC tissues [45] and some studies found that this sialidase
is associated with HCC induced by HBV infection [46,47].

One study aimed to evaluate the role of NEU1 in the activation of signaling pathways
and epithelial-mesenchymal transition, and the proliferation and migration of hepatoma
cells mediated by HBc protein. They showed via immunohistochemical analysis that NEU1
was upregulated in HBV-positive hepatoma cells and HBV-related HCC tissues because
HBYV promotes NEU1 expression via HBc protein in hepatoma cells. Through the increase
in NEUI1 expression, HBc contributes to the activation of downstream signaling pathways
and epithelial-mesenchymal transition in HBV-associated hepatoma cells. NEU1 therefore
facilitates the proliferation and migration of hepatoma cells mediated by HBc protein, which
may in turn upregulate NEU1 to facilitate HCC development. These data provide novel
insights into the molecular mechanism underlying the hepatocarcinogenesis mediated
by HBc and indicate that NEU1 plays an important role in HBc-mediated functional
abnormality in HCC [18]. The involvement of NEU1 with oncogenic viruses other than
HBYV has not been described so far.

3.1.2. Abnormal Sarcoma (Src)/PI3k/ Akt Pathway

Aberrant phosphoinositide 3-kinase (PI3k)/ Akt pathway activation would be asso-
ciated with the development of HCC [48]. As a dominant non-receptor tyrosine kinase
activated in HCC, abnormal sarcoma (Src) signaling activation conferred by HBV is in-
volved in HBV-mediated HCC [49,50]. The HBV large surface antigen (LHBs) and the HBV
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core protein, two proteins of HBV, seem to activate this pathway. LHBs promotes liver
carcinogenesis by activating the Src/PI3K/Akt pathway. These effects were caused by
activation of this pathway through proximal stimulation of PKC«/Rafl signaling by LHBs.

Following these findings, a recent study with mechanistic investigations demonstrated
that the activation of the Src/PI3k/Akt pathway through proximal switch from inactive
Src to the active form of the kinase by HBc protein increased the tumor formation of
hepatoma cells. HBc-mediated Src kinase activation was associated with downregulation
of C-terminal Src kinase (Csk). In addition, HBc enhances Src expression by activating
the alternative Src 1A promoter in a Sp1 transcription factor-dependent manner. In other
words, the HBV core protein serves to promote Src kinase activation by repressing the
expression of Csk at a transcriptional level and increasing Src expression by facilitating the
Sp1 transcription factor. Proliferation induced by stable HBc expression is associated with
increased G1-S cell cycle progression mediated by Src kinase activation. These findings
reveal that the HBV core protein is a strong prosurvival factor and serves to promote
tumorigenesis of hepatoma cells dependent on Src/PI3k/Akt signal activation in vitro and
in vivo [14].

3.1.3. Human Telomerase Reverse Transcriptase (W\TERT) Pathway

The telomerase activation is essential for cell immortalization and the enzymatic
activity is regulated by human telomerase reverse transcriptase (WTERT) [51,52]. Aber-
rant telomerase activity is closely associated with the development of human cancers and
senescence evasion [53]. As for other oncogenic viruses, telomerase activity is essential for
Epstein—Barr virus (EBV)-induced cell immortalization to overcome cell senescence and
maintain replicative potential [54]. Telomerase activity is especially elevated in the develop-
ment of HBV-related HCC because high levels of telomerase activity are observed in more
than 80% of human HCC samples and nearly 100% of HBV-positive HCC tissues [55-57].

hTERT expression is regulated by several transcription factors, including c-Myc, Sp1,
E2F, and the Ets family [58]. Previous studies indicated in particular that the hTERT
expression and its promoter activity are dependent on the transcription factor of c-Ets2
expression [59,60] and that the c-Ets2 is a critical regulator of hTERT expression [59,61].
High levels of c-Ets2 expression would be associated with the development of HCC [62].

Recent research employing luciferase assays showed that the HBc enhances the hTERT
promoter activity in a dose-dependent manner. Further mapping of the hTERT promoter
region indicated that the sequence of between —197 and —130 bp in the hTERT promoter
contains the potential binding sites for transcription factors of c-Ets2 and was important
for the HBc-enhanced hTERT promoter activity. HBc protein contributes to hepatoma cell
proliferation by upregulating the c-Ets2-dependent expression of hTERT, associated with
higher levels of hTERT and nuclear c-Ets2 expression in HBc-positive HCC samples [17].

3.1.4. C5x Receptor 1 Pathway

C5« receptor 1 (C5AR1) is a main component of complement systems. After binding
to complement C5¢, the activation of C5AR1 has multiple effects on cell activity, such as the
regulation of the differentiation and function of various target cells, and the participation in
multiple innate immune responses [63,64]. Several studies have demonstrated that C5AR1
is closely associated with the pathogenesis of a variety of human tumors [65-67]. Hu
et al. found that C5AR1 expression was significantly elevated in HCC tissues, and it could
promote the invasion of hepatoma cells via epithelial-mesenchymal transition mediated
by extracellular signal-regulated kinase (ERK)1/2 [68].

In a recent study, Kong et al. described that HBV could promote C5AR1 expression
through viral HBc protein in hepatoma cells, and the upregulation of C5AR1 mediated
by HBc mainly relied on the NF-«B pathway. Based on the C5AR1, HBc facilitates the
activation of intracellular signal pathways (such as c-Jun N-terminal kinase (JNK) and ERK
pathways) as well as the expression and secretion of interleukin (IL)-6 in hepatoma cells.
The activation of JNK and ERK pathways induced by HBc might affect multiple biological
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processes to facilitate the development of HBV-related HCC. Therefore, C5AR1 has a major
role in the growth and migration of hepatoma cells mediated by HBc [19].

3.1.5. Mitogen-Activated Protein Kinase (MAPK)/ERK and Wnt/3-Catenin Pathways

The mitogen-activated protein kinase (MAPK)/ ERK signaling pathway plays a key
role in regulating cell biological functions, such as proliferation, differentiation, and cell
survival [69]. The Wnt/3-catenin pathway is also an important signaling pathway in
the process of growth and development. Abnormal activation of these two pathways is
heavily involved in hepatocarcinogenesis [70]. Thus, dysregulation of these pathways
leads to inappropriate cellular behavior and participate in cellular transformation and
carcinogenesis [69,71]. The frequency of mutations in the components of the MAPK/ERK
signaling pathway is low, but frequent activation of the signaling has been found in HCC
patients [71]. The aberrant activation may result from somatic mutations in the genes of
the Wnt/ 3-catenin pathway and/or dysregulation of the Wnt/ 3-catenin pathway [72].

A study showed that HBc protein could bind to 64 gene promoters of the MAPK path-
ways and 41 gene promoters of the Wnt/3-catenin signaling pathways, thus participating
in the progression of HCC. The HBc binding to many gene promoters may have profound
effects on host cellular functions, potentially increasing a cell’s susceptibility to harmful
factors, such as carcinogens [20].

3.2. HBc Protein, an Anti-Apoptotic Viral Protein

Resistance of HBV-infected hepatocytes to apoptosis is considered one of the major
causes in the progression of chronic hepatitis to cirrhosis and ultimately to HCC [23,73].
Apoptosis of HBV-infected hepatocytes is mainly mediated by signaling belonging to
the tumor necrosis factor (TNF) protein family, including TNF-«, Fas ligand (FasL), and
TNF-related apoptosis-inducing ligand (TRAIL) [74,75]. TNF-o and FasL are considered as
death receptor ligands.

3.2.1. Repression of the Proapoptotic p53

FasL induces apoptosis of hepatocytes in both normally functioning liver and in
various forms of liver disease [76] and the Fas/FasL system plays an important role in
hepatocyte death during HBV infection. In response to DNA damage, the p53 tumor
suppressor protein induces either apoptosis or cell cycle arrest at the G1-S. Previous studies
reported that Fas transcriptional expression is regulated by p53 protein in hepatoma
cells, and the cross-talk between the p53 and Fas-FasL pathways in modulating apoptosis
is clinically important [77,78]. HCC may progress through the deactivation of the p53
gene [79,80].

A study demonstrated that the expression of HBx protein in infected cells inhibits the
induction of apoptosis by direct interaction with the tumor suppressor p53 [81]. A similar
mechanism is observed with HBc protein. Liu et al. therefore found that HBc mediated
resistance of human hepatoma cells to agonistic anti-Fas antibody-induced apoptosis. They
then identified that HBc significantly downregulated the expression of p53, total Fas and
membrane-bound Fas at the RNA and protein levels and reduced FasL at the transcriptional
level. In contrast, HBc increased the expression of soluble forms of Fas (sFas) by facilitation
of Fas alternative splicing. Mechanistically, HBc-mediated Fas alternative mRNA splicing
was associated with the upregulation of polypyrimidine tract-binding protein 1 and the
downregulation of Fas-activated serine/threonine kinase. HBc may prevent hepatocytes
from apoptosis induced by Fas/FasL system by the dual effects of reducing the expression
of the proapoptotic form of Fas and enhancing the expression of the antiapoptotic form of
the receptor, which may contribute to the survival and persistence of infected hepatocytes
toward the development of chronic HBV infection. HBc is a survival factor capable of
protecting cells, such as hepatoma cells from anti-Fas antibody-induced apoptosis through
the p53-dependent Fas/FasL signaling pathway [21].
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The E2F family of transcription factors plays an essential role in mediating cell cycle
progression, particularly those involved in G1-S progression [82], and it has been implicated
in the regulation of growth inhibition, differentiation, apoptosis, and oncogenic transfor-
mation. Previous studies have shown that E2F1 functions as both an oncogene and a tumor
suppressor gene [83,84]. A study revealed that HBc protein is a transcriptional repressor of
the human p53 gene. Indeed, an electrophoretic mobility shift assay demonstrated that the
binding of HBc to E2F1 reduced the DNA-binding ability of E2F1 at the p53 promoter [22].

3.2.2. TNF-Related Apoptosis-Inducing Ligand (TRAIL) Apoptotic Pathway

Unlike TNF and FasL, TRAIL preferentially induces apoptosis of tumor cells and
virus-infected cells, but does not induce apoptosis of normal cells [75,85,86]. Following
high-risk human papillomavirus (HPV) infection, viral proteins use different strategies
to modulate apoptosis. In particular, the E5 protein of HPV can disrupt TRAIL-mediated
apoptosis, which suggests that it may prevent apoptosis of cells at early stages of viral
infection [87].

The TRAIL was recently reported to be implicated in hepatocyte death during HBV
infection. Interestingly, two HBV proteins, HBx and truncated middle hepatitis B surface
protein (MHBs(t)), were found to sensitize hepatocytes to TRAIL-induced apoptosis. Other
data showed that HBx enhances TRAIL-induced apoptosis through Bax upregulation,
whereas MHBs(t) does this through ERK2 activation [75,88].

In contrast, Liu et al. found that HBc protein had an opposite role in TRAIL-induced
hepatocyte apoptosis. Indeed, HBc would be a strong inhibitor of TRAIL-induced apoptosis
by blocking death receptor 5 (DR5) expression [89] inducing a decrease of TRAIL-induced
apoptosis of human hepatoma cells. The DR5 gene promoter has no typical TATA-box,
but has two Spl sites responsible for the basal transcription activity of the DR5 gene [90].
Transcription factors such as NF-kB and p53 can regulate the DR5 promoter activity. In
hepatoma cell lines expressing the core protein, HBc protein induces a significant reduction
in DR5 expression that represses the DR5 promoter activity. Consequently, HBc prevents
hepatocytes from TRAIL-induced apoptosis through inhibiting DR5 expression [23]. In
practice, if the pro-apoptotic proteins, such as HBx, are majority, HBV-infected hepatocytes
may die as a consequence, and fulminant hepatitis may develop. In contrast, if the anti-
apoptotic viral proteins, such as HBc predominate, the infected hepatocytes may not
undergo apoptosis and chronic HBV infection may ensue.

3.3. HBc Protein, a Pro-Apoptotic Viral Protein

HBc protein would prevent hepatocyte from FasL-induced apoptosis by altering the
membrane and soluble Fas level, while it would also prevent sensitized TNF-a-induced
apoptosis by disrupting the interaction between mitogen-activated protein kinase kinase
7 (MKK?) and receptor of activated protein kinase C 1 (RACK1). RACK1 is described as a
scaffold protein that facilitates the phosphorylation of MKK? by its upstream activators.

One study with ectopic expression of HBc in HepG2 cells and primary hepatocyte cul-
tures reported that HBc abolishes the interaction between MKK7 and RACK1 by competing
with MKKY for binding to RACKI, thereby downregulating TNF-induced phosphorylation
of MKKY and the activation of JNK, an important regulator of TNF-« signaling. Specific
knockdown of MKK?7 increases the sensitivity of hepatocytes to TNF-induced apoptosis,
while overexpression of RACKI1 counteracts the proapoptotic activity of HBc. The expres-
sion of HBc makes hepatocytes susceptible to TNF-induced apoptosis by disrupting the
interaction between MKK7 and RACK1 [91] and this finding suggests a direct role of the
core protein in driving liver pathogenesis in chronically infected patients.

3.4. HBc Protein, a Viral Protein Involved in Metabolic Disorders

The progression of cancer seems to involve major disorders in cell metabolism [92].
Metabolic disorders are shared by both transformed cells and those infected with viruses,
suggesting that metabolic reprogramming is an important hallmark of viral oncogenesis.
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Viruses handle metabolic pathways and associated-signaling cascades to provide sufficient
resources for the production of new virions. Among viruses, chronic Hepatitis C virus
(HCV) infection is more associated with metabolic alterations than HBV infection. Indeed,
patients with chronic HCV often develop secondary metabolic disorders, such as insulin
resistance and steatosis [93].

One study reported that the link between metabolic disorders and HCC could be
attributed to the effects of HBV infection and in particular the HBV-encoded proteins [94],
such as HBx protein [95]. Recently, multi-omics analyses of HBc transfected cells revealed
that HBc protein promotes the expression of multiple metabolic enzymes and the secretion
of metabolites from hepatoma cells modifying the metabolic characteristics of HCC cells,
and contributes to HBV-related metabolic dysregulation through the modulation of glycol-
ysis and amino acid metabolism. For instance, glycolysis and amino acid metabolism are
significantly upregulated by HBc. Max-like protein X (MLX) would be an important protein
in glycolysis and lipid biosynthesis in tumorigenesis. Besides, MLX might be recruited and
enriched by HBc in the nucleus to regulate glycolysis pathways. Moreover, PGK1 is also
upregulated by HBc. A recent study highlighted that PGK1 acted as a protein kinase in
coordinating glycolysis and the tricarboxylic acid cycle, which is instrumental in cancer
metabolism and tumorigenesis [96]. Therefore, Xie et al. concluded that nine pathways
were considered closely related to the development of HCC, including aminoacyl-tRNA
biosynthesis and phenylalanine and glycine metabolism [24].

Dysregulated cholesterol homeostasis is a characteristic of numerous diseases, in-
cluding liver fibrosis, and even many cancers. A recent study showed that ethanol and
HBYV together synergistically enhance cholesterol biosynthesis and decrease cholesterol
utilization and its uptake in vivo and in vitro. Thus, HBV is involved in the dysregulation
of cholesterol homeostasis and increases hepatic cholesterol deposition in alcoholic fatty
liver via the hepatitis B core protein [97]. These changes may contribute to the progression
of various coexisting diseases.

3.5. HBc Protein, a Pro-Inflammatory Viral Protein

Interleukin (IL)-6 is one of the most significant cytokines involved in hepatic inflam-
mation and hepatocarcinogenesis in patients with liver diseases [98-100]. Its role has been
described in HCV [101] and HBV infections [100]. Higher serum IL-6 level was an inde-
pendent risk factor for HCC development in female hepatitis C patients. In the case of
HBYV infection, high serum IL-6 level was also associated with HCC risk [98] and aspartate
aminotransferase [102], and considered as a prognostic indicator in HCC [103]. Previous
studies described that human hepatoma cells and hepatic cells secrete IL-6 after activating
NF-kB pathway and a MyD88-dependent signaling pathway, whose activation is regulated by
protein phosphatase type 2 C alpha in the presence of HBx protein [104-106]. An intracellular
HBcAg expression model (transfected hepatocyte-like cells) showed that the expression of
HBc in hepatocytes enhances IL-6 expression and production (checked by qPCR and ELISA,
respectively), which was mediated through activating p38 mitogen-activated protein kinase,
extracellular signal-related kinase and NF-kB pathways. Cytoplasmic HBcAg seems to be a
viral antigen for immune-mediated liver damage, and HBV-infected parenchymal cells may
produce proinflammatory cytokines that are involved in pathogenesis of hepatitis B [25].

3.6. HBc Protein, a Regulator of miRNA Expression

Accumulated epigenetic alterations including histone modification, DNA methylation
and non-coding RNA (micro RNA or miRNA, IncRNA) were described to have profound
significance in HBV-related carcinogenesis [107]. Through its partially complementary
sequence to the 3’-UTR of target mRNAs, miRNAs result in gene silencing via translational
repression and/or mRNA degradation and are therefore involved in regulating almost
all known physiological and pathological processes [108]. miRNAs play a key role in
host-virus interactions [109] and their dysregulation is involved in liver fibrosis and a
number of human cancers such as HCC. MiR-122 is the most abundant miRNA in the
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liver, representing 70% of the total miRNA in hepatocytes [110]. MiR-122 is downregulated
in patients with HBV-related HCC, while it is upregulated in patients with HBV chronic
infection [111].

HBc protein promotes the hepatocarcinogenesis process through the regulation of
some miRNAs. The deleted in liver cancer (DLC-1) gene encodes a Rho-GTPase activating
protein and is an important negative regulator for cell motility. Previous studies have
demonstrated that DLC-1 functioned as a tumor suppressor gene and downregulation
or even loss of DLC-1 expression often occurred in HCC [112]. The DLC-1 gene is po-
tentially targeted by several differentially expressed miRNAs in HBc-introduced cells
according to the miRNA-target gene network analysis. Thus, miR-382-5p seems to be sig-
nificantly upregulated in HBc-overexpressing HCC cells. The HBc protein promotes HCC
metastasis through enhancing the miR-382-5p level and reducing DLC-1 expression. The
miR-382-5p/DLC-1 axis is essential for HBc-promoted HCC metastasis. These data further
showed that, similar to HBx, HBc protein might also play multiple roles in different stages
of HCC development [26]. A similar mechanism was observed with HCV. Indeed, miRNAs
miR-141 and miR-200a are accentuated in HCV-infected human primary hepatocytes and
can target DLC-1 mRNA reducing its expression and then induce HCC development [112].

A part of miRNA is closely related to the stage of liver disease. Indeed, studies have
shown that the miRNA circulating in serum or plasma could serve as the role of biomarker
for the diagnosis and prognosis of HBV-related diseases [113].

3.7. HBc Protein, a Regulator of Host Gene Expression

HBYV targets host genes that are involved in cell survival to escape immune surveillance
and facilitate malignant transformation. HBc protein may bind specifically to certain
human gene promoters, through either its C-terminal functional domain or its N-terminal
assembling domain. Previous research has generated the genome-wide profile of HBc in
HBV-infected hepatocytes using chromatin immunoprecipitation microarray studies [20].
This study showed that HBc could bind to 64 gene promoters of the MAPK pathways and
41 gene promoters of the Wnt/ 3-catenin signaling pathways, whereas these two pathways
are known to be critically involved in the development of HBV-related hepatocellular
carcinoma. Moreover, the authors suggested that HBc tended to target the regulatory
regions of genes with molecular function and malignant transformation in the liver cell
repertoire. A previous study highlights that the accumulation of slight effects from HBc
binding to many gene promoters may produce quite large effects on host cellular functions,
possibly increasing a cell’s susceptibility to carcinogens [114].

Therefore, HBc has the ability to bind gene promoters in the human genome to
modulate normal functions of liver cells infected with HBV and HBc could disrupt the
expression of nearly 3100 human host genes by binding them to promoter regions [20].

3.8. Interaction with Viral Protein as HBx Protein

HBc protein seems to be able to interact with HBx, but the impact of this interaction
on hepatocarcinogenesis seems to be controversial in some cases. Kwon et al., in their
study of cultured HepG2 cells, showed that HBc and HBx proteins could synergistically
repress both the promoter activity and the expression of the human p53 tumor suppressor
gene [22]. The inactivation of the p53 gene participates in HCC progress and the synergistic
action of these two proteins has an impact on malignant transformation.

In contrast, HBc and HBx proteins could reduce the expression of two Id proteins (Id1
and Id3) whereas Id proteins are supposed to be elevated in many tumor types and would
correspond with the poor prognosis of HCC patients. Thus, HBc is capable of restraining
the BMP/Smad signaling pathway and HBx is able to interact with both Id proteins for
facilitating their degradation through proteasome-dependent manners. Therefore, it would
be interesting to explore how HBV, one of the pathogenic factors of HCC, influences Id
proteins [115].
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Then, HBx protein can transactivate the expression of all HBV proteins through these
two enhancers and can therefore increase the expression of the HBc in vitro and in vivo
by transactivating the C promoter. The regulation of HBx level may be important in
HCC development. In cultured human hepatoma cells, Kim et al. demonstrated that the
level of HBx protein was significantly reduced by the co-expression of HBc, whereas the
level of HBx mRNA was unaffected. The inhibitory effect of HBc is specific to HBx, and
it did not affect other HBV proteins. It seems that HBx activates the synthesis of HBc
during the early stage of viral replication and that HBc in turn functions as an effective
downregulator of HBx. The regulation of the HBx level could involve the activation of the
proteasome-mediated degradation of HBx. To date, no direct physical interaction between
HBc and HBx has been demonstrated. Nevertheless, mutational analysis indicated that the
C-terminal half of HBc is responsible for its inhibitory effect and that HBc protein controls
the HBx level via a form of inhibitory feedback mechanism [116]. This study highlights
a novel aspect of HBc function in the HBV life cycle and possibly in the development of
HCC through control of the HBx level. To our knowledge, the molecular mechanism was
not identified.

All of these elements emphasize a close link between HBc and HBx proteins, with a
number of potential impacts on liver tumorigenesis.

4. Conclusions and Perspectives

Due to the high morbidity and mortality of HCC worldwide, for a number of years,
many investigations on HCC carcinogenesis have been conducted that seek to elucidate the
molecular mechanisms facilitating the design of better strategies to treat HCC. Evidence
supports that the HBc protein has an oncogenic role in HBV-related HCC through several
mechanisms, thereby controlling cancer cell proliferation and enabling malignant trans-
formation. These include the signaling pathways involved in migration/proliferation of
hepatoma cells; the resistance of cells to apoptosis; cell metabolic disorders; enhancing IL-6
expression and production; epigenetic alterations (miRNA); and other genetic processes.

With regard to garnering new insights into the biological roles of HBc in regulat-
ing HBV-related hepatocarcinogenesis, further exploration of the molecular mechanisms
related to the dysfunction of hepatoma cells mediated by HBc may help us find novel
therapeutic strategies for HBV-related HCC.
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