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Abstract: Hepatocellular carcinoma (HCC), the most common type of liver cancer, is the second lead-
ing cause of cancer-related mortality worldwide. Processes involved in HCC progression and devel-
opment, including cell transformation, proliferation, metastasis, and angiogenesis, are inflammation-
associated carcinogenic processes because most cases of HCC develop from chronic liver damage
and inflammation. Inflammation has been demonstrated to be a crucial factor inducing tumor devel-
opment in various cancers, including HCC. Cytokines play critical roles in inflammation to accelerate
tumor invasion and metastasis by mediating the migration of immune cells into damaged tissues
in response to proinflammatory stimuli. Currently, surgical resection followed by chemotherapy is
the most common curative therapeutic regimen for HCC. However, after chemotherapy, drug resis-
tance is clearly observed, and cytokine secretion is dysregulated. Various chemotherapeutic agents,
including cisplatin, etoposide, and 5-fluorouracil, demonstrate even lower efficacy in HCC than in
other cancers. Tumor resistance to chemotherapeutic drugs is the key limitation of curative treatment
and is responsible for treatment failure and recurrence, thus limiting the ability to treat patients with
advanced HCC. Therefore, the capability to counteract drug resistance would be a major clinical
advancement. In this review, we provide an overview of links between chemotherapeutic agents
and inflammatory cytokine secretion in HCC. These links might provide insight into overcoming
inflammatory reactions and cytokine secretion, ultimately counteracting chemotherapeutic resistance.

Keywords: chemotherapy; drug resistance; cytokine; HCC

1. Introduction

Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is the
most aggressive malignancy, with a median survival time of 7 to 9 months worldwide [1].
The mortality and incidence of HCC have even increased in the last decade [2,3]. Currently,
HCC causes approximately one million deaths annually. Advanced HCC is associated
with a high recurrence rate and a short survival time [4]. In fact, approximately 80% of
HCC patients have advanced HCC and have a median survival time of less than 1 year
from diagnosis [2]. HCC usually develops via the progression of cirrhosis and chronic
liver diseases. Several risk factors, such as alcohol consumption, viral infection, and toxin
exposure, mediate HCC development [5]. Surgery followed by chemotherapy is the most
common curative therapeutic regimen for HCC [6]. However, surgical resection of HCC
has several difficulties and limitations due to the distribution and size of tumors in the
liver and surrounding blood vessels. Moreover, more than two-thirds of HCC patients
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have advanced-stage disease with metastasized tumor cells, and it is highly difficult to
completely remove these tumor cells surgically [3,7].

Transarterial chemoembolization (TACE) is a frequently utilized treatment of several
locoregional therapies proposed for nontransplantable and unresectable HCC, and the
response rates range from 10% to 50% [8]. Previous studies have demonstrated that HCC
patients with TACE often result in some inflammatory cytokines secretion, which occurs
as a result of hepatic tissue injury [9]. Several inflammatory cytokines, such as IL-5, IL-6,
and IL-17A, were higher in the serum of HCC patients than in healthy controls. However,
IL-22 and IL-1b levels were lower in HCC patients [10]. Patients with larger tumors (>5 cm)
displayed a significant elevation in IL-6 levels at early phase coupled with post-TACE
hepatitis, as well as increases in IL-4, IL-5, and IL-10 levels at late phase after TACE [10].
Inflammation has been defined as a critical factor for tumor recurrence [11]. IL-6 receptor
alpha (IL-6Rα), a multifunctional cytokine, plays key roles in inflammation and HCC
development [12].

Previously, Walter and colleagues reported that a systemic therapeutic approach
targeting advanced HCC with low-dose chemotherapeutic agents, such as rofecoxib, pi-
oglitazone, and capecitabine, has been evaluated in patients with incurable HCC. In total,
38 HCC patients were evaluated in this one-arm, multicenter phase II trial [13]. Moreover,
advanced HCC usually has a poor prognosis, and systemic therapy with cytotoxic agents
has a limited effect [14]. To date, several traditional cytotoxic chemotherapeutic agents,
including 5-fluorouracil (5-FU), cisplatin, doxorubicin, paclitaxel, and mitomycin, have
been used to treat HCC patients; however, the effects have been limited by systemic toxicity
and acquired resistance of the tumor after treatment [15–17].

Inflammation has been demonstrated to be closely related to the initiation and devel-
opment of HCC [4]. Previously, tumor necrosis factor-α (TNF-α), a critical inflammatory
mediator, was demonstrated to be a potential therapeutic target in numerous cancers [4].
Moreover, the levels of various inflammatory cytokines, such as TNF-α, interleukin (IL)-1,
and IL-6, are significantly higher in the serum of HCC patients than in that of healthy
controls [18,19]. A previous study showed that M2 macrophages release all three of the
abovementioned cytokines. Tumor-associated macrophages (TAMs) have also been demon-
strated to increase tumor size, angiogenesis, intrahepatic metastasis, and the recurrence rate
via the STAT3 signaling pathway in HCC cell lines [20,21]. Wang and colleagues reported
that a high level of TNF-α is a predictor of poor survival in patients with HCC, as shown
by survival and Cox regression analyses. Infliximab, an anti-TNF-α antibody, can increase
Fluorouracil-induced levels of cleaved caspase-3 in the presence of an active complement in
HCC [4]. Furthermore, blocking TNF-α production could be a suitable approach to enhance
the effect of classical chemotherapy in HCC patients, especially those who have a modest
response to classical chemotherapy [4]. Thus, the inflammatory cytokine TNF-α could
also be used as a biomarker to facilitate the early diagnosis of HCC. Chronic inflammation
plays a crucial role in cancer initiation and progression [22] and a well-established role in
the development of HCC, often in association with liver fibrosis and cirrhosis. In addition,
the activity of transforming growth factor-beta (TGF-β) has been established as essential
for aspects of HCC pathogenesis, including the activation of cancer-associated fibroblasts
(CAFs) [23–25].

Numerous HCC patients can develop chronic liver injury or inflammation, indicating
that HCC is a carcinogenic process based on inflammation [26]. Chemokines can modu-
late the response of immune cells that migrate to proinflammatory stimuli, to influence
inflammation-mediated tumorigenesis [27]. In this review, we provided an overview of the
effects of numerous chemotherapeutic drugs on cytokine/chemokine secretion, which can
indicate whether the tumor microenvironment plays a critical role in the chemotherapeutic
response. We reviewed numerous inflammatory cytokines influenced by various drugs
and discussed the effects of chemotherapeutic agents on cytokine secretion and the tumor
microenvironment. These observations might provide insight into drugs that could be
used alone or in combination with others in treating HCC.
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2. Fluorouracil (5-FU)

Chemotherapy regimens included 5-fluorouracil (5-FU) with other drugs, but patients
exhibited low radiological response [28]. Among different systemic treatments, including
5-fluorouracil and doxorubicin, have been used in a limited number cases such as nontrans-
plantable or nonresectable patients [29]. 5-FU can inhibit cell proliferation by forming fluo-
rodeoxyuridine monophosphate via blocking of thymidylate synthase, which can catalyze
the synthesis of the DNA precursor thymidylate (Table 1) [30]. TNF-a has been identified
as an independent predictor of poor survival in patients with HCC. Therefore, anti-TNF-a
treatment with 5-FU can induce HCC tumor cell apoptosis via antibody-dependent cellular
cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) processes (Table 1) [4].
The higher chemoresistance to doxorubicin, 5-FU, and cisplatin is observed in anoikis-
resistant (AR) cells than adherent HCC cells. The lower expression of E-cadherin and
higher expression of N-cadherin and vimentin were exhibited in AR HCC cells compared
with adherent HCC cells (Table 1) [31]. Additionally, 17β-Estradiol (E2) decreased the
IL-6/STAT3 signaling to attenuate the AR HCC cell proliferation (Table 1) [31].

Table 1. The regulated mechanisms, pathways and effects of various chemotherapeutic drugs.

Drug Mechanism Pathway Effect

Fluorouracil
Fluorodeoxyuridine monophosphate ↑ Cell proliferation ↑

CDC and ADCC effects ↑ Apoptosis ↑
Epithelial-mesenchymal transition ↑ Cell migration ↑
17β-Estradiol (E2) ↑ IL-6/STAT3 signaling ↓ Cell proliferation ↓

Cisplatin

ATM-NF-kB pathway ↑ DNA repair, cisplatin
resistance ↑

ATM-NF-kB-SOX2
pathway ↑ Stemness ↑

STAT3 pathway ↓ Tumor growth ↓
Cleaved
PRAP-1 ↑ Apoptosis ↑

ATR, p53, p73 and
MAPK pathways ↑ Apoptosis ↑

Oxaliplatin
IL-17

secretion ↑ NF-κB, MAPK and
PI3K pathways ↑ Regulation of

autophagy
p53-caspase 8-caspase

3 cascade ↑ Apoptosis ↑

IL-6 secretion ↑ NF-κB, MAPK and
p38 pathways ↑ Inflammation ↑

Celecoxib

E-cadherin ↑
COX-2-PGE2-Akt-

ERK
cascade

↓ Cell motility ↓

Epithelial-mesenchymal transition ↑ Inflammation ↓
COX-2 expression ↑ Inflammation ↑

Doxorubicin

lncRNA H19 ↑ Cell survival and
proliferation ↓

Cytochrome p450-3A4 (CYP3A4) enzyme ↑ Doxorubicin toxicity ↓
MEK/ERK cascade ↑ Apoptosis ↑
MEK/ERK pathway ↑ Inflammation ↑
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Table 1. Cont.

Drug Mechanism Pathway Effect

Sorafenib

CCL22 expression ↑ TNF-α-RIP1-NF-κB
pathway ↑

Epithelial-
mesenchymal

transition
↑

IL-6Rα induction ↓ Sorafenib resistance ↓

IL-6 secretion ↑ DNMT1-OCT4
pathway ↑ Tumor recurrence ↑

Infliximab
IL-1β, IL-6, IL-17 ↓ Apoptosis ↑

Galunisertib

E-cadherin ↑ SKIL,
PMEPA1 ↓ Invasiveness ↑

3. Cisplatin

Cisplatin is an effective and broad-spectrum chemotherapeutic drug for treating HCC.
However, several side effects of cisplatin are displayed. In addition, long-term treatment
with cisplatin can cause chemoresistance, which attenuates the clinical application of
cisplatin with a limited range [32]. Previously, cisplatin has been demonstrated to acti-
vate the ATM-NF-kB pathway in a TonEBP-dependent manner (Table 1). Additionally,
several proinflammatory cytokines mediated by cisplatin were blocked after silencing
of TonEBP or XPF expression. Cisplatin has been displayed to increase DNA crosslink
formation to induce inflammation by the ATM-NF-kB signaling pathway through the
TonEBP-ERCC1/XPF complex (Table 1). Cisplatin also induces the interaction between
chromatin and the ERCC1/XPF dimer in a TonEBP-dependent manner, resulting in DNA
repair and cisplatin resistance [33]. YC-1, an anti-cancer drug, induced cancer cell death
that can be reversed by overexpression of STAT3. Moreover, YC-1 can decrease STAT3
activity by increasing the cisplatin-induced polyubiquitination of p-STAT3(705). In sum-
mary, YC-1 has been determined to play a novel anticancer role to enhance the HCC cell
chemosensitivity to cisplatin in a STAT3-dependent manner (Table 1) [34]. Furthermore,
STAT3 has been determined to be associated with drug resistance [35]; tumor growth
was reduced and cisplatin-induced chemo-cytotoxicity was enhanced after silencing of
STAT3 expression. Therefore, the STAT3 pathway may be a potentially effective anticancer
target (Table 1) [36]. Cisplatin also induced CKLF1 expression to create an aggravating
inflammatory environment, which facilitates tumor growth and cisplatin-resistance [32].
Chemokines can affect the HCC occurrence and development in various ways, including
inflammation and the impact on immune cells [37]. CKLF1 is newly identified chemokine
and plays a key role in various diseases [38]. Minocycline, a semisynthetic tetracycline and
a highly lipophilic molecule, causes cell cycle arrested at S phase and increased apoptotic
rate associated with numerous molecule dysregulation, including p27, cleaved-PRAP-1,
cleaved-caspase8, and cleaved-caspase 3(Table 1) [39]. Cisplatin modulates various path-
ways, such as the ATR, p53, p73, and MAPK signaling, to elicit a sequential responses in
the cell, including DNA repair, drug resistance, and apoptosis (Table 1) [40].

4. Oxaliplatin

Oxaliplatin, a platinum chemotherapeutic drug with relatively few side effects, has
been extensively used to reduce tumor recurrence and increase the survival rate in HCC [41].
However, chemoresistance to oxaliplatin is observed to decrease HCC cell apoptosis [42].
Wu and colleagues demonstrated that IL-17/IL-17 receptor (IL-17R) levels in both patients
with HCC and HCC cell lines are increased by oxaliplatin treatment. IL-17/IL-17R binding
inhibited oxaliplatin-induced apoptosis and induced autophagy in HCC cell lines. More-
over, the levels of autophagy-related molecules were increased by IL-17/IL-17R binding,
and autophagy was shown to induce oxaliplatin resistance in HCC patients [43] (Table 2).
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Table 2. The dysregulated cytokines by various chemotherapeutic drugs.

Agent Secreted Cytokine

Oxaliplatin IL-17
Celecoxib IL-6

Doxorubicin TGF-β, IL-6
Sunitinib IL-6

Infliximab TNF-α
Galunisertib TGF-β

Rather, IL-17 signals through nuclear factor (NF)-κB [44], mitogen-activated protein
kinase (MAPK) and phosphoinositide 3-kinase (PI3K) [45] signaling pathways. Wu and
colleagues have demonstrated that the increased Bcl-2 and decreased Bax are observed in
HCC cells using Western blot after oxaliplatin treatment with IL-17 stimulation. However,
the effect is abolished after stimulation with anti-IL-17 antibody. Moreover, IL-17 can
induce the levels of p-JAK2 and p-STAT3 with oxaliplatin treatment. Based on the evidence,
IL-17 interacts with IL-17R and can decrease oxaliplatin-induced cell death through the
JAK2-STAT3 cascade [43]. There are several pathways influenced by IL-17 signals, such
as Janus kinase 2 (JAK2)/STAT3, that possess a crucial role in regulating a number of
processes related to tumorigenesis, including cell cycle progression, apoptosis, and tumor
cell metastasis (Table 1) [46]. This evidence implies that IL-17/IL-17R-induced resistance to
oxaliplatin in patients with HCC may be acquired through the regulation of autophagy.
Moreover, these findings may help to develop approaches to counteract chemoresistance
in HCC.

IL-17, a T helper 17 (Th17) cell-secreted cytokine, has been shown to be involved
in the pathogenesis and progression of inflammatory diseases [41]. IL-17R is expressed
on the surface of various cells, including fibroblasts, epithelial cells, macrophages, and
T lymphocytes [47,48]. Moreover, studies in patients with persistently higher levels of
IL-17 have consistently indicated that these patients need to receive longer courses of
chemotherapy due to their higher recurrence rate [49]. IL-17 can also interact with IL-
17R to influence autoimmune and inflammatory diseases, such as rheumatoid arthritis,
psoriasis, and systemic lupus erythematosus [50]. Oxaliplatin produces high levels of
reactive oxygen species (ROS) in HCC cells, and Oxaliplatin might induce cell apoptosis via
the p53-caspase 8-caspase 3 cascade [51]. Oxaliplatin is a third-generation platinum-based
chemotherapeutic drug that possesses the antitumor activity [52]. In addition, oxaliplatin
also induces the inflammatory activity and the secretion IL-6 cytokine in HCC cells via
nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signaling
pathways (Table 1) [53].

5. Celecoxib

Previously, elevated levels of IL-6 and the IL-6 receptor (IL-6R) have been reported
to be highly correlated with STAT3 activation in HCC cell lines. Liu et al. showed that
celecoxib induces HCC cell apoptosis and inhibits STAT3 phosphorylation by reducing
Janus activated kinase (JAK2) phosphorylation. IL-6-induced phosphorylation and nuclear
translocation of STAT3 are also blocked by celecoxib. Furthermore, HCC cell viability
was found to be reduced more significantly when celecoxib treatment was combined with
sorafenib or doxorubicin [54] (Table 2).

Treatment with celecoxib possesses the ability to promote apoptosis, inhibit cell prolif-
eration, and induce cell cycle arrest in HCC cells through the upregulation of E-cadherin
protein via the inhibition of the Cyclooxygenase-2 (COX-2) prostaglandin E2 (PGE2)-p-
Akt/p-ERK cascade (Table 1) [55]. COX-2, a rate-limiting enzyme, plays important roles
in the process of inflammation-tumor transformation and the sequential oxygenation of
arachidonic acid (AA) to synthesize prostaglandins and thromboxanes [56]. Celecoxib is
a selective COX-2 inhibitor that moderates portal hypertension and liver fibrosis by sup-
pressing gut-liver inflammation [57] and epithelial–mesenchymal transition of hepatocytes
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(Table 1) [58]. COX-2, an upregulated cancer-related inflammatory mediator in numerous
tumors, is defined as a prognosis indicator in many cancer types [59]. Additionally, the
expression of COX-2 in tumor tissue is significantly correlated with various inflammatory
cells (Table 1) [60]. Therefore, we conclude that celecoxib might serve as a therapeutic agent
for HCC by suppressing the IL-6/STAT3 signaling pathway and could be combined with
other chemotherapeutic drugs to overcome drug resistance.

6. Doxorubicin

To date, doxorubicin, a chemotherapeutic drug for advanced HCC, has exhibited low
efficacy, with a response rate of 15–20% [61]. However, numerous lines of evidence have
shown that doxorubicin plays a role in accelerating malignant cancer cell progression. For
example, doxorubicin induces extracellular matrix degradation, epithelial–mesenchymal
transition, and tumor invasion via the regulation of MMP-2 and MMP-9 enzyme activity
and TGFβ signaling activation [62,63] (Table 2). Recently, accumulating evidence has shown
that several molecules, such as the inflammatory cytokine IL-6 and the transcription factors
NF-kB and STAT3, play important roles in HCC development [2,64,65] (Table 2). Moreover,
the IL-6 level is significantly higher in patients with stage III HCC than in patients with
HCC of other stages [64]. STAT3, a crucial signal transducer that modulates IL-6 signaling
in the nucleus, is highly correlated with the prognosis of HCC patients [66]. This evidence
indicates that the IL-6/STAT3 signaling cascade may be a therapeutic target in controlling
HCC progression. Liu et al. reported that CKLF1 might accelerate the development and
progression, as well as the metastasis and proliferation, of HCC by dysregulating the
IL-1/STAT3 cascade. Additionally, CKLF1 can induce doxorubicin resistance in HCC cells
by inhibiting apoptosis via IL-6/STAT3 signaling [67].

The long noncoding RNA (lncRNA) H19 represents tumor-promoting or tumor-
suppressive actions and is regulated under inflammatory conditions (Table 1) [68]. More-
over, H19 can attenuate cell survival and proliferation after doxorubicin stimulation using
clonogenicity and proliferation assays, suggesting H19 possesses chemosensitizing ac-
tions [68]. HCC cells with higher expression levels of cytochrome p450-3A4 (CYP3A4)
enzyme exhibited doxorubicin chemoresistance in a cirrhosis-dependent manner. CYP3A4
plays roles in reducing systemic doxorubicin toxicity and inducing cell death in HCC cells
with combined treatment of doxorubicin and sorafenib (Table 1) [69]. Therefore, CYP3A4
expression might potentially be defined as an indicator to predict chemotherapeutic re-
sponse [70]. In-depth research displayed that syncytin-1-promotes hepatocarcinogenesis
may through the inflammation-activated MEK/ERK pathway. Syncytin-1 also blocks
MEK/ERK pathway to suppress cell apoptosis induced by doxorubicin [71]. Syncytin-
1 is overexpressed in various types of cancers, including leukemia, endometrial cancer,
and breast cancer [72,73]. In the process of HCC development, numerous inflammation-
associated pathways are activated, such as the mitogen-activated protein kinase (MEK) and
extracellular signal-regulated protein kinase (ERK) pathways [74,75]. Based on these results,
the relationship between HCC development and inflammation-mediated carcinogenesis
is illustrated, and potential biomarkers involved in the inflammation-related pathway
modulated by doxorubicin treatment might be therapeutic targets for HCC.

7. Sunitinib

Zhu et al. found that higher levels of inflammatory molecules, such as IL-6, were asso-
ciated with a poor outcome. Sunitinib shows evidence of antitumor activity in advanced
HCC, with modest adverse effects. Rapid changes in circulating inflammatory cytokines
are potential modulators of the response and resistance to sunitinib in HCC [76]. Emerging
data indicate that inflammatory signaling pathways and/or immune cells induce tumor
angiogenesis [77–79]. Inflammation induced by numerous etiologies, such as hepatitis [80],
is another key feature of HCC [81]. Sunitinib is an oral multitargeted receptor tyrosine
kinase inhibitor (TKI) that is also approved for the treatment of imatinib-resistant gastroin-
testinal stromal tumors and renal cell carcinomas [82,83]. Sunitinib has been demonstrated
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to inhibit various molecules, including VEGFR1-3, PDGFRα, PDGFRβ, stem cell factor
receptor (KIT), and FMS-like tyrosine kinase 3 [84]. Additionally, these pathways have
been reported to be involved in inflammation and angiogenesis. Sunitinib, which delays
tumor progression, is highly correlated with decreased circulating levels of the inflamma-
tory molecule IL-6 and soluble c-KIT. Moreover, Zhu et al. reported that higher levels of
IL-6 and soluble SDF1α are associated with rapid progression or mortality with sunitinib
treatment in patients with advanced HCC [76] (Table 2). Hence, inflammatory-associated
factors, such as IL-6 and SDF1α, might not only play roles in tumor progression on this
therapy but also be potential novel targets for HCC. Inflammation has been reported to
play an important role in tumor initiation and progression [85]. Moreover, dysregulation
of proinflammatory cytokines in the tumor microenvironment has been demonstrated to
influence metastasis by inhibiting proapoptotic host immune defense mechanisms and
repressing metastasis suppressors [86]. In conclusion, the inflammatory tumor microenvi-
ronment, gradually formed by tissue hypoxia and induced by the generation of numerous
inflammatory cells and cytokines, has a promotive role in HCC metastasis. Therefore, the
control of inflammation might be important for improving treatment outcomes in advanced
HCC.

8. Sorafenib

Sorafenib, a multitargeted TKI, is the first agent to demonstrate a significant improve-
ment in the median overall survival time in patients with advanced HCC and has been
approved by the US Food and Drug Administration (FDA) for systemic therapy [87,88].
Sorafenib may exert its antivascular effects by targeting VEGFR2, VEGFR3, and PDGFβ
receptors and may block tumor cell proliferation by targeting the RAF/MEK/ERK cas-
cade [89,90]. Recently, three new multikinase inhibitors—lenvatinib [91], regorafenib [92],
and cabozantinib [93]—have been approved by the FDA for advanced HCC [94], but the
median overall survival time of patients treated with these drugs needs to be assessed.

The chemokines CCL22 and CCL17 are upregulated by sorafenib in HCC. Mecha-
nistically, sorafenib induces CCL22 expression through the TNF-α-RIP1-NF-κB cascade
(Table 1) [95]. The macrophage-derived CCL22 and thymus-regulated CCL17, have been
found to interact with their receptor CCR4 to influence cell migration [96]. Activated (M2)
macrophages might be a critical factor to contribute to poor prognosis in HCC and in-
duces tumor cell invasion through epithelial-to-mesenchymal transition (EMT) induced by
CCL22, which implies that CCL22 is highly expressed both in tumor and stromal cells [97].
Thus, CCL22 might be a target for clinical application to alleviate sorafenib resistance.
The levels of IL-6Rα are induced after sorafenib treatment. Moreover, IL-6-induced tumor
growth of HCC cells via STAT3 phosphorylation at tyrosine 705 in the presence of sorafenib
is reversed with IL-6Rα depletion (Table 1) [12].

The Octamer-binding transcription factor 4 (OCT4) is modulated by inflammatory
cytokine interleukin-6 (IL-6) and is highly associated with tumor recurrence and poor
prognosis of HCC (Table 1). The expression of DNA methyltransferase (DNMT) has been
determined to be highly associated with OCT4 expression and drug resistance in HCC,
and the expression levels of OCT4 are positively correlated with the IL-6 levels in serum.
Furthermore, the panel of OCT4, DNMT3b, and IL-6 can be defined as markers to predict
HCC recurrence and poor prognosis [98]. Emerging evidence has shown a correlation
between OCT4 expression and tumor initiation factors and cancer stem cell-like phenotypes
in numerous cancers, including HCC, prostate cancer, and melanoma [99]. The DNMT1
expression regulated by OCT4 was further analyzed using OCT4 overexpression and
DNMT1 silencing. Moreover, the expression of OCT4 is decreased with DNMT silencing
in sorafenib-resistant HCC cells in the presence of IL-6 or not [98]. Taken together, we
suggest that DNMT possesses a vital role in the OCT4 expression mediated by IL-6 and
the drug sensitivity of sorafenib-stimulated HCC. The activation level of STAT3 modulates
DNMT/OCT4, which confers tumor recurrence and prognosis in patients with HCC [98].
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9. Infliximab

Infliximab is an FDA-approved anti-TNF-α monoclonal antibody that neutralizes the
biological activity of TNF-α by abolishing its effective binding to its receptors [100,101]
(Table 2). TNF-α plays important roles not only in cytotoxic effects but also in cytokine
network regulation. Accumulating evidence shows that treatment with infliximab+5-FU
can prolong overall survival by blocking TNF-α secretion [4]. Based on this evidence,
the level of secreted TNF-α plays a crucial role in influencing the therapeutic efficiency
of infliximab or infliximab+5-FU. 5-FU is usually administered as a first-line treatment
for advanced HCC, but its efficiency needs to be improved by overcoming limitations
caused by drug resistance [102]. Hence, combination therapy with 5-FU and other drugs
is a possible approach to improve the therapeutic efficiency of 5-FU. Emerging evidence
has shown that infliximab treatment synergizes with 5-FU treatment to increase HCC cell
apoptosis both in vitro and in vivo, suggesting that HCC development is highly related to
the accumulation of inflammatory cytokines [103,104].

Currently, TNF-α level has been demonstrated to be implicated in HCC progression,
as displayed by the significantly prolonged survival curve in a mouse model in vivo.
Moreover, several pro-inflammatory cytokines, including TNF-α, IL-1β, IL-6 and IL-17,
and induced cell apoptosis are decreased with anti-TNF-α treatment in HCC tumor cells
(Table 1) [105]. Anti-TNF-α treatments can facilitate cell death and reduce the expression
levels of pro-inflammatory cytokines to attenuate HCC tumor progression [105]. Infliximab,
a TNF-α inhibitor, is an anti-TNF-α monoclonal antibody, which possesses its ability to
influence cell lysis in tumors [106]. However, several pro-inflammatory cytokines, includ-
ing IL-1β, IL-6, and IL-17, are blocked by infliximab stimulation or combined treatment of
infliximab and TNF-α, which indicates that anti-TNF-α treatment might modulate tumor-
influenced inflammation in HCC [105]. In summary, infliximab can delay tumor growth
and prolong survival time, hence, infliximab might be a suitable chemotherapeutic drug
for HCC.

10. Galunisertib

Recently, several lines of evidence have confirmed the efficacy of galunisertib, a
promising drug under clinical investigation for the treatment of patients with HCC. Fur-
thermore, TGF-β1 reduces the expression of E-cadherin at cell–cell contact sites to increase
tumor invasion, but this effect can be reversed by galunisertib [107] (Table 2). TGF-β
activity depends strongly on the association with different cytokines and cell types. More-
over, accumulating evidence indicates that TGF-β functions as either a tumor-suppressive
regulator or protumorigenic factor in different stages of HCC development [108]. Addi-
tionally, the expression of E-cadherin is reduced by TGF-β1 in cell–cell adhesion, which
increases cell motility; however, the effects are abolished after being stimulated with galu-
nisertib (Table 1) [109]. Additionally, the mRNA expression of SKI-like (SKIL) and prostate
transmembrane protein androgen induced 1 (PMEPA1) is identified to be elevated in
HCC tumor tissues compared with controls using a next-generation sequencing approach,
and positive correlation with TGF-β1 mRNA concentrations in HCC tissues is observed.
However, these genes were strongly abolished by stimulation with galunisertib [110]. The
SMAD transcriptional corepressor SKI-novel (SNON), which is encoded by the human
SKI-like (SKIL) gene, is a TGF-β signaling antagonist. SNON is removed from the response
element of SKIL gene promoter in the presence of TGF-β signaling, and then the activated
SMAD complexes induce SKIL gene expression by binding to the promoter [111]. Prostate
transmembrane protein androgen induced 1 (PMEPA1) is classified as a type 1β trans-
membrane protein with luminal, membrane spanning, and cytoplasmic domains [112].
Prostate transmembrane protein androgen induced 1 (PMEPA1), a TGF-β-responsive gene,
inhibits TGF-β pathway via a negative feedback loop. Additionally, several studies have
demonstrated that the PMEPA1 gene modulates other signaling cascades, including p53,
EGF, Wnt, and Hippo signaling to interfere with tumorigenesis [113–115]. Additionally,
galunisertib has been reported to be a promising drug under clinical investigation for
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treatment in HCC patients [116]. Therefore, understanding the secretion of TGF-β, which
is defined as a mediator of the switch from a tumor-suppressive to a pro-oncogenic status,
after galunisertib treatment is central to understanding the influence of galunisertib on
tumorigenesis.

11. Discussion

The inflammatory microenvironment of liver tumors possesses a crucial role in facili-
tating HCC by inducing liver fibrosis, epithelial–mesenchymal transition, tumor invasion
and metastasis [117]. Several types of cytokines and chemokines modulate the interaction
between infiltrated immune cells and liver cancer cells, which in turn leads to remodel-
ing of the liver microenvironment into profibrotic, proinflammatory, and proangiogenic
signalings and thus becomes a tumor microenvironment [118].

Previously, Chhibar et al. reported that tumors are highly correlated with inflam-
matory liver diseases [119]. Several crucial inflammatory mediators, such as IL-6 and
TNF-α, have been detected in the serum of HCC patients [120]. Higher levels of IL-6 in
HCC patient serum are closely related to shorter survival times, suggesting the value of
targeting inflammation-related molecules in HCC [120]. Moreover, increased levels of
inflammatory cytokines and chemokines are observed in HCC patients with high levels of
TNF-α [121,122]. Although TNF-α has the ability to induce tumor cell lysis, accumulating
evidence shows that it plays critical roles in both tumor initiation and tumor develop-
ment [122–124]. Additionally, dysregulation of TNF-α has been detected in many cancers,
such as ovarian and renal cancers [122–124], as well as in the serum of patients with cancer,
but not in that of healthy individuals [121,125].

Recently, the IL-6 concentration in serum has been defined as a promising tumor
marker for HCC [126–128]. A high level of IL-10 in serum has been shown to be associated
with poor survival in HCC patients undergoing surgical resection and in patients with
unresectable tumors [129,130]. Similarly, the levels of IL-8 and IL-18 in serum have been
shown to be useful markers of tumor invasiveness in HCC patients [131,132]. In addition,
Jang and colleagues found that the levels of circulating inflammatory cytokines, such
as TNF-α, interferon-c (IFN-c), IL-4, IL-6, and IL-10, are highly correlated with tumor
stage, tumor response, and patient survival in HCC, and multivariate analysis showed that
the IL-6 level is an independent indicator of unfavorable prognosis [120]. Furthermore,
several reports have demonstrated that IL-6 is a cytokine with significant predictive ability
for HCC patient survival and is associated with tumor size and aggressiveness [127,133].
IL-6 has also been shown to result in a highly metastatic potential in HCC and decrease
apoptosis [127,133]. Additionally, the blood levels of prometastatic cytokines, such as
TNF-α, IL-1, and IL-6, have been shown to be higher in HCC patients than in healthy
individuals [19]. On the other hand, TGF-β1 expression has been found to be higher in
malignant tumors, including HCC. TGF-β1 can cooperate with other cytokines, such as
TNF-α, ILs, and IFNs, released from various liver cells and participates in various processes,
including cell proliferation, apoptosis and inflammation [134].

In this review, we summarized data indicating that numerous chemotherapeutic
drugs used in HCC patients induce the secretion of various cytokines, suggesting that
inflammatory cytokines might play important roles in modulating drug resistance to HCC
(Table 2). Moreover, the tumor microenvironment plays crucial roles in influencing cytokine
secretion and drug resistance in HCC (Figure 1). Therefore, we need to investigate the
relationship between chemotherapeutic agents and cytokine secretion and the mechanisms
of secreted cytokines in more detail to counteract drug resistance in HCC. Currently,
various drugs, such as axitinib, brivanib, bevacizumab, cetuximab, erlotinib, linifanib, and
sunitinib, are in different phases of clinical trials [135]. Six systemic chemotherapeutic
drugs have been approved according to phase III trials, which are expected to cure HCC
patients at all stages via combination therapies of two immunotherapy regimens [136].
Hopefully, these drugs can one day be used in patients to counteract drug resistance and
enhance therapeutic efficiency.
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