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Abstract: Investigations on ion channels in muscle tissues have mainly focused on physiological
muscle function and related disorders, but emerging evidence supports a critical role of ion channels
and transporters in developmental processes, such as controlling the myogenic commitment of
stem cells. In this review, we provide an overview of ion channels and transporters that influence
skeletal muscle myoblast differentiation, cardiac differentiation from pluripotent stem cells, as well
as vascular smooth muscle cell differentiation. We highlight examples of model organisms or patients
with mutations in ion channels. Furthermore, a potential underlying molecular mechanism involving
hyperpolarization of the resting membrane potential and a series of calcium signaling is discussed.

Keywords: bioelectricity; calcium signaling; cardiac differentiation; membrane potential; myoblast
differentiation; stem cells; vascular remodeling

1. Introduction

Vertebrates possess three types of muscle tissue classified by morphology, function,
and distribution: skeletal, cardiac, and smooth muscle. The movement of living organisms
and the functioning of various visceral organs rely on muscle contraction and relaxation.
These processes are controlled by endogenous bioelectric signaling mediated by ion chan-
nels and transporters. The loss or dysfunction of such transport proteins usually leads
to serious diseases [1–4]. For example, mutations that disrupt the voltage-gated chloride
channel ClC-1 [5–7] and the voltage-gated sodium channel Nav1.4 [8,9] result in myotonia
congenita and paramyotonia congenita, respectively. Ion channels and their pathogenic
roles have been extensively studied in mature, excitable muscle cells [10–13]. Moreover,
there is increasing evidence that ion channels also play crucial roles in muscle development.
In this review, we focus on these roles of ion channels and transporters. We summarize the
molecular mechanisms by which ion channels or transporters regulate the differentiation
of non-excitable stem or progenitor cells during myogenesis. Additionally, we emphasize
the fundamental role of endogenous bioelectrical signals in developmental processes.

Similar to muscle cells, every living cell possesses a transmembrane potential (Vm)
across the plasma membrane due to the uneven distribution of ions that is established or
affected by various ion pumps, transporters, and channels. The range of resting membrane
potentials varies between cell types. Stem cells and tumor cells tend to have a more positive,
depolarized membrane potential, while terminally differentiated cells usually possess a
much more negative, hyperpolarized resting potential [14–17]. For example, embryonic
stem cells and skeletal muscle cells have resting membrane potentials of approximately
−10 mV and −90 mV, respectively [14,16]. Ca2+ is one of the most important second
messengers in vertebrate cells. Numerous physiological and pathophysiological processes
are closely related to Ca2+ signaling. In general, the cytoplasmic free Ca2+ concentration
is much lower than that of the extracellular environment. An elevated intracellular Ca2+

concentration can result from Ca2+ influx through specific Ca2+ channels in the plasma
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membrane (voltage-gated, ligand-gated, or store-operated calcium channels) or by the
release of Ca2+ from intracellular calcium stores such as the endoplasmic reticulum, lyso-
somes, or mitochondria.

2. Ion Channels in Skeletal Myogenesis
2.1. Membrane Hyperpolarization

Skeletal muscle formation occurs during the entire lifespan of vertebrates, including
embryonic development, postnatal growth, and damage repair in adults [18,19]. Myo-
genesis from myogenic precursor cells (myoblasts) generally begins with cell cycle with-
drawal, followed by the expression of muscle-specific transcription factor myogenin and
the subsequent fusion of multiple cells into multinucleated myotubes (Figure 1) [20,21].
Hyperpolarization of the membrane potential is a prerequisite for skeletal muscle myoblast
differentiation. This hyperpolarization can result from an efflux of cations, most likely K+

according to the given intracellular and extracellular concentrations, or theoretically by an
influx of anions. Primary muscle progenitor cells derived from single satellite cells maintain
their stem cell identity rather than undergo myogenic commitment when hyperpolarization
is impaired by high external K+ or the Na+,K+-ATPase inhibitor ouabain [22–24]. More
specifically, upon induction of the myogenic differentiation of human myoblasts, the ac-
tivation of an ether-à-go-go (EAG) K+ channel has been shown to rapidly hyperpolarize
myoblasts from approximately −8 mV to approximately −32 mV [25–27]. This is followed
by a further drop in the resting membrane potential to approximately −74 mV due to the
activation of the inward-rectifying K+ channel Kir2.1 [27–29]. The human EAG K+ current
density was reported to be low in proliferating myoblasts, to increase in fusion-competent
myoblasts, and to decline again in myotubes [27]. By contrast, the Kir2.1 current has been
found to be expressed in 40–50% of differentiating myoblasts and in all myotubes [22,27].
Notably, the activation of plasma membrane-localized Kir2.1 channels by dephospho-
rylation of Tyr242 is considered one of the earliest detectable events during myoblast
differentiation [28]. It occurs within the first 6 h of differentiation, several hours before
the expression of the two myogenic transcription factors myogenin and myocyte enhancer
factor 2 (MEF2) [22,30].
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Figure 1. Myogenic differentiation. The scheme shows the differentiation of skeletal muscle from
the mesoderm that is determined in the skeletal muscle lineage after MyoD and Myf5 expression.
Myoblasts proliferate until they withdraw from the cell cycle and differentiate into myocytes, which
involves myogenin and MRF4. Myocytes fuse to form myotubes that express skeletal muscle proteins
myosin heavy chain (MHC), muscle creatine kinase (MCK), and α-actin. Adapted from [31].

In addition to these contributors of hyperpolarization, several types of ion channels,
including ether-à-go-go-related gene (ERG) K+ channels [29], store-operated Ca2+ entry
(SOCE) channels [32], and volume-regulated anion channels (VRACs) [33,34], have been
shown to affect the resting membrane potential of fusion-competent myoblasts. Inhi-
bition of the human ERG K+ channel activity depolarized myoblasts by approximately
10 mV [29], whereas knockdown of the stromal interaction molecule 1 (STIM1) or Orai1,
reducing SOCE, impaired hyperpolarization and consequently inhibited myoblast dif-
ferentiation [32]. Furthermore, it has been reported that, by activating the intermediate-
conductance Ca2+-activated K+ channel (IKCa), extracellular 5’-guanosine-triphosphate
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(GTP) hyperpolarizes C2C12 cells from a mean value of −15 mV to approximately −75 mV
and increases myosin heavy chain (MHC) expression [35–37]. VRAC is a plasma mem-
brane channel formed by heteromers of leucine-rich repeat containing family 8 (LRRC8)
members that mediates the flux of Cl− and organic osmolytes in a variety of physiological
processes [38–42]. Using an optical activity sensor [43], VRAC was shown to be transiently
activated during the early stage of C2C12 (a mouse skeletal muscle myoblast cell line that
expresses all five LRRC8 family members [44]) differentiation, which was also accompa-
nied by a reduction in intracellular chloride [34]. While VRAC is not required for C2C12
proliferation [45], knockdown of the essential LRRC8A subunit [46,47] or pharmacological
inhibition of its activity impaired the hyperpolarization and subsequent fusion of C2C12
myoblasts [33]. However, a VRAC-mediated efflux of Cl− per se, which is evidenced by the
increased cytosolic Cl− upon VRAC inhibition, cannot contribute to the hyperpolarization.
An explanation may be that VRAC affects other channels such as Kir2.1. VRAC was also
proposed to be involved in myotube differentiation by regulating signaling independent of
its ion transport activity [48].

The analysis of human patients and animal models provide in vivo evidence for
the importance of ion channel function in the development of skeletal muscle. Patients
with mutations in the KCNJ2 gene, which encodes the Kir2.1 potassium channel, exhibit
severe craniofacial and limb defects, such as cleft palate and brachydactyly (shortened
digits) [49–51]. Kir2.1 knockout mice also display a cleft palate and patterning defects
in their skeletal digits [52,53]. Mice with global or skeletal muscle-specific deletions of
STIM1 [54–56] and Orai1 [57–59] exhibit a drastically reduced muscle mass and much
smaller body size compared with their wild-type littermates. Furthermore, mice lacking
the essential LRRC8A subunit of the VRAC exhibited severe growth retardation, high
prenatal and postnatal lethality, and various organ abnormalities, including thin skeletal
muscle bundles [60]. However, targeted deletion of LRRC8A in skeletal muscle resulted in
significantly smaller myofibers without affecting total muscle mass [48].

2.2. Ca2+ Signaling

An increase in the free cytoplasmic Ca2+ concentration is required for the expression
of myogenic transcription factors and the formation of normal-sized myotubes [23,61–64].
The hyperpolarization of human myoblasts induced by the sequential activation of EAG
and Kir2.1 has been shown to trigger a small but sustained influx of Ca2+ through α1H
T-type voltage-gated Ca2+ channels (VGCCs), sufficient to cause a significant increase
in the resting intracellular Ca2+ concentration [29,62]. This cytosolic Ca2+ signal acti-
vates the calcineurin/NFAT pathway, thereby inducing the expression of myogenin and
MEF2 (Figure 2) [23]. Another Ca2+-dependent pathway involving the Ca2+/calmodulin-
dependent kinase (CaMK), is required for myogenin expression [65] but does not link to
Kir2.1-induced hyperpolarization [23]. Interestingly, a 10 mV depolarization of the resting
potential was observed to increase the T-type Ca2+ current and to raise the intracellular free
Ca2+ concentration, thus triggering a ten-fold acceleration of human myoblast fusion [29].
However, the involvement of T-type VGCCs as a primary Ca2+ entry mechanism in my-
oblast differentiation seems to be species-dependent, as it was shown that L-type rather
than T-type Ca2+ currents can regulate the expression of myogenin and MHC in murine
C2C12 cells [66,67]. A link between L-type VGCCs and calcineurin activity has also been
suggested [68].
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Figure 2. Membrane hyperpolarization and calcium signaling in myoblast differentiation. The
sequential activity of EAG and Kir2.1 K+ channels leads to membrane hyperpolarization, which in
turn is required for Ca2+ signaling. Ca2+ release from the ER, which leads to activation of SOCE, can
contribute to the Ca2+ signal. Activity of the Cl− channel VRAC contributes to hyperpolarization by
an unknown mechanism. See the main text for details.

Intracellular Ca2+ can also be elevated during myoblast differentiation when Ca2+ is
released from the endoplasmic reticulum (ER) through inositol 1,4,5 tris-phosphate recep-
tors (IP3Rs), followed by Ca2+ entry through SOCE channels [69–73]. Knockdown of IP3R1
in human myoblasts impaired both endogenous spontaneous Ca2+ oscillations and SOCE,
which in turn reduced the activity of two key enzymes of muscle differentiation: calcineurin
and CaMKII [74]. By contrast, the overexpression of IP3R1 not only rescued normal differ-
entiation in IP3R1-silenced myoblasts but also increased the percentage of MEF2-positive
nuclei after one day of differentiation [74]. In zebrafish, it was shown that, in addition to the
IP3 receptor, the Ca2+-dependent ryanodine receptor (RyR) also contributes to the cytosolic
Ca2+ signal during myogenesis upon lysosomal Ca2+ release by two-pore channel type 2
(TPC2) activation [75,76]. Upon ER Ca2+ store depletion, the Ca2+ sensor STIM1 triggers
Ca2+ influx through SOCE-mediating channels located at the ER-plasma membrane junction,
thereby efficiently restoring the ER Ca2+ content [77–79]. Here, two classes of channels are
involved [80]: Orai channels [77,81] and transient receptor potential canonical channels (TR-
PCs) [82,83]. The important roles of STIM1 [32,54–56,84], Orai1 [32,57–59], TRPC1 [85–88], and
TRPC4 [89,90] during myogenesis in mouse and human have been established. Silencing any
of them reduced SOCE and myoblast differentiation, whereas the forced expression of STIM1
with Orai1, TRPC,1 or TRPC4 in human myoblasts increased SOCE, accelerated myoblast
fusion, and produced hypertrophic myotubes [32,89]. Furthermore, the N-methyl-D-aspartate
(NMDA) receptor, a subtype of ionotropic glutamate receptors, was also shown to mediate
Ca2+ influx and to promote C2C12 myoblast fusion [91]. It is worth recalling that the graded
Ca2+ signal involved in skeletal muscle formation depends on Ca2+ release from intracellular
stores as well as Ca2+ influx from the extracellular space [29,69]. However, all of these Ca2+

signals are inhibited when the hyperpolarization process that increases the driving force
for Ca2+ is blocked [23,33,36,63]. Notably, SOCE is involved in both hyperpolarization and
subsequent Ca2+ signaling. Moreover, muscles from TRPC1 knockout mice display reduced
fiber cross-sectional area and contain less myofibrillar proteins [86,92].
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2.3. Further Molecular Mechanisms

The failure of myoblasts to exit the cell cycle leads to defective myotube formation [20,93].
It was reported that blocking the Ca2+- and voltage-dependent K+ channel KCa1.1 in human
primary myoblasts increased the levels of cytosolic Ca2+ and activated NFκB, which resulted
in enhanced cell proliferation and reduced fusion [94]. Interestingly, KCa1.1 expression in
myotonic dystrophy type 1 (DM1) myoblasts was found to be significantly decreased [95],
whereas introducing functional KCa1.1 α-subunits into DM1 myoblasts reduced their pro-
liferation to normal levels and rescued the expressions of MEF2 and myogenin [94]. While
constitutive overexpression of the protein called chloride intracellular channel 5 (CLIC5)
partly shifted C2C12 cells from G2/M phase to G0/G1 phase, resulting in decreased cell
proliferation and increased expression levels of myogenin and MHC [96], a direct effect of
altered ion transport remains to be shown because it is unlikely that CLICs function indeed as
chloride channels [97]. The activation of Kv7 channels reduced proliferation and stimulated
differentiation of C2C12 myoblasts [98]. In particular, it was reported that the endocannabi-
noid 2-arachidonoylglycerol inhibits skeletal muscle differentiation via cannabinoid type 1
receptor-mediated inhibition of Kv7.4 channels [99]. Knockdown of Kv7.4 reduced the expres-
sion levels of several differentiation markers, but overexpression of Kv7.4 did not enhance
myoblast differentiation [100].

Inhibition of mechanosensitive (or stretch-activated) cation channels by pharmaco-
logical blockers leads to impaired phenotypic maturation of C2C12 myoblasts, including
reduced expression of sarcomeric proteins and MHC and decreased creatine kinase ac-
tivity [101,102], with contradicting findings on the inhibitory effect on myogenin expres-
sion. Several further ion transport proteins have been implicated in skeletal myogenesis,
including TRPC3 [103], Pannexin1 and Pannexin3 [104], connexin43 [88,105,106], two-
pore domain potassium channels TASK2 and TREK1 [107], nicotinic acetylcholine recep-
tors [63,108], transient receptor potential vanilloid 1 (TRPV1) [109,110], and Na+/K+/2Cl−

cotransporter 1 (NKCC1) [111]. However, the specific mechanistic roles of these proteins in
myogenic differentiation have not yet been elucidated.

3. Ion Channels and Transporters in Cardiac Differentiation

The heart is the first inner organ to form and function in the embryo. After birth, unlike
skeletal muscle, the division or generation of cardiac muscle cells only occurs as a very slow
process [112–114]. Due to the controversy or limitations surrounding cardiac progenitor
cells [112,115,116], here, we focus on data describing cardiac differentiation of pluripotent
stem cells (PSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells
(iPSCs). The differentiation of PSCs into cardiomyocytes is usually accomplished by the
embryoid body method and is characterized by sequential expression of a series of genes:
initial mesoderm and cardiomesoderm markers (brachyury T and mesoderm posterior
protein 1 (MESP1)), followed by cardiac-specific transcription factors (NKX2.5, GATA4, and
MEF2C), and finally cardiac-specific structural proteins (cardiac Troponin I (cTnI), MYH6,
MYH7, and myosin light chain 2a (MLC2A)) (Figure 3) [112,115,117]. Interestingly, the acti-
vation of Ca2+-activated K+ channels (SKCas) (mainly the intermediate-conductance SKCa
SK4) induced hyperpolarization of the membrane potential in undifferentiated murine
ESCs, thereby inducing cardiac differentiation [118]. This suggests that membrane hyper-
polarization precedes the signaling cascades of mesoderm commitment and cardiomyocyte
specification. Notably, it was proposed that SKCa activation induces efficient cardiac
differentiation of ESCs by activating the Ras-Mek1/2-ERK1/2 signal transduction path-
way [118]. A recent study showed that the K+ channel ERG1 is involved in the cardiac
differentiation of rat ESCs by interacting with integrin β1 and thus activating the AKT
pathway (Figure 4) [119].
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Figure 4. Membrane hyperpolarization and ion channel activation in cardiac differentiation. The
activity of ERG1 and SKCa K+ channels lead to membrane hyperpolarization and signaling to cardiac
differentiation. See the main text for details.

The sources of intracellular Ca2+ signals vary with the differentiation stage of PSC-
derived cardiomyocytes and embryos maintained ex vivo [121–123]. In particular, the
Na+/Ca2+ exchanger NCX1 is expressed during the earliest stages of heart develop-
ment [123–125] and pharmacological blockade of NCX1 impacted on CaMKII signaling to
downregulate the expression of key cardiac markers (Nkx2.5, Myh6, and Tnnt2 (encoding
cTnT)), which led to impaired differentiation and failure of cardiac crescent formation [123].
The inhibition of L-type Ca2+ channels that are also expressed in the early stages of car-
diac development resulted in the downregulation of Myh6 and Tnnt2 and a reduction in
beating embryoid bodies [123]. In addition, the activity of the Na+/H+ exchanger NHE1
was shown to promote cardiomyocyte differentiation; however, the mechanism has so
far remained unknown [126]. In contrast with skelatal muscle differentiation, there is no
clear data on a contribution of intracellular calcium stores, such as the ER, lysosomes, or
mitochondria, in cardiac muscle differentiation.

A mutation that disrupts the ERG K+ channel activity causes severe cardiac phe-
notypes in human patients, including QT prolongation, functional AV conduction dis-
turbances, and polymorphic ventricular arrhythmias [127]. Similarly, another missense
mutation in the human ERG, when introduced into the orthologous mouse gene in mouse
ESCs, causes developmental cardiac defects in the right ventricle and its outflow tract.
Homozygous mutant offspring died in utero by embryonic day 11.5 [128]. Mutations that
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result in reduced voltage-dependent channel inactivation of a specific L-type Ca2+ channel,
Cav1.2, cause defects in heart development in human patients. These defects include lethal
arrhythmias and congenital heart disease [129,130].

4. Ion Channel Activity in Smooth Muscle Cell Differentiation

Compared with skeletal muscle, there is only scarce information on the role of ion
channels or transporters in vascular smooth muscle cell (VSMC) differentiation. VSMCs
arise from multiple origins during embryonic development [131,132]. Although various
in vitro models have been established to investigate the detailed mechanisms of deriving
VSMCs from stem cells, it appears that origin-specific VSMCs possess individual regulatory
mechanisms regarding the control of differentiation [133,134]. On the other hand, unlike
cardiac and skeletal muscle cells, VSMCs do not terminally differentiate but maintain the
ability to undergo phenotypic modulation in response to physiological and pathological
stimuli, switching between a fully differentiated and contractile phenotype and a highly
proliferative, migratory, and synthetic phenotype [135]. The limited progress made in
defining VSMC differentiation [136–138] makes it more difficult to determine the role of
ion channels or transporters in this process.

Many studies have presented confusing or apparently contradicting data on Ca2+

signaling, mostly by influx from the extracellular space [139–143]. Little is known about
a potential role of intracellular Ca2+ stores in VSMC differentiation. While the lysosomal
channels TRPML1 and TPC2 were shown to contribute to Ca2+ signaling in differentiated
smooth muscle cells [144,145], a role for lysosomal as well as mitochondrial Ca2+ in their
differentiation is unknown. The relative contributions of plasma membrane and ER Ca2+

channels in the plasma membrane alters when smooth muscle cells switch between a
contractile and a proliferative phenotype [146,147]. However, this change in Ca2+ signaling
does not seem to affect cell differentiation [148].

Nevertheless, it is beyond doubt that ion channels are critically involved in the devel-
opment of vascular smooth muscle as well. One example is the ERG1 K+ channel, in which
deletion results in defects in the yolk sac and intraembryonic vasculature. Treatment with
the specific ERG1 antagonist dofetilide, both in vivo and in vitro, recapitulates this vascular
phenotype [149]. Interestingly, a recent study demonstrated the importance of plasma
membrane hyperpolarization in VSMC differentiation [150]. First, the induction of contrac-
tile differentiation of primary VSMCs by transforming growth factor TGF-β1 treatment
caused hyperpolarization of the resting membrane potential. Second, TGF-β1-stimulated
VSMC differentiation in the mesenchymal stem cell line C3H10T1/2 was inhibited in a
dose-dependent manner in the presence of additional extracellular KCl. Furthermore, it
was reported that TRPC6-mediated Ca2+ influx and depolarization suppressed VSMC
differentiation by coordinately promoting the interaction of TRPC6 with lipid phosphatase
and PTEN (phosphatase and tensin homolog) [150].

5. Conclusions

It is becoming increasingly clear that ion channels and transporters play conserved
roles in developmental processes [151]. In contrast with transcriptional networks and
signaling mechanisms, the emerging field of bioelectricity is a reservoir of new discoveries
to be explored [15–17]. Changes in the resting membrane potential—as distinguished from
transient membrane potential changes or oscillations during physiological processes—can
be an instructive parameter in regulating cell fate decisions [152]. There are challenges to
the investigation of the role for ion channels in cell differentiation, such as the fact that they
can operate within a very narrow time window and that their regulation is not necessarily
associated with changes in protein expression. The integration of various Ca2+ signals
further adds to the complexity. Future research is required for identifying the intracellular
or extracellular stimuli that control the activity of ion channels and transporters, and
their downstream signaling. Elucidating the mechanisms by which ion channels and
transporters promote muscle cell differentiation will lead to a better understanding of
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muscle development or disease and will provide insight for the development of therapeutic
strategies relying on drugs or regenerative medicine.
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IKCa Intermediate-conductance Ca2+-activated K+ channel
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LRRC8 Leucine-rich repeat containing family 8
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MLC2A Myosin light chain 2a
Myf5 Myogenic factor 5
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NFAT Nuclear factor of activated T-cell
NKCC1 Na+/K+/2Cl− cotransporter 1
NMDA N-methyl-D-aspartate
PSC Pluripotent stem cell
PTEN Phosphatase and tensin homolog
RyR Ryanodine receptor
SKCa Small and intermediate conductance Ca2+-activated K+ channel
SOCE Store-operated Ca2+ entry
STIM1 Stromal interaction molecule 1
TPC2 Two-pore channel type 2
TRPC Transient receptor potential canonical channel
TRPV1 Transient receptor potential vanilloid 1
VGCC Voltage-gated Ca2+ channel
VRAC Volume-regulated anion channel
VSMC Vascular smooth muscle cell
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