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Abstract: Gestational diabetes (GDM) and preeclampsia (PE) are associated with fetal hyperglycemia,
fetal hypoxia, or both. These adverse conditions may compromise fetal and placental endothelial
cells. In fact, GDM and PE affect feto-placental endothelial function and also program endothelial
function and cardiovascular disease risk of the offspring in the long-term. MicroRNAs are short,
non-coding RNAs that regulate protein translation and fine tune biological processes. A group of
microRNAs termed angiomiRs is particularly involved in the regulation of endothelial function.
We hypothesized that transient hyperglycemia and hypoxia may alter angiomiR expression in feto-
placental endothelial cells (fpEC). Thus, we isolated primary fpEC after normal, uncomplicated
pregnancy, and induced hyperglycemia (25 mM) and hypoxia (6.5%) for 72 h, followed by reversal to
normal conditions for another 72 h. Current vs. transient effects on angiomiR profiles were analyzed
by RT-qPCR and subjected to miRNA pathway analyses using DIANA miRPath, MIENTURNET
and miRPathDB. Both current and transient hypoxia affected angiomiR profile stronger than current
and transient hyperglycemia. Both stimuli altered more angiomiRs transiently, i.e., followed by
72 h culture at control conditions. Pathway analysis revealed that hypoxia significantly altered
the pathway ‘Proteoglycans in cancer’. Transient hypoxia specifically affected miRNAs related
to ‘adherens junction’. Our data reveal that hyperglycemia and hypoxia induce memory effects
on angiomiR expression in fpEC. Such memory effects may contribute to long-term adaption and
maladaption to hyperglycemia and hypoxia.

Keywords: hyperglycemia; hypoxia; memory effect; feto-placental endothelial cells; angiomiR

1. Introduction

Maternal metabolic and inflammatory disorders in pregnancy such as gestational
diabetes (GDM) and preeclampsia (PE) affect and shape the fetal environment. GDM
causes hyperglycemia and hypoxia in the fetus [1–3], and also PE is associated with
chronic or subchronic fetal hypoxia [4,5]. Both hyperglycemia and hypoxia are well-known
disturbing factors of endothelial function: Hyperglycemia induces the production of
reactive oxygen species (ROS) by the mitochondrial electron chain and generates advanced
glycation end products, i.e., proteins modified by non-enzymatic glycation, which are the
main underlying causes for endothelial dysfunction [6,7]. Also hypoxia and fluctuations in
oxygen levels are associated with oxidative stress and increased ROS production [8], and
disturb endothelial function [9].

The adverse biochemical processes induced by hyperglycemia and hypoxia are, in
general, of reversible nature. However, offspring of pregnancies exposed to such conditions
in utero, i.e., after pregnancies complicated by maternal GDM or PE, possess an increased
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risk to develop endothelial dysfunction and cardiovascular diseases later in life [10,11]. This
fetal programming is also associated with epigenetic changes. For instance, altered DNA
methylation has been observed in feto-placental endothelial cells after GDM pregnancy [12]
and in neonatal endothelial progenitor cells after PE pregnancies [13]. Underlying causes
are multifaceted, but long-lasting effects of hyperglycemia and hypoxia play a role.

In fact, it has been well established that the negative effect of hyperglycemia on
endothelial function continues even after the establishment of normoglycemia [14,15]. This
phenomenon of transient exposure to hyperglycemia has been termed ‘glycemic memory’
or ‘hyperglycemic memory’ and may be explained in part by persistent epigenetic changes
caused by hyperglycemia. Hyperglycemic memory can also be observed in vitro after
exposure of endothelial cells to hyperglycemia, and includes epigenetic mechanisms, such
as DNA methylation changes [16,17] as well as altered histone methylation [18,19].

Hyperglycemia is not the only condition inducing long-term effects after a transient
exposure. A hypoxic memory has been identified in kidney disease, induced by acute
kidney injury, which also involves DNA methylation and histone modifications [20]. In
endothelium, a hypoxia-induced memory effect has not yet been established, however, the
fact that HIF-1 stability and activity as well as ERK signalling differ after acute vs. transient
hypoxia [21,22] highlights the distinct effects of them. Moreover, the recently discovered
finding that hypoxia alters histone demethylases in endothelial cells [23] potentially enables
long-term changes in gene expression and suggests a hypoxic memory in endothelial cells
as well.

MicroRNAs are short, non-coding RNA molecules that bind complementary to target
messenger RNAs (mRNAs), and thus, interfere with translation. So far, about 2600 miRNAs
have been described in humans, with in total more than 380,000 calculated interactions
with target mRNAs (miRTarBase database [24]). Like mRNAs, miRNA expression is
regulated at different levels, i.e., by transcription factors, DNA methylation, and histone
modification. Whilst many miRNAs possess their own regulatory elements, other miRNAs
are located and co-expressed with the host gene, and thus, regulated by the host gene
promoter [25]. This means that miRNA expression can be regulated in the short and long-
term, and also through programming mechanisms. MiRNAs act as critical fine tuner in
virtually all biological processes. For instance, a group of about 20 miRNAs is particularly
involved in the regulation of endothelial function and angiogenesis, and these miRNAs
have been termed ‘angiomiRs’ [26,27]. miRNAs are also implicated in memory effects.
miRNAs-mediated modulation of gene expression was identified to participate in immune
memory [28], and altered miRNA expression occurs during glycemic memory of the
heart [29] and in endothelial cells [30].

This raises the questions whether both periods of transient hyperglycemia as well as
transient hypoxia may alter angiomiR expression in the endothelium of the fetal vasculature
and whether the effects of transient stimuli differ from effects of current stimuli, i.e., effects
during the treatment.

To this end, we isolated primary feto-placental endothelial cells (fpEC) from placental
arteries. Placental vessels are part of the fetal vasculature and exposed to the fetal blood
stream. Thus, fpECs experience the same environmental stimuli as fetal endothelial cells
and serve as a model for fetal endothelium. FpEC were isolated after normal pregnancy,
i.e., after a pregnancy without pathological hyperglycemic/hypoxic periods. The cultured
cells were under hyperglycemic or hypoxic conditions for 3 days, followed by reversal
to normoglycemic/normoxic conditions for another 3 days. AngiomiR profiling was
performed immediately after the exposure to hyperglycemia and hypoxia to determine the
direct effect of the stimuli. Moreover, analysis was performed 72 h after return to normal
conditions to investigate the transient effects.

2. Results

The experimental setup to analyse and distinguish current vs. transient effects of
hyperglycemia and hypoxia on angiomiR expression in fpEC is illustrated in Figure 1.
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(HGNG and HONO, respectively), the growing pattern was similar to the cells grown 
under control conditions continuously (Figure 2). 

Figure 1. Experimental setup. Hyperglycemic treatment was performed with n = 10 individual fpEC
isolations; hypoxic treatment was performed with n = 9 individual fpEC isolations. C: control condi-
tion; NG: normoglycemia (5.5 mM glucose); HG: hyperglycemia (25 mM glucose); NO: normoxia
(12% O2); HO: hypoxia (6.5% O2); HGNG: transient hyperglycemia with reversal to normoglycemia;
HONO: transient hypoxia with reversal to normoxia.

2.1. Hyperglycemia and Hypoxia Did Not Alter Microscopical Growing Pattern of fpEC

Exposure of fpEC to current hyperglycemia (HG) and hypoxia (HO) for 72 h did not
alter the cell shape or growing pattern of fpEC. Also after reversal to control conditions
(HGNG and HONO, respectively), the growing pattern was similar to the cells grown
under control conditions continuously (Figure 2).
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2.2. Current and Transient Effects of Hyperglycemia and Hypoxia on AngiomiRs

For expression profiling of angiomiRs, two distinct normalization strategies were
followed in parallel: First, miRNAs were normalized to the geometric mean of five small
non-coding housekeeping RNAs, i.e., RNU6-2; miR-28-3p; miR-30b-5p; miR-191-5p; and
miR-423-3p. Second, in order to identify angiomiRs that stand out in their regulation from
the collective of the 19 angiomiRs, each miRNA was normalized to the geometric mean of
the total of angiomiRs. Both strategies revealed very similar results and overall expression
pattern, with only minor differences in significance levels.

Expression analysis revealed that current hyperglycemia (HG) for 72 h had no effect
on angiomiRs, regardless of whether angiomiRs were normalized to housekeepers (HK)
or to total angiomiRs. Also, the reversion of cells to normoglycemia (HGNG) affected
the expression of angiomiRs only slightly: After normalization to HK, two angiomiRs
were significantly altered whilst normalisation to total angiomiRs revealed no significant
changes in angiomiR profile (Figure 3a, Table 1).Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 18 
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Figure 3. Heatmap illustrating the effect of current and transient treatments on angiomiR expression. The changes in
angiomiR expression under current and transient hyperglycemia (HG; HGNG) vs. control conditions (a) and changes
in angiomiR expression under current and transient hypoxia (HO; HONO) vs. control conditions (b). ‘HK‘ indicates
that miRNAs were normalized to the geometric mean of five housekeepers; ‘all angiomiRs‘ indicates that miRNAs were
normalized to the geometric mean of all angiomiRs. Downregulation vs. respective control condition is highlighted by
red color, upregulation by blue color, and unchanged expression by white color. The columns entitled with ‘m’ represent
the mean value of the condition. * indicates that the angiomiR is significantly different from control condition (p < 0.05), †

indicates that angiomiR differs from control conditions by trend (p < 0.1). Groups of angiomiRs that are changed significantly
or per trend are framed with a line. miRNAs are printed in bold if they are significantly changed by any condition (current
or transient) in the respective heatmap. The blue (male) and pink (female) bars underneath the heatmaps indicate the sex of
the fpEC donor. The respective color codes for up- and downregulation are given in the lower right corner. Heatmaps were
generated using MS Excel.
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Table 1. AngiomiR expression changes after current exposure to hyperglycemia (HG) or hypoxia (HO) and after reversal to
control conditions (HGNG and HONO, respectively).

Normalized to HK Normalized to all angiomiRs

HG mean ± SD HGNG mean ± SD HG Mean ± SD HGNG mean ± SD

Ex
po

su
re

to
cu

rr
en

ta
nd

tr
an

si
en

th
yp

er
gl

yc
em

ia let-7a-2-3p 1.09 ± 0.50 0.68 ± 0.23 0.83 ± 0.55 0.89 ± 0.41
mir132-3p 1.02 ± 0.34 0.74 ± 0.15 † 0.94 ± 0.31 0.89 ± 0.16
mir134-5p 1.01 ± 0.46 0.85 ± 0.24 0.92 ± 0.23 0.88 ± 0.11
mir139-5p 1.49 ± 1.43 0.68 ± 0.19 0.84 ± 0.67 0.78 ± 0.30

mir181b-5p 1.45 ± 1.05 0.82 ± 0.17 † 0.89 ± 0.24 0.93 ± 0.16
mir20a-5p 1.41 ± 1.54 1.16 ± 0.59 1.11 ± 1.04 1.33 ± 0.49
mir210-3p 1.21 ± 1.34 0.68 ± 0.14 ** 0.77 ± 0.46 0.84 ± 0.25
mir21-5p 1.40 ± 1.04 0.81 ± 0.37 1.04 ± 0.67 0.91 ± 0.33
mir221-3p 1.19 ± 0.80 0.79 ± 0.34 1.14 ± 0.44 0.96 ± 0.36
mir222-3p 1.13 ± 0.67 0.79 ± 0.20 1.01 ± 0.37 1.09 ± 0.30
mir23b-3p 1.40 ± 0.71 0.77 ± 0.23 1.09 ± 0.52 0.77 ± 0.23
mir24-2-5p 1.17 ± 0.96 0.88 ± 0.48 0.80 ± 0.57 1.01 ± 0.42
mir27a-3p 1.54 ± 0.87 0.90 ± 0.33 1.02 ± 0.44 1.05 ± 0.26
mir296-5p 1.02 ± 0.89 0.91 ± 0.45 1.07 ± 0.87 0.91 ± 0.45
mir31-5p 1.16 ± 0.86 0.94 ± 0.45 0.77 ± 0.48 1.07 ± 0.34
mir320a 1.01 ± 0.39 0.65 ± 0.12 * 0.85 ± 0.41 0.83 ± 0.21 †

mir34a-3p 1.65 ± 1.10 0.87 ± 0.41 1.27 ± 0.67 1.01 ± 0.35
mir503-5p 1.38 ± 1.05 0.88 ± 0.49 0.75 ± 0.46 1.10 ± 0.68
mir93-5p 1.29 ± 0.92 0.82 ± 0.26 0.90 ± 0.31 0.99 ± 0.18

Normalized to HK Normalized to all angiomiRs

HO mean ± SD HONO mean ± SD HO mean ± SD HONO mean ± SD

Ex
po

su
re

to
cu

rr
en

ta
nd

tr
an

si
en

th
yp

ox
ia

let-7a-2-3p 0.85 ± 0.34 1.19 ± 0.54 0.61 ± 0.27 † 1.15 ± 0.39
mir132-3p 1.95 ± 1.45 * 1.83 ± 0.55 ** 1.47 ± 0.73 † 1.83 ± 0.65 **
mir134-5p 1.60 ± 1.42 † 1.34 ± 0.61 * 1.09 ± 0.69 1.41 ± 0.66 *
mir139-5p 1.15 ± 1.03 0.66 ± 0.35 † 0.85 ± 0.83 0.70 ± 0.35 †

mir181b-5p 1.71 ± 1.06 * 1.34 ± 0.44 * 1.21 ± 0.53 1.36 ± 0.38 *
mir20a-5p 1.33 ± 0.60 1.27 ± 0.47 0.99 ± 0.41 1.53 ± 0.72
mir210-3p 0.81 ± 0.48 0.30 ± 0.24 *** 0.55 ± 0.35 * 0.28 ± 0.20 ***
mir21-5p 2.79 ± 1.93 ** 1.00 ± 0.43 2.13 ± 1.03 ** 1.02 ± 0.33
mir221-3p 1.19 ± 0.46 1.05 ± 0.63 0.87 ± 0.34 1.01 ± 0.35
mir222-3p 1.13 ± 0.31 1.01 ± 0.52 0.83 ± 0.25 0.99 ± 0.34
mir23b-3p 1.56 ± 0.46 ** 1.45 ± 0.97 1.63 ± 0.70 *** 1.61 ± 1.10 †

mir24-2-5p 2.04 ± 1.14 * 1.46 ± 0.91 1.48 ± 0.65 1.56 ± 0.52 *
mir27a-3p 1.22 ± 0.79 0.83 ± 0.48 1.03 ± 0.41 0.81 ± 0.35 *
mir296-5p 0.98 ± 0.55 0.80 ± 0.48 0.69 ± 0.29 0.84 ± 0.58
mir31-5p 1.15 ± 0.47 0.70 ± 0.20 * 1.04 ± 0.65 0.74 ± 0.27 ***
mir320a 1.11 ± 0.60 0.69 ± 0.13 ** 1.11 ± 0.60 0.69 ± 0.13 *

mir34a-3p 1.09 ± 0.58 1.24 ± 0.38 0.79 ± 0.40 1.31 ± 0.37
mir503-5p 1.09 ± 0.77 0.88 ± 0.35 0.74 ± 0.44 † 0.88 ± 0.44
mir93-5p 1.26 ± 0.39 1.04 ± 0.44 0.93 ± 0.29 1.05 ± 0.28

Fold changes printed in bold indicate that miRNAs were used for pathway analysis and are either altered by trend or significantly
(†: p < 0.1; *: p < 0.5; **: p < 0.01; ***: p < 0.001).

In contrast to current hyperglycemia, current hypoxia (HO) had a more pronounced
effect on angiomiR expression: HO significantly altered the expression of miR-132-3p;
miR-181b-5p; miR-21-5p; miR-23b-3p; and miR-24-2-5p when normalized to housekeeping
genes (HK) and of miR-21-5p, miR-210-3p, and miR-23b-3p when normalized to total
angiomiRs (Figure 3b, Table 1).

Reversal of cells to normoxic conditions revealed that transient hypoxia (HONO)
changed the expression of more angiomiRs than current HO did: normalisation to HK
revealed six significantly altered angiomiRs (miR-132-3p, miR-134-5p, miR-181b-5p, miR-
210-3p, miR-31-5p, and miR-320a), and normalisation to total angiomiRs identified the same
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set of angiomiRs with two additionally altered miRNAs, i.e., miR-27a-3p and miR-24-2-5p
(Figure 3b, Table 1).

In previous studies, we observed sex differences in miRNA expression of fpEC, and
thus, all analyses were also performed in consideration of fetal sex (not shown). In our
small cohort with 5/5 and 5/4 fpEC of male vs. female progeny, we did not detect any
sex-specific difference in angiomiR regulation. Fetal sex is indicated below the heatmaps in
Figure 3 as a blue (male) or pink (female) box.

2.3. Current and Transient Effects of Hypoxia on AngiomiR-Regulated Functional Pathways

Because of the absent and little effect of current and transient hyperglycemia on
angiomiR expression, no pathway analysis was performed. For pathway analysis of
current and transient hypoxia effects, in addition to significantly altered miRNA, we also
included miRNAs that were altered by trend (p < 0.1). There are several software tools
for miRNA pathway analysis that are based on distinct algorhythms and databases. We
employed three different software tools, i.e., DIANA miRPath v.3 [31], MIENTURNET [32],
and MiRPathDB 2.0 [33], and interlinked the results by selecting only pathways that were
identified by at least two of the applied softwares (Table 2).

Table 2. Pathway analysis of microRNAs that were altered by current and transient hyperglycemia
(HG; HGNG) and hypoxia (HO; HONO). Pathway analysis used three software tools designed for
analysis of miRNAs, i.e., DIANA miRPath, MIENTURNET, and miRPathDB. The presented data are
a combination of results of the above-mentioned three softwares.

DIANA miRPath Mienturnet miRPathDB

C
ur

re
nt

hy
po

xi
a

HO normalized to HK:

Proteoglycans in cancer x x
FOXO signalling pathway x x

HO normalized to all angiomiRs:

Proteoglycans in cancer x x x
FOXO signalling pathway x x

Cell cycle x x x
HIF-1 signalling pathway x x
Estrogen signalling pathway x x
Ras signalling pathway x x
Neurotrophin signalling pathway
P53 signalling pathway x x
MAPK signalling pathway x x
Prolactin signalling pathway x x
Progesterone mediated oocyte maturation x x

Tr
an

si
en

th
yp

ox
ia

HONO normalized to HK:

Proteoglycans in cancer x x x
HIF-1 signalling pathway x x
Adherens junctions x x

HONO normalized to all angiomiRs:

Proteoglycans in cancer x x x
HIF-1 signalling pathway x x
Adherens junctions x x

Estrogen signalling pathway x x x
Ras signalling pathway x x
FOXO signalling pathway x x
Neurotrophin signalling pathway x x
P53 signalling pathway x x
Protein processing in ER x x

Pathways simultaneously identified when normalized to the geometric mean of housekeeping genes (HK) and
when normalized to the geometric mean of all angiomiRs, are printed in bold.
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Independently of the normalization strategy used for angiomiR profiling, current
hypoxia altered miRNAs that could be mainly assigned to the functional pathways ‘Proteo-
glycans in cancer’ and ‘FOXO signaling pathway’. Transient hypoxia altered the pathways
‘Proteoglycans in cancer’, ‘HIF-1 signaling pathway’ and ‘adherens junction’. The pathway
‘adherens junctions’ was regulated by transient hypoxia only. In order to visualize this
difference, we employed DIANA miRPath software to generate KEGG pathways based on
angiomiRs altered by current hypoxia (HO) vs. transient hypoxia (HONO). Indeed, more
target mRNAs were present, i.e., highlighted by yellow or orange, within the pathway
generated, with the list of altered angiomiRs under transient hypoxia (HONO) when com-
pared to the pathway generated with the list of altered angiomiRs under current hypoxia
(HO) (Figure 4).
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mirPath software.

To generate an overview on biomolecular pathways affected by angiomiRs altered by
current vs. transient hypoxia, we used an analysis tool developed for pathway analysis of
mRNA lists, i.e., Reactome pathway analysis [34]. For this purpose, we generated a list
of angiomiR target mRNAs for each condition using miRNA-target enrichment analysis
of MIENTURNET software to create Reactome pathways. Reactome pathway diagrams
display those pathways that are overrepresentatively regulated. In both conditions, i.e.,
current and transient hypoxia, particularly ‘signalling by receptor tyrosine kinases’ (clus-
ter ‘signal transduction’) and ‘toll-like receptor cascade’ (cluster ‘immune system’) were
overrepresented. In concordance with the previous miRNA pathway analysis, there was a
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stronger target mRNA overrepresentation in ‘RhoGTPas signalling’ after transient hypoxia
(HONO) as when compared to current hypoxia (HO). This biomolecular pathway is closely
related to the KEGG pathway ‘adherens junction’ with various overlapping molecules
(Figure 5).
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3. Discussion

In this study, we investigated the effect of current vs. transient hyperglycemia and
hypoxia on angiomiR expression in fpEC. AngiomiR profiling revealed that both transient
hyperglycemia and transient hypoxia altered angiomiRs, thus inducing a memory effect in
angiomiR expression under both conditions. Moreover, the effect of hypoxia (current and
transient) was stronger than the effect of hyperglycemia. Interestingly, some miRNAs, i.e.,
miR-210-3p and miR-320a, were regulated under both conditions, i.e., by transient hypoxia
and transient hyperglycemia.

Transient and hence, memory effects of both hyperglycemia and hypoxia, were more
pronounced than acute effects of current treatment. For instance, despite the well-known
adverse effects of high glucose on endothelial function in vivo and in vitro [35,36], an-
giomiR pattern was unaffected by current hyperglycemia, with no change in expression
profile. Several scenarios are possible that could explain the non-existent effect of high
glucose on angiomiRs. First, the immediate response of angiomiRs to hyperglycemia
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may happen more rapidly than monitored here, already flattening after 72 h exposure.
For instance, upregulation of miR-21 by hyperglycemia in human glomerular endothelial
cells peaks after 48 h and declines thereafter [37]. However, the fact that hyperglycemia
induced endothelial dysfunction is a long-term complication of diabetes and clinically
develops over time [14,15,38], and transient intermittent hyperglycemia in diabetic patients
is an independent risk factor for cardiovascular diseases [39]. This is paralleled by the
in vitro finding that the effect of transient hyperglycemia on global miRNA expression of
human aortic endothelial cells was greater than the effect of current hyperglycemia [30].
Absent current effect after 72 h of hyperglycemia may thus reflect the slow and long-term
development of endothelial dysfunction in diabetes.

In contrast to the absent effect of current hyperglycemia on angiomiRs, current hy-
poxia altered six angiomiRs significantly. As every cell in the body requires oxygen for
functioning, decreased oxygen immediately activates a signalling cascade that triggers a
variety of biological processes, and miRNAs are involved in this cascade [40]. MiRNAs
induced by hypoxia have been termed hypoxamiRs [41], and these molecules fine tune
hypoxia-induced cellular adaption including apoptosis, survival, proliferation, inflam-
mation, metabolism, and angiogenesis [41,42]. Indeed, all angiomiRs that were found
significantly regulated by moderate current hypoxia have been identified as angiomiRs
previously, i.e., miR-21, miR-23b, miR-24, miR-132, miR-181b, and miR-210 [42,43]. In line
with this, except for miR-210-3p that was downregulated, all of them were upregulated
by current hypoxia in fpEC. The fact that miR-210-3p, as a classical hypoxamiR, was re-
duced after 72 h of hypoxia is surprising, and we can only speculate that the induction of
miR-210-3p by hypoxia has—as well as the cellular adaption to hypoxia in general [44]—a
shorter dynamic than the time interval investigated here. We aimed to mimic chronic
moderate hypoxic episodes, and thus, upregulation of miR-210-3p may have occurred
before angiomiR analysis at 72 h. Interestingly, in rats, a downregulation of miR-210-3p was
shown to enhance the expression of DNA repair molecules [45]. Reduction of miR-210-3p
after hypoxia, i.e., in a situation of oxidative stress, may thus help counteract DNA damage.

Also transient hypoxia altered more angiomiRs (8) than current hypoxia (6), with an
overlap of four commonly regulated angiomiRs. The transient effect of hypoxia in vitro,
i.e., a hypoxic memory, is less investigated than hyperglycemic memory, however, in vitro
data show that HIF-1 (hypoxia inducible factor 1) stability and activity differ, depending
on whether cells are exposed to acute, chronic, or intermittent hypoxia (reviewed by [22]).
Our data add to these findings and suggest that the difference in HIF-1 signal transduction
of acute vs. transient hypoxia is paralleled by altered angiomiR profiles.

Both angiomiRs that were downregulated by transient hyperglycemia, i.e., miR-210-3p
and miR-320a, were also downregulated under transient hypoxia. This overlap points to a
certain, common feature between hyperglycemia and hypoxia to underlie this expression
change. Indeed, both conditions lead to ROS production, and consequently, to oxidative
stress [6–8], which could, as a hypothesis, be a common regulator of long-term reduction
of miR-210-3p and miR-320a.

Also miR-320a was downregulated by both transient hyperglycemia and transient
hypoxia. MiR-320a is reduced during pathogenesis of diabetic retinopathy [46], and high
glucose induces a downregulation of miR-320a in human islets [47], highlighting the
susceptibility of miR-320 to the diabetic environment and the role in diabetes-associated
endothelial dysfunction.

Memory effects refer to changes that persist after a transient exposure to a stimulus.
In in-vitro experiments, cells are usually exposed to the condition once, and the induced
memory effects are observed for a relatively short period of time, i.e., several days [16–19].
Also the transient effects on miRNA expression observed in our study do represent mem-
ory effects. However, whether the changes remain long-term enough to contribute to a
programming effect in vivo is unknown. Noteworthy, in a recent study we investigated
the effect of GDM on global miRNA expression of fpEC [48]. Although the long-term
effects of GDM on endothelial cells are composed of a buzz of many individual factors, and
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hyperglycemia and hypoxia are only parts of the diabetic milieu, we found two angiomiRs
that were regulated (significantly and by trend) by GDM exposure and by exposure to
transient hypoxia, i.e., miR-134-5p and miR-139-5p. Additionally, a novel study of He et al.
used our global miRNA [48] and mRNA analyses [12] of fpEC exposed to GDM to generate
miRNA-mRNA regulatory networks, and identified a network around miR-139-5p to be
altered by GDM [49]. Interestingly enough, this network was also altered in the fetal
heart of a streptozotocin-induced pregestational diabetes mouse model, which was also
characterized by an increase in cardiac wall thickness [49]. This overlap speaks for a link
between in vitro memory effects of hyperglycemia and in vivo programming by diabetes.

Pathway analysis of current vs. transient effects of hypoxia showed that, in line with
an overlap of regulated angiomiRs, the pathway ‘Proteoglycans in cancer’ was significantly
regulated under both conditions, i.e., current and transient hypoxia. In fact, it has been
well established that the pool of proteoglycans secreted by endothelial cells is sensitive to
oxygen tension [50]. The pathway ‘adherens junctions’ was overrepresented only under
transient hypoxia. In line with this finding, Aslam et al. reported failure of the endothelial
barrier after transient hypoxia [51], which involves adherens junction assembly. Moreover,
Rho GTPases are key regulators of the endothelial barrier [52], and Rho GTPase signalling
was overrepresented in reactome pathway analysis.

We see it as strength of our study that we employed two distinct normalisation
methods for angiomiR profiling. MiRNA normalisation is challenging as no general house-
keeping miRNAs exist. Thus, the combination of several normalizers is most appropriate
when using reference genes [53]. Besides that, a global normalisation, i.e., normalisation to
the mean expression level of all transcripts, was postulated as the most reliable method [53].
Our method of normalizing expression data to the mean of all angiomiRs investigated is
not a global normalization, but it enables expression analysis without the use of reference
genes and illustrates how individual angiomiRs behave with respect to total angiomiRs. In
fact, both normalization strategies have revealed very similar results, thus confirming the
expression data, and show furthermore, that hypoxia, one of the strongest mediators of
endothelial function and angiogenesis, targets only certain angiomiRs.

A further strength is the employment of three different pathway analysis tools and
the interlinking of their results. In contrast to mRNA pathway analysis, which integrates
mRNA lists to pathways from Gene Ontology and KEGG database, miRNA pathway
analysis comprises a second analysis step, i.e., the determination of target genes that use
one of the several available miRNA target prediction databases, such as TargetScan or
miRTarBase. As a consequence, the set of significantly altered pathways identified by the
software differs. We believe that the selection of only pathways that were identified by at
least two of the software tools is a method to obtain as reliable results as possible.

We are aware that our data comprise information of a small subset of miRNAs only,
and prediction on long-term effects on endothelial function is difficult. Thus, the translation
of the results to the overall effect of the treatments as well as to the overall behaviour of the
cells should be viewed with caution. However, although angiomiRs are a small group of
miRNAs, they are significantly responsible for endothelial cell function, and in this sense,
they are a representative parameter of endothelial cell function and dysfunction.

Moreover, although fpEC are cells of the fetal vasculature, we acknowledge the fact
that they do not originate from the actual body of the fetus. However, as we do not have
access to human fetal endothelial cells, fpEC represent one of the closest models possible.

Our study revealed that angiomiRs may play a role in modulation of fetal and pla-
cental endothelial function by hyperglycemia and hypoxia. In addition to the current
effect of these stimuli, our data highlight that the effects of transient exposure to high
glucose or hypoxia, particularly if recurrent, may have strong implications on the long-
term adaption of the cells to environmental conditions. The strong response to transient
stimuli indicates a large plasticity and adaption of these endothelial cells to metabolic and
inflammatory factors, and memory effects may reflect a first step towards programming of
endothelial function.
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4. Materials and Methods
4.1. Sample Collection

Ethical approval was obtained from the Medical University of Graz (approval reference
number 29-319 ex 16/17). Placentas were collected after healthy full term pregnancies, and
all women provided written informed consent.

4.2. Isolation of Human Feto-Placental Endothelial Cells (fpEC)

Arterial fpEC were isolated from the chorionic plate as described previously [54,55].
Endothelial cell growth medium supplemented with the MV Kit was used for cell cultiva-
tion (PromoCell, Heidelberg, Germany) at 37 ◦C, 12% O2, and 5% CO2 in a 95% humidified
incubator. All culture dishes were pre-coated with 1% porcine skin gelatin (Merck, Darm-
stadt, Germany).

4.3. Treatments

Experimental setup is illustrated in Figure 1. For hyperglycemic treatment, fpEC
(n = 10 individual cell isolations) were seeded in four 75 cm2 cell culture flasks (3 × 105 cells
per flask), two in normoglycemic (5.5 mM D-glucose) and two in hyperglycemic (20 mM
D-glucose) medium. The unmodified PromoCell medium served as control condition,
whereas 14.5 mM D-Glucose (Merck) was added to the hyperglycemic medium. After 72 h,
fpEC from one flask of the normoglycemic treatment (C) and fpEC from one flask of the
hyperglycemic treatment (HG) were washed with 10 mL cold PBS (Medicago AB, Uppsala,
Sweden), harvested in 700 µL of Qiazol® (Qiagen, Hilden, Germany) using a cell scraper,
vortexed, and stored at −80 ◦C for later miRNA isolation. The second flask of cells exposed
to hyperglycemia was returned to normoglycemia (HGNG), and the cells of the second
flask grown under normoglycemia remained at normoglycemic conditions (C). Cells were
cultivated for another 72 h and harvested as described above.

For the hypoxic treatment, fpEC (n = 9 individual cell isolations) were seeded in four
75 cm2 cell culture flasks (4 × 105 cells per flask). Two flasks were cultivated at 12% O2,
which reflects the umbilical artery oxygen concentration at term of gestation [56]. GDM
and PE are associated with a reduction of fetal oxygen levels by 15% [2] and 32% [4],
respectively. Thus, we used the oxygen concentration of 6.5% O2 for the cultivation of the
other two flasks, which represents a reduction by 45% to mimic the moderate hypoxia of
GDM and PE in vitro. Cell culture at defined oxygen concentration was performed in a
customized Xvivo X3 hypoxic workstation (BioSpherix, Parish, NY, USA) at 37 ◦C, 5% CO2,
and 95% humidity. After 72 h, one flask of the normoxic condition (C) and one flask of
the hypoxic condition (HO) were harvested as described above. The second flask of the
hypoxic condition was switched back to normoxia (HONO) for another 72 h. The second
flask of the control condition remained at normoxia (C) for another 72 h. Then, cells were
harvested.

4.4. Cell Imaging

Cell morphology and density were observed at day 3 and day 6 for both experiments.
All flasks were imaged prior to harvesting using the EVOS XL Core Cell Imaging System
(Thermo Fisher Scientific, Bothel, WA, USA). For hypoxia experiments, the images were
taken in the customized Xvivo X3 hypoxic workstation, equipped with the EVOS XL Core
Cell Imaging System, in order to avoid a change of oxygen concentrations.

4.5. MiRNA Isolation and cDNA Synthesis

Total RNA enriched with miRNAs was isolated using miRNeasy Mini kit (Qiagen)
according to the manufacturers’ instructions. RNA was eluted in 30 µL RNase free water,
and total RNA concentration was determined using QIAxpert UV-VIS spectrophotometer
(Qiagen). The content profiling mode of the QIAxpert revealed high RNA purity for all
extracted samples.
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For cDNA synthesis, 1 µg of total RNA was transcribed using the miScript II RT Kit
(Qiagen) according to the manufacturers’ protocol. Each reaction contained 5 µL of RNA
(200 ng/µL), and reverse transcription was performed for 60 min at 37 ◦C followed by
inactivation of miScript reverse transcriptase for 5 min at 95 ◦C in a Mastercycler pro®

(Eppendorf, Hamburg, Germany). Prior to RT-qPCR, cDNA was stored at −20 ◦C.

4.6. RT-qPCR for AngiomiR Expression

Twenty angiomiRs, as obtained from the literature (Table 3), were quantified using RT-
qPCR with specific miScript Primer-Assays and miScript SYBR® Green PCR Kit (Qiagen).
cDNA was diluted to a concentration of 0.5 ng/µL, and the PCR reactions were set up
automatically in 384-well plates by using the Hamilton ID STARlet pipetting robot (Hamil-
ton Robotics, Reno, NV, USA) with a final cDNA concentration of 2 ng in a total reaction
volume of 10 µL. All reactions were performed in triplicates. RT-qPCR was carried out in
the CFX384 Real-Time PCR Cycler (Bio-Rad Laboratories, Hercules, CA, USA) according
to the manufacturers‘ recommendations. PCR efficiency of all primer assays was tested
using a five-point standard curve with a range from 25 to 0.04 ng/reaction of pooled cDNA
in triplicates. Expression of angiomiRs was relatively quantified (2−∆∆Ct method) [57]
using two distinct strategies. The expression of miR-199a-3p was very low and below the
detection limit in 14% of samples, and thus, was excluded from the analysis. First, relative
miRNA expression was normalized to the geometric mean of the Ct values of five small
non-coding RNAs and miRNAs, respectively, that were selected as housekeeping RNAs
(RNU6; miR-28-3p; miR-30b-5p; miR-191-5p; miR-423-3p) based on the literature [58–61]
and based on their stable Ct values in the experiment.

Table 3. Primers for angiomiRs and housekeeping RNAs.

miRNA Qiagen Primer Assay ID Reference

AngiomiRs:

let-7a-2-3p Hs_let-7a-2*_2 [62]
miR-132-3p Hs_miR-132_1 [63,64]
miR-134-5p Hs_miR-134_2 [64]
miR-139-5p Hs_miR-139_1 [65]
miR-181b-5p Hs_miR-181b_1 [62]
miR-199a-3p Hs_miR-199a-3p_1 [66]
miR-20a-5p Hs_miR-20a_1 [67,68]
miR-210-3p Hs_miR-210_1 [68]
miR-21-5p Hs_miR-21_2 [69]
miR-221-3p Hs_miR-221_1 [70]
miR-222-3p Hs_miR-222_2 [70]
miR-23b-3p Hs_miR-23b_2 [71]
miR-24-2-5p Hs_miR-24-2*_1 [71]
miR-27a-3p Hs_miR-27a_1 [71]
miR-296-5p Hs_miR-296-5p_1 [72]
miR-31-5p Hs_miR-31_1 [73]
miR-320a Hs_miR-320a_1 [74]
miR-34a_3p Hs_miR-34a*_1 [62]
miR-503-5p Hs_miR-503_2 [71]
miR-93-5p Hs_miR-93_1 [72]

Housekeeping RNAs:

RNU6-6P Hs_RNU6-2_11 [60]
miR-191-5p Hs_miR-191_1 [59,61]
mir-28-3p Hs_miR-28-3p_1 [59,61]
mir-30b Hs_miR-30b_1 [58]
miR-423-3p Hs_miR_423_1 [58]

In the second strategy, we normalized the expression of each angiomiR against the
geometric mean of all analyzed angiomiRs. The fold change (FC) was determined by
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calculating the 2−∆∆Ct value of each control condition relative to the treatments and used
for the generation of heatmaps in MS Excel.

4.7. Pathway Analysis

Functional pathways targeted by the altered miRNAs were analysed using three
different tools: DIANA miRPath v.3 [72], MIENTURNET [73], and MiRPathDB 2.0 [74].
Pathways that were identified to be significantly regulated by at least two software tools
were selected.

In order to display biomolecular processes with overrepresented target genes, we
employed Reactome pathway database. The list of genes targeted by the altered miRNAs
was obtained from MIENTURET using miRNA-target enrichment analysis based on miR-
TarBase database. KEGG pathways targeted by the set of miRNAs were generated using
DIANA miRPath v.3.

4.8. Statistical Analysis

Data analysis was performed using GraphPad Prism Software Version 9.1.0 and IBM
SPSS Statistics 26. For statistical analysis, ∆Ct values were used for paired t-test (based
on individual cell isolations). For generation of heatmaps and comparison of expression
levels, 2−∆∆Ct values (mean ± SD) were used, either based on the geometric Ct mean of
the housekeeping miRNAs, or based on the geometric Ct mean of all angiomiRs analyzed.
A p-value < 0.05 was considered as statistically significant; a p-value < 0.1 was regarded as
a trend.
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