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Abstract: Cholangiocarcinoma (CCC) is the second most primary liver cancer with an aggressive
biological behavior, and its incidence increases steadily. An aberrant up-regulation of the sonic
hedgehog signaling pathway has been reported in a variety of hepatic diseases including hepatic
inflammation, fibrosis, as well as cancer. In this study, we determined the effect of a sonic hedgehog
inhibitor, vismodegib, on the development of CCC. Through database analyses, we found sonic
hedgehog signaling was up-regulated in human CCC, based on overexpression of its target genes,
GLI1 and GLI2. Further, human CCC cells were highly sensitive to the treatment with vismodegib
in vitro. Based on the data, we investigated the in vivo anti-cancer efficacy of vismodegib in CCC
employing a murine model of CCC developed by hydrodynamic tail vein injection method. In the
murine model, CCC induced by constitutively active forms of TAZ and PI3K exhibited up-regulated
sonic hedgehog signaling. Treatment of vismodegib significantly suppressed tumor development in
the murine CCC model, based on comparison of gross morphologies and liver weight/body weight.
It is expected that pharmacological inhibition of sonic hedgehog signaling would be an effective
molecular target therapy for CCC.

Keywords: cholangiocarcinoma; hydrodynamic transfection; sonic hedgehog; hedgehog pathway
inhibitor; molecular target therapy

1. Introduction

Cholangiocarcinoma (CCC) is the 2nd most primary liver cancer with an aggressive
biological behavior and accounts for about 15% of cases, following hepatocellular carci-
noma [1]. It is a highly heterogeneous disease entity arising from neoplastic transformation
at both intra- and extra-hepatic biliary epithelial cells. The risk of developing CCC has
been strongly associated with chronic inflammation of the biliary tract, resulting from a
heterogeneous group of several risk factors. The molecular mechanisms underlying their
pathogenesis are still poorly understood.

Among various kinds of mechanisms associated with developing CCC [2,3], an aber-
rant up-regulation of the hedgehog (HH) signaling pathway has been demonstrated to
be involved in both initiation and progression of carcinogenesis, which is also involved
in other hepato-biliary tumors such as hepatocellular carcinoma, hepatoblastoma, and
gallbladder cancer. In the absence of sonic HH (SHH) which is a secreted glycoprotein
member of the HH family [4], the 12-transmembrane receptor Patched 1 (PTCH1) normally
inhibits G-coupled 7-transmembrane protein Smoothened (SMO). Upon binding of SHH
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to Patched 1, the receptor-mediated suppression of SMO is abolished, and SMO now
can activate the downstream signaling pathway, leading to translocation of GLI family
transcription factors to the nucleus. Numerous SHH target genes are transcribed in this
manner that include GLI1 and GLI2 in a positive feedback loop [3]. Genetic alteration in
both mutation and copy number of GLI1 and GLI2 had been observed in CCC [5,6].

Vismodegib (GDC-0449) is the 2nd-generation cyclopamine derivative and the first
oral systemic HH pathway inhibitor (HPI) approved by the Food and Drug Administration
(FDA) and European Medicines Agency (EMA) [7]. It binds to the SMO receptor, thereby
inhibiting its action and inhibiting tumor growth. Currently, it is the first-line anti-cancer
medication for patients with locally advanced basal cell carcinomas or metastatic basal cell
carcinomas where radiotherapy and surgery are not eligible [8].

Given that the SHH signaling pathway is up-regulated in about 50% of CCC [9], we
aimed to assess whether CCC with up-regulated SHH signaling is also vulnerable to HPI.
For this purpose, we employed the hydrodynamics-based transfection method to develop
a murine autochthonous intrahepatic CCC model, and then investigated the effects of HPI
on tumor development.

2. Results
2.1. Activation of SHH Signaling in Human Intrahepatic CCC

First, we verified that SHH activity was elevated in human intrahepatic CCC. Elevated
expression of GLI1 and GLI2 is commonly used as a marker for SHH [10,11]. Using publicly
available databases, The Cancer Genome Atlas (TCGA), we compared expression levels
of GLI1 and GLI2 in intrahepatic CCC with those in non-tumor liver tissues. Significant
overexpression of both GLI1 and GLI2 was found in intrahepatic CCC, when compared
with non-tumor tissues (p < 0.001 and 0.05, respectively), suggesting a possible tumorigenic
effect of SHH signaling during the development of CCC (Figure 1A,B).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 13 
 

 

member of the HH family [4], the 12-transmembrane receptor Patched 1 (PTCH1) nor-

mally inhibits G-coupled 7-transmembrane protein Smoothened (SMO). Upon binding of 

SHH to Patched 1, the receptor-mediated suppression of SMO is abolished, and SMO now 

can activate the downstream signaling pathway, leading to translocation of GLI family 

transcription factors to the nucleus. Numerous SHH target genes are transcribed in this 

manner that include GLI1 and GLI2 in a positive feedback loop [3]. Genetic alteration in 

both mutation and copy number of GLI1 and GLI2 had been observed in CCC [5,6].  

Vismodegib (GDC-0449) is the 2nd-generation cyclopamine derivative and the first 

oral systemic HH pathway inhibitor (HPI) approved by the Food and Drug Administra-

tion (FDA) and European Medicines Agency (EMA) [7]. It binds to the SMO receptor, 

thereby inhibiting its action and inhibiting tumor growth. Currently, it is the first-line anti-

cancer medication for patients with locally advanced basal cell carcinomas or metastatic 

basal cell carcinomas where radiotherapy and surgery are not eligible [8]. 

Given that the SHH signaling pathway is up-regulated in about 50% of CCC [9], we 

aimed to assess whether CCC with up-regulated SHH signaling is also vulnerable to HPI. 

For this purpose, we employed the hydrodynamics-based transfection method to develop 

a murine autochthonous intrahepatic CCC model, and then investigated the effects of HPI 

on tumor development. 

2. Results 

2.1. Activation of SHH Signaling in Human Intrahepatic CCC 

First, we verified that SHH activity was elevated in human intrahepatic CCC. Ele-

vated expression of GLI1 and GLI2 is commonly used as a marker for SHH [10,11]. Using 

publicly available databases, The Cancer Genome Atlas (TCGA), we compared expression 

levels of GLI1 and GLI2 in intrahepatic CCC with those in non-tumor liver tissues. Signif-

icant overexpression of both GLI1 and GLI2 was found in intrahepatic CCC, when com-

pared with non-tumor tissues (p < 0.001 and 0.05, respectively), suggesting a possible tu-

morigenic effect of SHH signaling during the development of CCC (Figure 1A,B).  

 

Figure 1. Activation of SHH signaling in human CCC. Expression levels of GLI1 (A) and GLI2 (B) 

in tumor and non-tumor tissues were compared using The Cancer Genome Atlas (TCGA). 

2.2. Sensitivity of Human Intrahepatic CCC Cells to a Chemical Inhibitor of SHH Signaling 

Next, we investigated sensitivities of human intrahepatic CCC cells to a chemical in-

hibitor of SHH, vismodegib, an effective SHH pathway inhibitor approved by the FDA. 

Two human CCC cell lines, SNU-1079 and SNU-245, were used for the study. Treatment 

Figure 1. Activation of SHH signaling in human CCC. Expression levels of GLI1 (A) and GLI2 (B) in
tumor and non-tumor tissues were compared using The Cancer Genome Atlas (TCGA).

2.2. Sensitivity of Human Intrahepatic CCC Cells to a Chemical Inhibitor of SHH Signaling

Next, we investigated sensitivities of human intrahepatic CCC cells to a chemical
inhibitor of SHH, vismodegib, an effective SHH pathway inhibitor approved by the FDA.
Two human CCC cell lines, SNU-1079 and SNU-245, were used for the study. Treatment
with vismodegib showed a dose-dependent inhibition of cell proliferation in both cell
lines. Vismodegib treatment at a dose of 5 µM halted proliferation of CCC cells, and at the
concentration of 10 µM and higher, the effects were more dramatic leading to decreases
in cell numbers in both cell lines (Figure 2A,B). To investigate the nature of cell deaths



Int. J. Mol. Sci. 2021, 22, 13214 3 of 12

after the treatment with vismodegib at 10 µM, we performed Propidium Iodide (PI) and
Fluorescein (FITC)-Annexin V staining and analyzed stained cells by fluorescence-activated
cell sorting (FACS). The FACS experiment revealed that the treatment of CCC cells with
vismodegib at 10 µM led to apoptotic cell deaths in both CCC cell lines (Figure 3A,B). The
data show that human CCC cells are sensitive to HH pathway inhibitor (HPI) in vitro and
proposes that HPI could be utilized as an effective target therapeutic for CCC.
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Figure 2. Vismodegib inhibits proliferation of CCC cells. The numbers of live cells were estimated
using an MTT-based assay kit at the indicated time points after treating CCC cells with vismodegib
at 0, 1, 5, 10, and 20 µM. (A) SNU-1079; (B) SNU-245. Data are presented as the mean ± standard
error of mean (SEM).
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Figure 3. Treatment with vismodegib at 10 µM induced apoptosis in CCC cells. The y-axis represents PI staining and x-axis
represents Annexin V staining. (A) SNU-1079; (B) SNU-245.

2.3. Activation of SHH Signaling in a Murine Model of CCC Induced by Activated Forms of TAZ
and PI3K

To investigate whether HPI affects tumor development of CCC in the liver, we em-
ployed a simple liver-specific transgenic approach in which transposons encoding con-
stitutively active forms of TAZ (TAZS89A) and PI3K (PI3KCAE545K) were co-delivered to
murine livers through hydrodynamic tail vein injection (HTVI) (Figure 4A). Previously, it
has been reported that similar combination of oncogenes (i.e., YapS127A and PIK3CAH1047R)
could induce CCC in murine livers [12]. At 5 to 6 weeks after HTVI, mice started to display
discomfort and livers harvested from the mice showed very enlarged shapes compared
with normal livers (Figure 4B,C). Numerous nodules were observed from all livers express-
ing TAZS89A and PI3KCAE545K, demonstrating high tumorigenicity by the combination of
oncogenes.
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Figure 4. PI3KE545K and TAZS89A induces intrahepatic CCC. (A) Schematic illustration of hydrodynamic tail vein injection
(HTVI). (B) The gross morphology of representative livers expressing PI3KE545K and TAZS89A. Livers were harvested at
6 weeks following HTVI. (C) The gross morphology of normal livers.

Microscopic examination revealed that the tumors induced by TAZS89A and PI3KCAE545K

were intrahepatic CCC with high expression of CK19, a biliary cell marker (Figure 5A). The
staining result of CCC tumors showed striking differences from that of normal liver tissues
where only cells of bile ducts are stained positive for CK19 (Figure 5B). Of note, nuclei in
neoplastic cells in CCC tumors were stained positive for Gli2, a marker for SHH activation
(Figure 5A). Thus, our murine model of intrahepatic CCC induced by TAZS89A and PI3KCAE545K

also revealed a high activity of SHH in CCC tumors.

2.4. Vismodegib Suppresses Tumor Development in the Murine Model of CCC

Considering that our murine model of intrahepatic CCC well mimics human CCC,
which is characterized by a high activity of SHH, we utilized the murine model to test
the in vivo efficacy of HPI, vismodegib. Mice of the treated group were administered
vismodegib at a daily dose of 50 mg/kg given intraperitoneally, while control mice were
given vehicle (10% DMSO). After 4-week administration, livers were harvested from both
the treated and control groups. Numbers of nodules and sizes of livers were significantly
reduced in mice treated with vismodegib (Figure 6A). Liver weight per body weight
(LW/BW), often used to evaluate tumor burden in liver, was also significantly reduced in
the treated group compared with the control (Figure 6B).
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Figure 5. Microscopic analysis of intrahepatic CCC induced by PI3KE545K and TAZS89A (A) H&E and IHC staining of tumor
sections from the livers shown in Figure 4B. (B) H&E and IHC staining of sections from normal livers. Note that only bile
ducts cells in normal livers were stained positive for CK19, while intrahepatic CCC showed ubiquitous expression of CK19.
Scale bar, 50 µm.
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Figure 6. Vismodegib treatment suppressed CCC. (A) Gross morphology of representative livers of mice treated with
vehicle and vismodegib. (B) Liver weight/body weight (LW/BW) ratios of mice treated with vehicle and vismodegib. The
graph represents the mean ± SEM (n = 5 livers per group) (*, p < 0.05). Western blots (C) and quantitative RT-PCR (D)
showing expression levels of SHH, Gli1, and Gli2 in livers of indicated groups (*, p < 0.05; **, p < 0.01).
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To confirm downregulation of SHH signaling due to the treatment with vismodegib,
we assessed the protein levels of SHH, the ligand that triggers the downstream SHH
signaling pathway (Figure 6C). Additionally, protein levels of representative SHH tar-
get genes, Gli1, and Gli2 were assessed in tumors treated with vismodegib and vehicle.
The protein levels of SHH, Gli1, and Gli2 were all significantly reduced in mice treated
with vismodegib, compared with those in control mice (Figure 6C). Quantitative reverse-
transcription PCR (RT-PCR) also confirmed decreased expression of SHH, Gli1, and Gli2 in
vismodegib-treated mice (Figure 6D).

3. Discussion

A plethora of SHH target genes are involved in various aspects of carcinogenesis,
including cell cycle progression, apoptosis, epithelial-to-mesenchymal transition, and
angiogenesis [13]. Aberrant activation of Hedgehog signaling has been reported in livers
with various pathological conditions such as inflammation, liver regeneration, vascular
remodeling, fibrosis, and cancer [14–16].

In this study, we investigated the role of SHH signaling in intrahepatic CCC by em-
ploying human intrahepatic CCC cells in vitro (Figures 2 and 3) as well as a murine model
in vivo (Figures 4–6). Pharmacological suppression of the SHH signaling pathway led to
dramatic inhibition of cell proliferation in vitro and tumor growth in vivo, proposing that
HPI can be an effective and attractive molecular target therapy for human intrahepatic CCC.

From this study, the molecular mechanism underlying how pharmacological suppres-
sion of SHH signaling inhibited tumor development in the murine CCC model remains
elusive. Of note, it has been reported that hepatic myofibroblasts promote the progression
of human cholangiocarcinoma [17,18]. The SHH signaling is an important regulator for
differentiation and expansion of myofibroblasts in the liver [19,20]. We investigated levels
of myofibroblasts in CCC from mice treated with vismodegib by assessing levels of alpha-
smooth muscle actin (α-SMA), a marker for myofibroblasts. Significant reduction of α-SMA
levels were found in intrahepatic CCC from mice treated with vismodegib, compared with
those from control mice (Figure 7B). Further study is required to precisely determine the
role of decreased myofibroblasts in vismodegib-mediated anti-tumor effects on CCC.

In conclusion, our study demonstrates that CCC exhibiting a high activity of SHH
signaling is vulnerable to HPI, thus pharmacological inhibition of the SHH signaling
pathway is considered an effective molecular target therapy for CCC patients.
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4. Materials and Methods
4.1. Publicly Available Genomic Data Analyses

Data analysis of transcriptome for patients with CCC was performed using the publicly
available database, The Cancer Genome Atlas (accessed on 3 May 2019).

4.2. Cell Culture and Treatment

Human intrahepatic CCC cell lines, SNU1079 and SNU-245 were purchased from the
Korean Cell Line Bank. The cells were maintained at 37 ◦C in a humidified atmosphere of
5% CO2. Cells were cultured in RPMI1640 with L-glutamine (300 mg/L), 25 mM HEPES
and 25 mM NaHCO3 (Welgene, Gyeongsan, Korea) supplemented with 10% fetal bovine
serum (Gibco, Grand Island, NY, USA). Cells were plated 105 cells per well on 6 well plate
one day prior to drug treatment. Cells were treated with vismodegib at concentrations of 0,
1, 5, 10, and 20 µM. Cells were harvested at 0, 24, 48, and 72 h after the treatment and then
used for cell viability assay (EZ-CYTOX; DoGenBio, Seoul, Korea).
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4.3. Animal Models

All experiments using mice were approved by the Animal Policy and Welfare Commit-
tee of the Yonsei University College of Medicine (Permit Numbers: 2018-0211). Wild-type
male C57BL/6 mice were purchased from Orient Bio (Seongnam, Korea). Animals were
housed in an animal facility under a 12 h light/dark cycle and were provided food and
water ad libitum. Tissues were collected immediately following surgery and stored at
−80 ◦C until processing and use.

4.4. Hydrodynamic Transfection and Drug Treatment

The plasmids pT3/EF5a-TAZS89A, pT2/PI3KCAE545K, and pPGK-SB13 were described
previously [21,22]. Hydrodynamic injection has also been previously described [21].
DNA mixtures of transposons (pT2- or pT3- plasmids) and transposase-encoding vec-
tor (pPGKSB13) were suspended in lactated Ringer’s solution and subsequently injected
into the lateral tail veins of male 5–6-week-old mice (0.1 mL/g body weight). Mice were
randomly assigned to hydrodynamic injection. Drugs were intraperitoneally administered
daily beginning 5 weeks after hydrodynamic transfection. Doses of drugs administered
was 50 mg/kg/day for vismodegib. All drugs were purchased from Selleckchem. All
mice in the control group received an equal volume of 10% DMSO in phosphate-buffered
saline (Welgene, Gyeongsan, Korea) by intraperitoneal injection according to the same
treatment schedule.

4.5. Liver Harvest and Tissue Processing

Mice were deeply anesthetized by intraperitoneal injection of tiletamine/zolazepam
(ZoletilTM, 30 mg/kg) and xylazine (10 mg/kg). A midline laparotomy incision was then
performed and the maximum possible amount of blood was collected from the inferior vena
cava. Pieces of extracted liver were immersed in freshly prepared 10% neutral-buffered
formalin and incubated overnight. The remainder of the liver was snap-frozen in liquid
nitrogen and stored at −70 ◦C until subsequent use.

4.6. Immunohistochemical Analyses of Mouse Tissue Samples

For immunohistochemistry, paraffin-embedded sections were deparaffinized in xy-
lene and rehydrated in a decreasing graded ethanol series. Antigen epitopes were then
unmasked using a 10 mM sodium citrate buffer (pH 6.0) incubation procedure, after which
sections were incubated overnight at 4 ◦C with the primary antibody. After incubation with
primary antibody, sections were incubated with the appropriate biotinylated secondary
antibody followed by treatment with freshly prepared DAB substrates (Vector Laborato-
ries, Burlingame, CA, USA). Sections were lightly counter-stained with hematoxylin and
mounted. The primary antibodies used in the study are anti-YAP/TAZ (Cat# 8418, Cell
Signaling Technology, Danvers, MA, USA), anti-Gli2 (ab26056; Abcam, Cambridge, UK),
and anti-CK19 (ab133496; Abcam, Cambridge, UK).

4.7. RNA Purification, Reverse Transcription and Real-Time PCR Amplification

Total RNA from extracted livers and cells was collected and purified with an RNeasy
Mini Kit (Qiagen, Germany) and converted to cDNA using a Superscript IV Synthesis
Kit (Invitrogen, USA). qPCR was performed on a StepOnePlus™ PCR System using PCR
master mix (Applied Biosystems, Waltham, MA, USA). The relative expression levels
of target genes were normalized to the mean expression levels of three housekeeping
genes, Gapdh, Hprt, and Actb (β-actin). All qPCR results were obtained from at least three
biological replicates. Primers used for qPCR are shown in Figure 7A.

4.8. Protein Etraction and Western Blotting

Liver tissues were homogenized and digested in 1×RIPA buffer containing a pro-
tease inhibitor and phosphatase inhibitor cocktail solution (Thermo Scientific, Waltham,
MA, USA). Western blotting experiments were performed following a standard protocol.
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The primary antibodies used were anti-SHH (SC-9024; Santa Cruz Biotechnology, Dal-
las, TX, USA), anti-Gli1 (ab167388; Abcam, Cambridge, UK), anti-Gli2 (ab26056; Abcam,
Cambridge, UK), and anti-GAPDH (# 2118; Cell Signaling Technology, Danvers, MA, USA).

4.9. Statistical Analysis

Statistical analyses were carried out with two-tailed unpaired t-tests or Mann Whitney
test, where appropriate, using GraphPad Prism Software (GraphPad, La Jolla, CA, USA).
All values are expressed as the mean ± SEM. Significant differences between two groups
were denoted by asterisks (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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