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Abstract: This study aimed to describe the adsorption process of ortho-dichlorobenzene (o-DCB)
onto activated carbons (ACs) and modified carbon nanotubes (CNTs) from the aqueous phase.
The starting material NC_7000 carbon nanotubes were modified by chlorination (NC_C) and then
by the introduction of hydroxyl groups (NC_C_B). The concentration of o-DCB in solutions was
performed by UV-VIS spectrophotometry. After adsorption, the activated carbons were regenerated
by extraction with organic solvents such as acetone, methanol, ethanol, and 1-propanol; the carbon
nanotubes were regenerated by methanol. The degree of adsorbate recovery was determined by gas
chromatography (GC) with flame ionization detection, using ethylbenzene as an internal standard.
The equilibrium isotherm data of adsorption were satisfactorily fitted by the Langmuir equations.
The results indicate that carbon adsorbents are effective porous materials for removing o-DCB from
the aqueous phase. Additionally, activated carbons are more regenerative adsorbents than carbon
nanotubes. The recoveries of o-DCB from ACs were in the range of 76–85%, whereas the recoveries
from CNTs were in the range of 23–46%. Modifications of CNTs affect the improvement of their
adsorption properties towards o-DCB compared to unmodified CNTs. However, the introduction of
new functional groups on carbon nanotube surfaces makes the regeneration process less effective.

Keywords: 1,2-dichlorobenzene; adsorption; activated carbon; modified carbon nanotubes

1. Introduction

Compared with other abatement methods, the adsorption process has been recognized
as the most effective, especially with carbon materials as an adsorbent. Adsorption can
be defined as an increase in the concentration of a substance (adsorbate) on a surface
(adsorbent). Then adsorbate forms a molecular film on the adsorbent’s surface. In ad-
dition, it is a non-destructive technique [1,2]. Throughout adsorption, various types of
organic compounds are removed from aqueous solutions, e.g., chloroderivatives, such
as 1,2—dichlorobenzene, dyes such as methylene blue, and numerous volatile organic
compounds [3–6].

Activated carbon is a microporous adsorbent that is characterized by significant
porosity and developed surface area. Their physical and sorption properties depend on
the raw material, the method of preparation and activation, as well as the modification of
the surface groups [7]. Due to their wide range of properties, activated carbons are ideal
for removing substances such as carbon dioxide [8], volatile organic compounds [9], or
inorganic ions like copper, zinc, and chromium from a gas or aqueous phase [10]. Carbon
nanotubes (CNTs) are carbonaceous materials that have been successfully used to remove
pollutants from the aqueous and gaseous phases. Many investigations show that nanotubes
are effective adsorbents for removing fluoride [11], dioxin [12], or lead [13].

Dichlorobenzene (DCB) is a benzene derivative. It is a co-product of a benzene chlo-
rination reaction by electrophilic substitution mechanisms in the presence of iron (III)
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chloride as a catalyst. Dichlorobenzenes are toxic and harmful to organisms. Dichloroben-
zenes have found use in the synthesis of dyes, insecticides, paint, and coat solvents [14].
o-DCB is a colorless liquid with a characteristic odor. It is used as a solvent, an intermediate
product in the synthesis of 3,4-dichloroaniline, a component of insecticidal preparations
and deodorants [15]. 1,2-dichlorobenzene goes into the water through the chemical dis-
charge of industrial plants. It has the ability to accumulate in animal tissues and change
the taste of water [16]. 1,2-DCB is slightly soluble in water. Therefore, adsorption is an
appropriate way to remove 1,2-DCB from water as it is present in low concentrations [17].
1,2-DCB is more soluble in methanol, ethanol, or benzene. Many studies on the adsorption
of chlorinated compounds have shown that methanol does not influence the adsorption
process [18,19]. The structure of the o-DCB molecule is shown in Figure 1.
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Chen et al. investigated the adsorption of 1,2-DCB onto Dickinson natural sediment.
1,2-dichlorobenzene solutions were prepared in methanol and then in the electrolyte
solution (NaCl, CaCl2, NaN3). For this sorbate, the maximum adsorption capacity was
6.37 µg/g [20]. Peng et al. published a study on the adsorption of 1,2-DCB onto as-grown
and graphitized carbon nanotubes from an aqueous solution. The time to reach equilibrium
was 40 min for both adsorbents, at an initial concentration of 20 mg/g. The adsorption
capacity on as-grown nanotubes was 30.8 mg/g, while that on graphitized nanotubes
was 28.7 mg/g. Their results indicated that carbon nanotubes are effective adsorbents
in the removal of 1,2-DCB at pH values ranging from 3 to 10 [17]. 1,2-dichlorobenzene
can be successfully removed from the aqueous solution using flat and stepped Au and Pt
surfaces. In this case, adsorption is possible due to dispersion interactions [21]. Deitsch et al.
performed adsorption of 1,2-DCB on peat soil and organobentonites. The study showed
that for this adsorbate, organobentonites were the more efficient adsorbent. It was also
found that the length of the organobentonite alkyl chain did not affect the adsorption
rate. However, the longer the alkyl chain, the lower the desorption rate. The adsorption
equilibrium for both adsorbents was linear over the concentration ranges studied [22].
A separate study of the adsorption of 1,2-DCB on natural sorbents indicated that the
equilibrium of the process is well described by the Freundlich model [23]. Bullot et al.
described adsorption of 1,2-DCB onto MIL-101 (Cr) nano- and microcrystals. They found
that adsorbate diffusion is faster for microcrystals than for nanocrystals. The maximum
adsorption capacity was 1670 mg/g [24].

2. Results and Discussion
2.1. Equilibrium of o-DCB Adsorption

The Langmuir adsorption isotherm equation (Equation (1)) was used to describe
the equilibrium of o—DCB adsorption onto activated carbons and carbon nanotubes.
To determine the values of am and b, the equation was reduced to its linear form C/a = f(C).

a =
am·b·C
1 + b·C (1)
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where the constant am is the adsorbent capacity (maximum adsorption amount) expressed
in mg/g, and b is the Langmuir equilibrium constant.

Coefficient values of the Langmuir adsorption model shown in Table 1 indicate that
AG-5 AC has a higher monolayer adsorption capacity than DT0 AC. Modification of CNTs
increased the am coefficient by 16% (NC_C) and 35% (NC_C_B) compared to NC_7000.

Table 1. Coefficient values of the Langmuir adsorption isotherm equation.

Adsorbent
Coefficients of Langmuir Equation

am b

DT0 357 0.61
AG-5 417 0.29

NC_7000 275 3.2
NC_C 320 2.6

NC_C_B 370 1.7

According to the IUPAC classification, the adsorption isotherms shown in Figure 2
are of I type. The graphs below demonstrate the excellent agreement of the experimental
data with the Langmuir equation (R2 > 0.99).
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Figure 2. Adsorption isotherms of o-DCB onto DT0 (a), AG-5 (b), NC_7000 (c), NC_C (d), and NC_C_B (e). 
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Schematically, the shape of the o-DCB molecule is represented in Figure 3.
The estimation of dimensions was based on the bond lengths of C-C 0.14 nm, C-H

0.11 nm, and C-Cl 0.174 nm. From the above assumption, it follows that depending on
the orientation of the molecule on the surface, its cross-sectional area (A) can vary from
approximately 0.06 (0.11 × 0.58) to 0.35 (0.58 × 0.61) nm2.
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The degree of surface coverage Sc for am values summarized in Table 2 indicates
that the adsorption of o-DCB on CNTs occurs with the orientation of the DCB molecules.
The values calculated for activated carbons show that o-DCB molecules form a monomolec-
ular layer on their surface.

am1 =
am

M
(2)

am2 =
am

M·SBET
·N (3)

Sc1 = am2·A1 (4)

Sc2 = am2·A2 (5)

Table 2. Surface coverage of adsorbents for different cross-sectional areas.

Adsorbent am1
[mmol/g]

am2
Amount of o-DCB per nm2

[molecules/nm2]

Sc1 for
A1 = 0.35 nm2

Sc2 for
A2 = 0.06 nm2

DT0 2.4 1.54 0.55 0.09
AG-5 2.8 1.99 0.72 0.12

NC_7000 1.9 6.16 2.22 0.37
NC_C 2.2 7.12 2.56 0.43

NC_C_B 2.5 9.13 3.29 0.55

We suppose that o-DCB molecules are placed horizontally on the surface of activated
carbons. In the case of carbon nanotubes, higher values of Sc indicate that a monolayer
may be formed, with some particles arranged vertically and some horizontally. This
phenomenon may be due to the microporosity of the activated carbons. In pores smaller
than 1.5 nm, the particles cannot orient themselves vertically. In contrast, o-DCB adsorbs
on the outer surface of carbon nanotubes. This enables easier vertical orientation of the
adsorbate molecules. Moreover, the modification of the carbon nanotube surfaces enhances
this effect. The chlorine atoms and hydroxyl groups introduced on the CNT surfaces cause
polarization on the surface. The presence of strongly electronegative chlorine atoms in the
o-DCB molecule also cause its polarization, forming a dipole. Graphically, this process is
shown in Figure 4.
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Figure 4. Scheme of the orientation of o-DCB molecules on the surface of AC and CNTs. The black
lines represent the surface of the adsorbent—for CNTs, the outer layer of the adsorbent, for ACs, the
inner surface of the pore.

We find that as the hydrophilicity of the adsorbent surface increases, the constant
b of the Langmuir equation decreases. The constant b in this equation reflects the equi-
librium state. For a more hydrophilic surface, the competition of water (solvent) with
o-dichlorobenzene for sorption sites increases. This, in turn, moves some of the o-DCB
molecules into solution. This is similar during adsorption on activated carbons, which are
obtained by steam-gas activation. Then, oxygen groups are introduced on the surface of
the adsorbent. Hence, the significantly lower values of the b constant compared to more
graphitized CNTs.

2.2. Kinetics of Adsorption of o-DCB onto ACs and CNTs

It was found that the kinetic constants of adsorption onto carbon nanotubes do not
depend on the degree of coverage of the adsorbent. For adsorption onto activated carbons,
the adsorption rate constant decreases as the degree of coverage increases. Values of kinetic
constants are listed in Table 3.

Table 3. Values of kinetic constants at different initial concentrations.

Adsorbent
Kinetic Constants k at Initial Concentration C0 [mg/L]

10 20 30 40 50 70 100

DT0 0.040 0.038 0.035 0.032 0.028 0.027 0.025
AG-5 0.025 0.022 0.020 0.018 0.017 0.015 0.015

NC_7000 0.180 0.180 0.180 0.180 0.180 0.180 0.180
NC_C 0.120 0.120 0.120 0.120 0.120 0.120 0.120

NC_C_B 0.100 0.100 0.100 0.100 0.100 0.100 0.100

In a simplified way, it can be assumed that the adsorption of o-DCB onto CNTs and
ACs occurs as described in Figure 5.
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The adsorption of o-DCB followed a pseudo-first-order kinetic model, which is de-
scribed by:

dC
dt

= k·(Cn − Ce) (6)

ln
(

C0 − Ce

Cn − Ce

)
= k·C + B (7)

where C0 is the o-DCB initial concentration, Ce is the o-DCB equilibrium concentration,
Cn is the concentration of o-DCB in time t for the first run B = 0.

Figure 6 shows the obtained kinetic curves of o-DCB adsorption on the tested adsor-
bents and Figure 7 shows the kinetic curves in a linearized system.
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2.3. Regeneration of Adsorbents

The highest recovery of o-DCB from activated carbons was obtained using methanol
as a solvent. As expected, the recovery of o-DCB from carbon nanotubes was significantly
lower than for activated carbons. Additionally, in the case of modified carbon nanotubes,
the presence of chlorine and hydroxyl functional groups hindered the regeneration of the
adsorbents. The modifications of CNT caused larger interactions of the introduced groups
with o-DCB so that the adsorbent was less regenerated. Dipoles interact more with the
CNT surface. Detailed results of the regeneration of adsorbents are presented in Table 4.
The higher regeneration rate of activated carbons indicates o-DCB molecules have a lower
affinity for the surface of ACs than for CNTs. This is also confirmed by the constant b of
the Langmuir equation.

Table 4. Comparison of recovery of o-DCB from ACs and CNTs.

Solvent
Recovery of o-DCB R [%] from

DTO AG-5 NC_7000 NC_C NC_C_B

acetone 76 79
methanol 80 85 46 23 26
ethanol 78 75

1-propanol 77 80

3. Materials and Methods
3.1. Adsorbents

Commercial DT0 and AG-5 (Grand Activated Sp. z o.o.) activated carbons, NC_7000
(Nanocyl), modified NC_C, and NC_C_B carbon nanotubes were used as adsorbents.
Details of the synthesis and characterization of the adsorbents used are described in the
previous works [25,26]. The specific surface areas of adsorbents are presented in Table 5.
The adsorbate was 1,2-dichlorobenzene (anhydrous, 99%, MERCK).
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Table 5. Specific surface areas of adsorbents.

Adsorbent SBET
[m2/g]

DT0 950
AG-5 860

NC_7000 183
NC_C 184

NC_C_B 166

The wettability test was carried out using an Automated Melting Point System Opti-
Melt goniometer. For this purpose, tablets with a 1 cm diameter were pressed from 200 mg
CNTs samples. The tablets were made using a hydraulic press at a pressure of 10 tones.
Water droplet images on CNT surfaces are presented in Figure 8.
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Unmodified NC_7000 carbon nanotubes were found to have a strongly hydrophobic
surface. In contrast, NC_C and NC_C_B samples are very easily wetted, and their surface
is, therefore, more hydrophilic.

3.2. Adsorption Procedure

Solutions of o-DCB at concentrations of 1, 2, 5, 8, and 10 mg/L were prepared in
500 cm3 Erlenmeyer flasks. The solutions were formed by diluting a stock solution of
o-DCB in methanol at a concentration of 50 g/L with distilled water. The flasks were closed
with a stopper and mixed thoroughly. The absorbance of each was determined three times
in a quartz cuvette at 197 nm by spectrometry using a Spectroquant Pharo 300 apparatus
(MERCK). A graph of the concentration dependence of absorbance was plotted. Next, in
500 cm3 flat bottomed flasks, 500 cm3 of distilled water and an appropriate volume (0.1 mL)
of stock solution were placed to give an initial concentration of 10 mg/L. Then, a weighted
adsorbent (100 mg) was poured in and stirred with a magnetic stirrer. After 5, 10, 20, 40, 80,
160, 320, and 640 min, the absorbance of the solution was measured, and another portion
of the stock solution (0.1 mL) was added. This was repeated five more times. In further
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steps, 0.2 and 0.3 mL were added, which gives the total initial concentration of 100 mg/L.
The adsorption capacity was calculated using the following formula:

a =
(C0 − Ce)·V

m
[mg/g] (8)

where C0 and Ce are the initial and equilibrium concentrations, respectively [mg/L]. V is
the volume of solution [L], and m is the weight of an adsorbent [mg].

In order to regenerate the activated carbons, the contents of the flasks were drained
under reduced pressure, and the carbons on filters were placed in 100 cm3 screw-top jars.
Into each was poured 40 mL of 1-acetone, 2-ethanol, 3-methanol, and 4-1-propanol, and
then they were left on a TS–2 Orbital Shaker set at 130 rpm for 48 h. For the regeneration of
carbon nanotubes, methanol was used as an extractant. The amount of o-DCB extracted
from the adsorbents was determined by gas chromatography using the standard internal
method, which was ethylbenzene. The study was performed using a Thermo Electron GC
8000 Gas Chromatograph with FID (flame ionization detector). Chromatographic analysis
conditions:

− Hydrogen flow rate: 35 mL/min;
− Air flow rate: 350 mL/min;
− Analysis temperature: 240 ◦C;
− Temperature increment: 15 ◦C/min;
− Time per analysis: 25.33 min;
− Partition coefficient: 15.

In a 25 cm3 flask, a solution of o-DCB in acetone was prepared at the maximum
concentration to be expected from the extraction. The internal standard was added to
the flask in portions of 20, 40, 60, 80, 100 µL, successively. After each addition of internal
standard, the flask contents were stirred, and 0.2 µL were injected twice. Then 40 µL of
the internal standard was added to each jar after shaking and mixed thoroughly. Two
injections of 0.2 µL of each solution were made from the adsorbents, and the volume of
o—dichlorobenzene in the samples was calculated from the calibration curve equation.
The volume (V) was converted to mass (mo-DCB) and divided by the amount of adsorbed
o-DCB [mg] (a0) to calculate the recovery (%R) of the adsorbate:

%R =
mo−DCB

a0
·100% (9)

4. Conclusions

In the present study, we have examined the adsorbability of o-DCB onto activated
carbons and carbon nanotubes from an aqueous solution. AG-5 activated carbon is the
most regenerable, and it has the best adsorption affinity towards o-DCB. Our study shows
that activated carbons are a better choice for the adsorption of o-DCB from an aqueous
solution than carbon nanotubes. Activated carbons also have an economic advantage over
carbon nanotubes—they are cheaper and more readily available. The Langmuir equation
shows a satisfactory fit of the o-DCB adsorption onto carbon adsorbent. The regeneration
by extraction of activated carbons is most effective with methanol as a solvent.

Surface modification of carbon nanotubes by introducing chlorine and hydroxyl
groups improves their adsorption properties towards o-DCB compared to unmodified
carbon nanotubes. The recovery rate of adsorbate from carbon nanotubes is lower than
from activated carbons. What is more, modifications of carbon nanotubes reduce the
recovery rate of o-DCB.

Based on these results, we conclude that activated carbons and modified carbon
nanotubes are promising adsorbents for o-DCB removal from aqueous solution.
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