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Abstract: The growing resistance of the influenza virus to widely used competitive neuraminidase
inhibitors occupying the active site of the enzyme requires the development of bifunctional com-
pounds that can simultaneously interact with other regulatory sites on the protein surface. When
developing such an inhibitor and combining structural fragments that could be located in the sialic
acid cavity of the active site and the adjacent 430-cavity, it is necessary to select a suitable linker not
only for connecting the fragments, but also to ensure effective interactions with the unique arginine
triad Arg118-Arg292-Arg371 of neuraminidase. Using molecular modeling, we have demonstrated
the usefulness of the sulfonamide group in the linker design and the potential advantage of this
functional group over other isosteric analogues.

Keywords: sulfonamides; 430-cavity; docking; structural filtration

1. Introduction

Among the known influenza viruses, the most dangerous is type A, which affects
approximately 1 billion people annually and causes periodic pandemics [1–3]. Influenza A
viruses, in turn, are classified according to the antigenic properties of the surface proteins
hemagglutinin (H) and neuraminidase (N). Thus, the Spanish flu of 1918, the Asian flu
of 1957, the Hong Kong flu of 1968, and the 2009 swine flu pandemic were caused by the
subtypes H1N1, H2N2, H3N2 and H1N1pdm09, respectively [4]. Hemagglutinin recog-
nizes terminal sialic acid residues (compound 1 in Figure 1) of oligosaccharide receptors
on epithelial cells and provides the penetration of the virus into the cell cytoplasm, while
neuraminidase cleaves sialic acid to facilitate the release of newly formed viral particles
from the cell surface [5,6].

Neuraminidase is a target for the most effective anti-influenza drugs zanamivir (5)
and oseltamivir (9) [7–9]. These molecules compete for the sialic acid binding site formed
by a number of charged residues as well as by the side chain of the catalytic residue Tyr406,
and thereby suppress the enzyme activity [10,11]. However, inhibitors gradually lose their
effectiveness due to a high frequency of mutations in the neuraminidase active site. In
the period 2008–2009, there was a dramatic increase in the resistance of the H1N1 virus
to oseltamivir due to the H275Y mutation in the sialic acid binding site [12,13]. Other
substitutions reducing the inhibitory effect have been also reported: E119A (H5N1) [14],
Q136K/R (H1N1), R292K (H3N2) [15,16]. This indicates the need to develop new inhibitors
that could bind to other sites on the protein surface and suppress neuraminidase activity.
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Figure 1. Chemical structures of sialic acid (1), deoxysialic acid (2), its sulfonic and phosphonic 
analogues (3, 4), zanamivir (5), an amide derivative of zanamivir (6), a phosphonic analogue of 
zanamivir (7), oseltamivir carboxylate (8), oseltamivir (9), a hydroxamic derivative (10), a phos-
phonic analogue of oseltamivir and its ethyl ester (11, 12), and an analogue containing a sulfona-
mide group (13). The functional group that can interact with the arginine triad is highlighted in 
blue. 

Neuraminidase is a target for the most effective anti-influenza drugs zanamivir (5) 
and oseltamivir (9) [7–9]. These molecules compete for the sialic acid binding site formed 
by a number of charged residues as well as by the side chain of the catalytic residue 
Tyr406, and thereby suppress the enzyme activity [10,11]. However, inhibitors gradually 
lose their effectiveness due to a high frequency of mutations in the neuraminidase active 
site. In the period 2008–2009, there was a dramatic increase in the resistance of the H1N1 
virus to oseltamivir due to the H275Y mutation in the sialic acid binding site [12,13]. 
Other substitutions reducing the inhibitory effect have been also reported: E119A (H5N1) 
[14], Q136K/R (H1N1), R292K (H3N2) [15,16]. This indicates the need to develop new 
inhibitors that could bind to other sites on the protein surface and suppress neuramini-
dase activity. 

A possible solution would be to create bifunctional compounds that occupy the si-
alic acid binding cavity and the adjacent 430-cavity (Figure 2). It is assumed that, when 
using bifunctional inhibitors, mutations in one of the binding sites may be less critical if 
effective interactions with another site are maintained, which, in turn, can hinder the se-
lection of resistant mutant strains of the virus [17,18]. This approach allows the creation 
of more effective inhibitors, the use of which reduces the risk of resistance due to com-
plex interactions with the target protein. The 430-cavity was identified as an additional 
binding site in N1 and N2 neuraminidases that could be targeted by inhibitors; its hy-

Figure 1. Chemical structures of sialic acid (1), deoxysialic acid (2), its sulfonic and phosphonic analogues (3, 4), zanamivir
(5), an amide derivative of zanamivir (6), a phosphonic analogue of zanamivir (7), oseltamivir carboxylate (8), oseltamivir (9),
a hydroxamic derivative (10), a phosphonic analogue of oseltamivir and its ethyl ester (11, 12), and an analogue containing
a sulfonamide group (13). The functional group that can interact with the arginine triad is highlighted in blue.

A possible solution would be to create bifunctional compounds that occupy the sialic
acid binding cavity and the adjacent 430-cavity (Figure 2). It is assumed that, when using
bifunctional inhibitors, mutations in one of the binding sites may be less critical if effective
interactions with another site are maintained, which, in turn, can hinder the selection of
resistant mutant strains of the virus [17,18]. This approach allows the creation of more
effective inhibitors, the use of which reduces the risk of resistance due to complex interactions
with the target protein. The 430-cavity was identified as an additional binding site in N1 and
N2 neuraminidases that could be targeted by inhibitors; its hydrophobic surface is formed
with conserved residues Pro326, Ile427, and Thr439 [19–23]. The arginine triad Arg118-Arg292-
Arg371, located at the interface between the sialic acid binding site and 430-cavity, interacts
with the carboxyl group of the sialic acid residue. This interaction plays a key role in the
binding of both the substrate and competitive inhibitors of neuraminidase [8,24,25], which
should be taken into account when designing bifunctional compounds.

A fundamentally important part of a hypothetical bifunctional neuraminidase in-
hibitor is a linker which should (i) ensure the optimal position of structural fragments of
the molecule in their binding sites and (ii) form hydrogen bonds with the arginine triad,
since this interaction makes a significant contribution to the efficiency of binding. It is
obvious that the linker design should be based on some functional group, an acceptor
of hydrogen bonds. Earlier, derivatives of sialic acid, zanamivir and oseltamivir were
obtained, in which the amide, phosphono, or sulfo group occupied a position suitable for
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interaction with the arginine triad in enzyme-inhibitor complexes [26–29]. In this work, we
investigated the possibility of creating a suitable linker based on the sulfonamide group,
the choice of which was due to several factors. Firstly, this functional group is an isosteric
analogue of the carboxyl group [30,31] and is potentially capable of forming hydrogen
bonds with the arginine triad. Secondly, such a linker will be stable since sulfonamides are
resistant to acid, base, and enzymatic hydrolysis [32]. Thirdly, the sulfonamide group has
less pronounced acidic properties compared to the carboxyl group, which may facilitate
the penetration of the inhibitor through the cell membrane [31].
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Figure 2. Schematic representation of a hypothetical bifunctional neuraminidase inhibitor. Structural
fragments 1 and 2 connected by a linker are bound to different sites on the protein surface.

2. Results and Discussion

To better understand how the interaction between the inhibitor’s functional group and
arginine triad Arg118-Arg292-Arg371 can occur, sialic acid and known inhibitors [8,26–28,33–
36] were docked into the active sites of N1 and N2 neuraminidases: deoxysialic acid (2), its
sulfonic and phosphonic analogues (3, 4), zanamivir (5), an amide derivative of zanamivir
(6), a phosphonic analogue of zanamivir (7), oseltamivir carboxylate (8), oseltamivir (9), a
hydroxamic derivative (10), a phosphonic analogue of oseltamivir and its ethyl ester (11, 12),
and an analogue containing a sulfonamide group (13). The obtained models are shown in
Figures S1–S3; the coordinates of sialic acid, zanamivir and oseltamivir carboxylate in the
available crystal structures of neuraminidase-inhibitor complexes (4gzq, 1inx, 3b7e, and 3ti6)
were used as a control to confirm the correctness of docking.

In all modeled complexes, the functional group was in contact with the arginine
triad, but the efficiency of interaction due to the formed hydrogen bonds was different.
The carboxyl group of compounds 1, 2, 5, 8, and 9 occupied the optimal position for
the formation of hydrogen bonds with each of the triad residues (Figure 3a). A similar
interaction was observed in the case of the sulfo group of compound 3 and the phosphono
group of compounds 4, 7, 11, and 12: two oxygen atoms acted as acceptors of hydrogen
bonds (Figure 3b). In the case of amide derivative 6 and hydroxamic derivative 10, the
functional group lost interaction with one of the triad residues due to the presence of only
one acceptor oxygen atom (Supplementary Materials Figures S2b and S3c). The interaction
of an analog of oseltamivir containing a sulfonamide fragment (13) should be considered
separately. In this molecule, the sulfonamide group was connected to cyclohexene scaffold
not directly, but through the carbonyl carbon atom, and therefore did not participate in the
formation of bonds with the arginine triad (Figure S3f).

Thus, the carboxyl, sulfo, or phosphono groups of the inhibitor can effectively interact
with the arginine triad Arg118-Arg292-Arg371 upon binding to the enzyme. However, it
should be noted that the corresponding compounds based on these groups will be prone to
hydrolysis. As, for example, in the case of oseltamivir (compound 9), which is a prodrug
converted in the body into the active metabolite oseltamivir carboxylate (compound 8) [37,38].
On the other hand, chemically stable amide and hydroxamic groups cannot provide optimal
interaction with the arginine triad, thus indicating the need to continue the search for an
optimal linker when creating the suggested bifunctional neuraminidase inhibitor (Table 1).
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Figure 3. Modeling the interaction of various functional groups of inhibitors with the residues of the
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of zanamivir. The coordinates of zanamivir taken from the available crystal structure 3b7e are shown
in black.

The sulfonamide group, widely used in medicinal chemistry, can serve as an acceptor
of hydrogen bonds and is resistant to hydrolysis [32,39,40]. Hydrogen bonds between
the oxygen atom of the sulfonamide fragment of the ligand and the arginine residue can
be observed in many protein complexes taken from the Protein Data Bank (Table S1).
Interestingly, the Protein Data Bank contains complexes with sulfonamide derivatives of
pyranose structurally similar to sialic acid (Table S2), but these compounds were used as
inhibitors of carbonic anhydrases and did not interact with arginine residues. To assess
the possibility of the formation of key interactions with the arginine triad Arg118-Arg292-
Arg371, the structures of sulfonamide analogues of known neuraminidase inhibitors were
modeled and docked into the active site of N1 and N2. Figure 4 shows poses of zanamivir
and oseltamivir analogues with terminal (unsubstituted), methylated, and dimethylated
sulfonamide groups. All compounds are optimally positioned in the sialic acid binding
site and form four hydrogen bonds with the arginine triad (Figure 3c, Table S3). Poses
in the active site of N1 and N2 neuraminidases are very similar, what can be explained
by the strong similarity of the binding sites. The introduction of methyl substituents
has no significant effect on the position of the functional group as well as on calculated
binding energy (Table S4), suggesting the possibility of further elongation of the inhibitor’s
structure towards the 430-cavity.
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Table 1. Functional groups that can be used to construct a linker in a bifunctional neuraminidase
inhibitor.

Functional Group Linker
Structure

Optimal
Interaction 1

Resistance
to Hydrolysis
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shows poses of zanamivir and oseltamivir analogues with terminal (unsubstituted), 
methylated, and dimethylated sulfonamide groups. All compounds are optimally posi-
tioned in the sialic acid binding site and form four hydrogen bonds with the arginine 
triad (Figure 3c, Table S3). Poses in the active site of N1 and N2 neuraminidases are very 
similar, what can be explained by the strong similarity of the binding sites. The intro-
duction of methyl substituents has no significant effect on the position of the functional 
group as well as on calculated binding energy (Table S4), suggesting the possibility of 
further elongation of the inhibitor’s structure towards the 430-cavity. 

??? +

1 Interaction with the arginine triad Arg118-Arg292-Arg371.

An anthrapyrazole derivative was identified in our lab as a complementary ligand
for the 430-cavity (experimental results will be published elsewhere). This allows the
design of prototype bifunctional inhibitors of neuraminidase by combining the struc-
tures of zanamivir/oseltamivir and the anthrapyrazole moiety with a suitable linker.
Figure 5 shows the positions of corresponding compounds containing the sulfonamide
linker –SO2NH–(CH2)2– in the active site of N1 and N2 neuraminidases. As expected, the
anthrapyrazole fragment of the inhibitor is located in the hydrophobic 430-cavity, and the
sulfonamide group forms the required interaction with the arginine triad. The introduction
of an additional structural fragment significantly raises the calculated binding energy, thus
confirming that the chosen approach to inhibitor design is promising (Figure S4, Table S5).
The reported resistance mutations (H275Y, E119A, Q136K/R, R292K) are located in the
sialic acid cavity and thus may be less critical for the binding of bifunctional sulfonamide
inhibitors, the elongated structure of which can interact not only with the sialic acid binding
site, but also with the 430-cavity.
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Molecular modeling has demonstrated that sulfonamide derivatives of zanamivir
and oseltamivir can effectively bind to the active site of neuraminidase. However, other
structural fragments complementary to the sialic acid binding site and 430-cavity may
be also of interest for the design of new neuraminidase inhibitors. We performed virtual
screening of a large set of low-molecular-weight sulfonamides from the ZINC12 library
(331516 compounds; 250 ≤ Mr ≤ 350, log P ≤ 3.5, rotatable bonds ≤ 7) against the N1 model.
As result, 492 compounds were selected that formed effective interactions with the arginine
triad: single hydrogen bonds with Arg118 and Arg292, and two bonds with Arg371.

The selected unsubstituted, monosubstituted and disubstituted sulfonamides can be
divided into groups according to the orientation of the S–N bond in the N1 active site. In the
first case, the S–N bond is oriented towards the 430-cavity (as in the analogues of zanamivir
and oseltamivir); in the second, towards the sialic acid binding site (Table 2, Figure 6).
Monosubstituted and disubstituted compounds can be oriented in both directions thus
providing more opportunities for the design of sulfonamide inhibitors. Interestingly, the
incorporation of the nitrogen atom into the heterocycle does not prevent binding both in the
sialic acid cavity and 430-cavity (Figure 6e,f). Docking poses of the selected sulfonamides
in the active site of the N2 model were very similar to N1 (Figure S5).

Table 2. Possible orientations of sulfonamides in the active site of neuraminidase: (a) and (b) unsub-
stituted, (c) and (d) monosubstituted, (e) and (f) disubstituted compounds. Green color represents the
sialic acid cavity, orange represents the 430-cavity. For each variant, the number of sulfonamides selected
by virtual screening of the ZINC12 library against N1 model is indicated (number in parentheses refers
to disubstituted sulfonamides in which the nitrogen atom is incorporated into the heterocycle).

a
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Due to rotation around the S–N bond, the sulfonamide group can exist in different
conformations, which are defined by the dihedral angle C1–S–N–C2 for monosubstituted
compounds, and by angles C1–S–N–C2 and C1–S–N–C3 for disubstituted compounds.
In the case of an effective bifunctional neuraminidase inhibitor, the structural fragments
should be located in the corresponding cavities of the enzyme, and the linker sulfonamide
group should be in an energetically acceptable configuration. Analysis of the docked
ZINC12 compounds showed that the position of the sulfonamide group in the N1 active
site corresponds to the most common sulfonamide conformations in protein structures
from the Protein Data Bank (Figures S6 and S7). In the case of monosubstituted ZINC12
compounds, the C1–S–N–C2 angle was 60–100◦; in the case of disubstituted compounds, the
C1–S–N–C2 (smaller) angle was 80–90◦, and C1–S–N–C3 (larger) angle 90–100◦. At these
angles, the sulfonamide group is in an energetically favorable staggered conformation [41],
and thus its position in the neuraminidase active site can be considered optimal.
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a—ZINC13686935, c—ZINC13673669, d—ZINC68909486, e—ZINC97048161, f—ZINC77458684.
Designations a–f correspond to orientations of molecules presented in Table 2.

3. Materials and Methods

Molecular models of neuraminidase were constructed on the basis of crystal struc-
tures using Amber 12 (https://ambermd.org, accessed on 1 November 2021) [42]. N1
model was constructed based on the 3b7e structure (complex with zanamivir) [43]. Hy-
drogen atoms were added considering ionization of amino acid residues, and the pro-
tein was solvated by a layer of TIP3P water. Covalent bonds between cysteine residues
were specified manually (disulfide bridges 92–417, 124–129, 183–230, 232–237, 278–291,
280–289, 318–336 и421–447. 92–417, 124–129, 183–230, 232–237, 278–291, 280–289, 318–336,
and 421–447). The energy minimization of the obtained system (2500 steepest descent
steps + 2500 conjugate gradient steps) was performed using positional restraints on heavy
atoms of protein and inhibitor. The Amber-compatible force fields ff99SB and GAFF [44,45]
were used to describe the protein and inhibitor with molecular mechanics. Water and
zanamivir molecules were removed from the optimized system to obtain the protein model
for docking. N2 neuraminidase model was built based on the 3tic structure [46] using the
same methodology.

3D structures of known inhibitors and their derivatives were generated using the CO-
RINA Classic Web service [47]. Compounds were docked into the active site of the N1 and
N2 models with Lead Finder 1.1.16, in ‘extra precision’ mode [48,49]. The center of an en-
ergy grid box corresponded to carbon coordinates in the carboxyl group of zanamivir, and
lengths of box edges were 25 Å. Virtual screening was performed among low-molecular-
weight compounds of the ZINC12 library (‘clean leads’ subset) [50,51], as shown in

https://ambermd.org
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Figure 7. Molecules containing sulfonamide groups were retrieved using a substruc-
ture search in ACD/Spectrus DB 14.0 (https://www.acdlabs.com, accessed on 1 November
2021). Sulfonamides were docked into the active site of N1 model in standard mode of
Lead Finder, and the obtained poses were subjected to structural filtration with vsFilt [52]
to select compounds capable of forming hydrogen bonds with each residue of the arginine
triad (Arg118, Arg292, Arg371). The following structural criteria were applied: the dis-
tance between guanidinium nitrogen and sulfonamide oxygen ≤ 3.1 Å, the corresponding
angle N–H· · ·O ≥ 150◦. The selected compounds were redocked in the more rigorous
mode ‘extra precision’ and were subjected to a more thorough structural filtration. An
additional requirement at this stage was the presence of two hydrogen bonds with the
Arg371 guanidinium group.
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Figure 7. Schematic representation of virtual screening of compounds from the ZINC12 library
against N1 neuraminidase.

Conformational analysis of the sulfonamide group of low-molecular-weight ligands
in the Protein Data Bank and of docked ZINC12 compounds was performed using an
in-house Pearl script. The dihedral angle C1–S–N–C2 was measured for monosubstituted
sulfonamides, and the angles C1–S–N–C2 and C1–S–N–C3 were measured for disubstituted
sulfonamides. UCSF Chimera 1.11.2 (https://www.cgl.ucsf.edu/chimera, accessed on 1
November 2021) was used for the visualization of molecules [53].

4. Conclusions

This study has demonstrated that the sulfonamide group is well suited for the con-
struction of a linker in bifunctional neuraminidase inhibitors. It offers potential advantages
over other groups (carboxyl, amide, hydroxamic, sulfo, and phosphono), since, along with
resistance to hydrolysis, it can be optimally positioned in the active site of N1 and N2
neuraminidases. Docking and virtual screening showed that the sulfonamide linker forms
a network of hydrogen bonds with the arginine triad Arg118-Arg292-Arg371 and can be
used to combine various structural fragments located in the sialic acid cavity and adjacent
430-cavity into a single structure of a new type of neuraminidase inhibitor.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222313112/s1.
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