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Abstract: Excessive cardiac fibrosis plays a crucial role in almost all types of heart disease. Generally,
cardiac fibrosis is a scarring process triggered in response to stress, injury, or aging and is character-
ized by the accumulation of activated myofibroblasts that deposit high levels of extracellular matrix
proteins in the myocardium. While it is beneficial for cardiac repair in the short term, it can also result
in pathological remodeling, tissue stiffening, and cardiac dysfunction, contributing to the progression
of heart failure, arrhythmia, and sudden cardiac death. Despite its high prevalence, there is a lack of
effective and safe therapies that specifically target myofibroblasts to inhibit or even reverse patholog-
ical cardiac fibrosis. In the past few decades, cell therapy has been under continuous evaluation as a
potential treatment strategy, and several studies have shown that transplantation of mesenchymal
stromal cells (MSCs) can reduce cardiac fibrosis and improve heart function. Mechanistically, it is
believed that the heart benefits from MSC therapy by stimulating innate anti-fibrotic and regenerative
reactions. The mechanisms of action include paracrine signaling and cell-to-cell interactions. In this
review, we provide an overview of the anti-fibrotic properties of MSCs and approaches to enhance
them and discuss future directions of MSCs for the treatment of cardiac fibrosis.
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1. Introduction

Cardjiac fibrosis accompanies most cardiac pathological conditions and is a critical con-
tributor to the progression of heart failure [1]. It is characterized by a remodeling process of
the heart in which activated myofibroblasts produce and secrete high levels of extracellular
matrix (ECM) proteins in the myocardium. In acute cardiac injury, ECM deposition is
essential to preserve the structural integrity of the heart wall and circumvents ventric-
ular aneurysm and eventual rupture [2]. However, uncontrolled and progressive ECM
deposition can lead to increased stiffness of the heart, resulting in decreased ventricular
filling (diastolic dysfunction) and ventricular contraction (systolic dysfunction), ultimately
contributing to the development of heart failure [3]. These characteristic morphological
and functional changes that accompany the transition from a healthy to a failing heart
are summarized by the term cardiac remodeling [4]. Unfortunately, there is currently no
clinically applied therapy that specifically targets myofibroblasts to prevent or even reverse
pathological cardiac remodeling during heart failure.

Heart failure is a growing clinical and economic burden worldwide, and despite
advances in pharmacological and device therapies that improve survival and quality of life
for patients, curative solutions other than heart transplantation are still not available. Con-
ventional therapies for the treatment of heart failure, such as the application of 3-blockers,
angiotensin-converting enzyme (ACE) inhibitors, and aldosterone antagonists are benefi-
cial for patient survival. Regulation of myofibroblast activity, however, is not the primary
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target of these pharmaceuticals, but appears to be an additional pleiotropic benefit [5,6].
For example, ACE inhibitors interfere with the renin-angiotensin-aldosterone system by
blocking the conversion of inactive angiotensin I into active angiotensin II (Ang II), a potent
activator of myofibroblasts [7,8]. When medical therapies are exhausted in the final stage
of heart failure, the only therapeutic options that remain are permanent mechanical circula-
tory support and heart transplantation. However, both have their limitations, and there
is still a large discrepancy between the availability of organ donors and recipients [9,10].
Consequently, due to the high morbidity and mortality rate of patients with heart failure,
novel therapeutic strategies are urgently needed.

Over the past two decades, cell-based therapy using various cell sources has been
extensively studied as a therapeutic strategy for cardiac repair. Most of the cells utilized for
this purpose were of mesenchymal origin, ranging from skeletal muscle satellite cells to mes-
enchymal stromal cells (MSCs), and cardiac progenitor cells (CPCs). More recently, induced
pluripotent stem cell-derived progenitor cells have also been investigated as a potential
source for the regeneration of injured myocardium [11]. All of these cell therapies have in
common that during preclinical evaluation in rodent models of myocardial injury, thera-
peutic outcome measures, such as angiogenesis, reduction of cardiac fibrosis, and global
myocardial function, were improved. However, after application to higher vertebrates
such as pigs, the therapeutic effect became less prominent, and most clinical trials with
these cells did not provide convincing evidence of myocardial regeneration after injury [12].
Until now, MSCs were the most extensively studied candidates for cell therapy [13], with
evidence that the administration of MSCs can improve cardiac remodeling in preclinical
models of myocardial infarction (MI) [14-16]. MSCs are non-hematopoietic, multipotent,
and self-renewing cells that can differentiate into multiple mesenchymal lineages [17,18].
Despite claims demonstrating the expression of cardiac genes on stimulation in vitro, it
is well established that MSCs do not differentiate into functional cardiomyocytes in vitro
or in vivo [19,20]. Instead, the mechanisms underlying their beneficial effects in vivo are
rather related to their paracrine activity [21-24]. MSCs have the ability to secrete various
bioactive molecules, including cytokines, chemokines, growth factors, microRNAs (miRs),
and extracellular vesicles (EVs), that have positive effects on failing hearts by attenuating
the degree of cardiac fibrosis [25].

In this article, we summarize the anti-fibrotic characteristics of MSCs and ways to
stimulate them and discuss the challenges and opportunities of using MSCs to treat
cardiac fibrosis.

2. Cardiac Fibrosis

Based on recent nuclei data, the adult human heart consists of approximately 20% car-
diac fibroblasts (ventricular regions: 15.5%, atrial tissues: 24.3%) [26]. In the healthy heart,
cardiac fibroblasts regulate ECM homeostasis through two distinct mechanisms: (i) the
synthesis and secretion of ECM molecules and (ii) the secretion of ECM-degrading matrix
metalloproteinases (MMPs) and their endogenous inhibitors, so-called tissue inhibitors
of metalloproteinases (TIMPs) [27]. The cardiac ECM provides a structural framework
for cardiomyocytes and contributes to the mechanical properties and functions of cardiac
tissue [28]. However, when resident cardiac fibroblasts are exposed to pressure or vol-
ume overload or other pathological stimuli, they become activated and differentiate into
myofibroblasts that drive cardiac fibrosis by depositing high levels of ECM proteins [29-31].

Cardiac fibrosis is generally categorized into two morphologically distinct forms:
reparative and reactive fibrosis [32]. In reparative fibrosis, the death of cardiomyocytes is
the key element in stimulating fibrosis; whereas in reactive fibrosis, the death of cardiomy-
ocytes is usually the consequence of fibrosis [33]. Reparative fibrosis occurs in response
to injurious stimuli causing cardiomyocyte death, such as MI. Dead cells are replaced by
fibrous scar tissue produced by myofibroblasts, which maintains the structural integrity
of the ventricles and prevents heart rupture during repair and regeneration but does not
replace the function of lost cardiomyocytes [34,35]. In contrast, reactive fibrosis is character-
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ized by excessive deposition of ECM proteins by activated myofibroblasts in the interstitial
or perivascular space. It is triggered by stimuli such as mechanical stress due to pressure
or volume overload, myocardial inflammation, and metabolic dysregulation related to
aging, obesity, and diabetes [36-38]. The initial reactive fibrosis occurs as an adaptive
response aimed at normalizing increased wall stress and maintaining cardiac output [39].
Excessive reactive fibrosis in interstitial spaces, however, can cause mechanical stiffness
and impairment of electric conduction by forming a barrier between cardiomyocytes [40].
Progressive reactive fibrosis in perivascular areas can lead to the narrowing of the vessel
lumen, reducing the supply of oxygen and essential nutrients to the myocardium, thereby
predisposing cardiomyocytes to ischemic cell death [41]. It is believed that cardiac fibrosis,
as a consequence of ischemic heart injury, occurs not only in the immediate infarct area, but
possibly also in the infarct border zone and remote cardiac areas. In detail, mouse studies
have shown that remodeling processes occur in both infarcted and non-infarcted regions of
the heart after an acute MI [42,43].

Multiple cell types are involved in cardiac fibrotic responses, either directly through
the production of fibrous tissue (myofibroblasts) or indirectly through the secretion of
pro-fibrotic factors (macrophages, mast cells, lymphocytes, cardiomyocytes, and vascular
cells) [36]. Pro-inflammatory cytokines (e.g., tumor necrosis factor-alpha (TNF-«), in-
terleukin (IL)-1, and IL-6), chemokines (e.g., monocyte chemoattractant protein-1), and
reactive oxygen species may be more important in reparative fibrosis, while mechanical
stress, pro-fibrotic growth factors (e.g., transforming growth factor-beta (TGF-3), connec-
tive tissue growth factor (CTGF), and fibroblast growth factor-2 (FGF-2)), and hormones
(e.g., Ang II) are involved in both reparative and reactive fibrosis [44,45]. Among all these
factors, TGF-f3 is probably the most important primary mediator of cardiac fibrosis and a
key mediator in regulating a variety of events during infarct healing [46]. For example, it
plays a crucial role in orchestrating the post-infarction inflammatory response, in expand-
ing the myofibroblast population in the healing infarct, and in stimulating the expression
of ECM proteins [47-49]. TGF-p signaling involves its binding to TGF-3 receptor type
II, which leads to the recruitment of TGF( receptor type I (TGFBRI). In the canonical
pathway, SMAD2/3 are activated by TGFRI-mediated phosphorylation, followed by
complex formation with SMAD4 and subsequent translocation into the nucleus, where
transcriptional reprogramming, relevant to myofibroblast formation, is carried out. In
the non-canonical pathway, TGF-§3 activates SMAD-independent pathways involving, for
example, mitogen-activated protein kinases, Rho-like GTPases, and phosphatidylinositol-3-
kinase [50]. Finally, in response to pro-fibrotic stimuli, resident cardiac fibroblasts become
activated and proliferate and differentiate into myofibroblasts [36]. Phenotypically, com-
pared to cardiac fibroblasts, myofibroblasts express high levels of alpha-smooth muscle
actin (x-SMA), ECM proteins, including collagen type I and III, and fibronectin, and have
active proliferative, migratory, and secretory properties [51]. Although the expression of
x-SMA stress fibers gives these cells the ability to contract, it also creates tension, which,
in turn, increases the rigidity of the myocardium [52]. Besides ECM deposition, myofi-
broblasts also secrete a variety of ECM-degrading proteases, such as MMPs [53,54]. Their
immediate function is to disrupt the ECM microstructure so that inflammatory cells can
infiltrate local tissue and release additional pro-fibrotic mediators. Myofibroblasts also
secrete TIMPs, which reversibly inhibit the activity of MMPs, thereby reducing ECM
degradation [55]. By regulating assembly and turnover, myofibroblasts are thus important
contributors to ECM homeostasis. Once activated, myofibroblasts also have the ability to
produce TGF-f de novo, which acts in an autocrine fashion to induce the proliferation of
cardiac fibroblasts and their differentiation into myofibroblasts, ultimately leading to self-
persistence of the myofibroblast phenotype [56]. Towards the end of cardiac remodeling,
myofibroblasts exit the autocrine loop, likely due to a lessening of pro-fibrotic factors, and
may undergo two possible fates: apoptosis or reversible differentiation [57]. In the case
of extensive heart damage or comorbid conditions, however, myofibroblasts retain their
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pro-fibrotic state and actively participate in the pathological remodeling process and the
progressive decline in cardiac function.

In sum, while cardiac fibrosis plays an important role in the immediate response
to pressure/volume overload or cardiac injury, such as MI, the persistent activation of
cardiac fibroblasts can lead to increased heart stiffness and consequent cardiac dysfunction,
ultimately resulting in heart failure. Therefore, regulating cardiac fibrosis at the right time
and duration is crucial for maintaining and restoring cardiovascular homeostasis. In this
context, a previous study showed that early neutralization of TGF-f signaling after MI is
harmful as it increases both cardiac dysfunction and mortality, whereas late inhibition of the
TGEF-3 pathway is protective against cardiac fibrosis and adverse cardiac remodeling [58].

3. Anti-Fibrotic Characteristics of MSCs

Therapeutic strategies that regulate myofibroblast activity are promising approaches
to inhibit cardiac fibrosis from progressing towards cardiomyopathy and thus preventing
heart failure. To date, however, there are no effective and safe therapies available that
specifically target myofibroblasts, and current medications and surgical interventions only
relieve symptoms of heart failure. For patients with end-stage heart failure, continuous
mechanical circulatory support or heart transplantation are the only treatment options.
Unfortunately, the first is still associated with serious adverse events, such as bleeding,
infection, and dependence on external power supplies, thus limiting the overall average
life expectancy to only a couple of years [9,59]. In contrast, heart transplantation has better
long-term results with an average transplant survival of more than 10 years. However,
organ availability is limited, and many patients die while waiting for an organ [60]. To this
end, new treatment options were sought, and cell therapy was proposed as an alternative to
classical pharmacological approaches. Among the various cell types available for cell ther-
apy, MSCs appeared to be of particular interest because of their ability to evade recognition
by the host immune system, their immunomodulatory, pro-angiogenic and anti-fibrotic
properties, and their ease of expansion under in vitro culture conditions [61]. Currently,
the most commonly used MSCs in preclinical and clinical trials are derived from bone
marrow and adipose tissue [62]. Numerous reports have shown that MSCs can improve
cardiac function in animal models of heart disease and MI. In general, their beneficial
effects during wound healing have been linked in part to their paracrine activity in various
tissues, including the myocardium [63,64]. Upon stimulation by injury-mediated solu-
ble factors, MSCs secrete pro-angiogenic factors (e.g., vascular endothelial growth factor,
VEGF), anti-apoptotic factors (e.g., insulin growth factor-1, IGF-1), and anti-inflammatory
factors (e.g., IL-10) that contribute to the recovery of cardiac function. For example, VEGF
has been shown to promote neovascularization of ischemic myocardium in a rat model of
MI [65], IGF-1 has beneficial effects on the survival and proliferation of cardiomyocytes [66],
and IL-10 attenuates MI by suppressing the inflammatory response [67]. Several preclinical
studies have also demonstrated the anti-fibrotic activity of MSCs, as their transplantation
significantly reduces fibrosis in the injured heart, thereby attenuating pathological struc-
tural remodeling [68-81]. In addition, despite their small sizes, some clinical studies have
indicated that MSC transplantation has a positive impact on cardiac repair in humans. For
example, significant reductions in scar tissue were found in the POSEIDON and TAC-HFT
trials in which patients with chronic heart failure received intramyocardial injections of
MSCs [82,83]. Similarly, a significant decrease in the amount of scar tissue after intramy-
ocardial injection of MSCs was seen in patients with severe ischemic heart failure in the
MSC-HEF trial, but not in the placebo group [84].

To date, one of the greatest limitations of cell therapy is the low level of cell retention
after both intramyocardial and intracoronary application [85]. In all of the major clinical
trials performed with MSCs, no additional measures were undertaken to increase cell re-
tention. In addition, preclinical studies have shown that standard intramyocardial injection
of cells resulted in negligible cell retention within the first 24 h after administration [86-88].
However, myocardial remodeling in general, and cardiac fibrosis in particular, is a process
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that lasts several weeks post-cardiac injury [89]. Consequently, low cell retention rates
mainly affect the anti-fibrotic effects of MSCs, as the process of cardiac fibrosis peaks about
a week after the initial inflammation phase during the repair phase of cardiac remodel-
ing [47,90]. The optimization of strategies to increase the engraftment and survival of
transplanted cells or harness their secretome for clinical purposes is a prerequisite for the
clinical implementation of MSCs as a therapeutic approach for cardiac repair [91].

In general, there are four main strategies to target and reverse cardiac fibrosis: (i) elim-
ination of pro-inflammatory factors and their sources, (ii) reduction of oxidative stress and
reactive oxygen species, (iii) inhibition of pro-fibrotic pathways, and (iv) direct degradation
of the fibrotic ECM. Results from in vitro studies and preclinical trials have demonstrated
the ability of MSCs to act on multiple fibrogenesis parameters simultaneously, and the
mechanisms of action include both paracrine signaling and direct intercellular commu-
nications [80,92-94]. One important role of MSCs in attenuating cardiac fibrosis is the
regression of inflammation, as chronic inflammation promotes a pro-fibrotic milieu. In a rat
model of MI, transplanted MSCs induced a shift in macrophages from a pro-inflammatory
M1 state towards an anti-inflammatory M2 phenotype [95]. In addition, in response to
MSC treatment, levels of pro-inflammatory mediators, such as TNF-«, IL-1, and IL-6,
were decreased [96]. MSC-mediated reduction of oxidative stress is another strategy for
targeting cardiac fibrosis, as the activation and expression of TGF-f3 in myofibroblasts may
be mediated by oxidative stress and reactive oxygen species [97]. Furthermore, MSCs can
attenuate cardiac fibrosis directly by secreting anti-fibrotic factors; selected examples are
given in the following sentences. Hepatocyte growth factor (HGF) is probably the major
component responsible for the anti-fibrotic effects of MSCs [94]. It is a negative regulator of
cardiac fibroblast differentiation and counteracts TGF-3 expression [98]. Adrenomedullin
(ADM) is another anti-fibrotic factor secreted by MSCs, which modulates the growth of
myofibroblasts through cyclic adenosine monophosphate-dependent signaling [99,100].
Indeed, ADM infusion has been shown to reduce cardiac fibrosis in an ischemia-reperfusion
model in rats [101]. Furthermore, anti-fibrotic milk fat globule-epidermal growth factor 8
was found in the MSC secretome, which suppresses the pathogenesis of TGF-f3-induced
endothelial-to-mesenchymal transition by regulating the activation of related transcription
factors [102]. Recently, Qi et al. emphasized the importance of tumor necrosis factor-
stimulated gene-6 in the anti-fibrotic response of MSCs by suppressing TNF-« secretion in
activated macrophages [103]. Furthermore, the anti-fibrotic effects of MSCs are also related
to their ability to produce MMPs, which can directly degrade ECM proteins and enable
MSCs to migrate through the ECM [104]. Following the addition of MSC-conditioned
medium to cardiac fibroblasts in vitro, decreased cell viability, x-SMA expression, and
collagen secretion of myofibroblasts were observed, which was accompanied by an upreg-
ulation in the activity of MMP-2 and -9 [93].

Over the past decade, there has been increasing interest in MSC-derived EVs carrying
a variety of molecules that can modulate cardiac fibrosis, with regulatory miRs being
of particular interest [105]. By definition, miRs are small, non-coding, regulatory RNAs
that generally silence gene expression post-transcriptionally by targeting, for example,
messenger RNAs to trigger their degradation or inhibit protein translation. They can have
multiple functions, including regulating cell physiology, proliferation, cell differentiation,
and apoptosis, but may also be involved in regulating cardiac fibrosis [106]. Intriguingly,
MSC-derived EVs expressing miR-19a, miR-22, miR-29, and miR-133 were shown to inhibit
cardiac fibrosis during heart regeneration and repair [107]. For example, MSC-EVs from
bone marrow-derived MSCs containing miR-22 showed anti-fibrotic properties in a mouse
model of MI by targeting methyl CpG binding protein 2 expression [108]. The therapeutic
benefits of MSC-derived EVs in cardiac repair and regeneration have been successfully
reported in preclinical studies, and as they reflect, at least in part, the functions of their
parent cells, EVs, are potential tools for next-generation therapeutics [109].

Although paracrine effects have been shown to be primarily responsible for the anti-
fibrotic features of MSCs, treatment with conditioned medium from MSCs in vitro cannot
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fully restore the state of cell therapy in vivo, which involves complex intercellular activities.
For example, Li et al. observed physical contacts and tubular structures between myofi-
broblasts and MSCs [94]. They also found that the inhibitory effects of MSC-conditioned
medium on the viability of myofibroblasts and their expression of x-SMA were stronger in
a co-culture system. Therefore, in addition to paracrine signaling, both direct cell-to-cell
contact and intercellular communication seem to be important for the high therapeutic
efficiency of MSCs for the treatment of cardiac fibrosis.

4. Modification of MSCs for an Increased Anti-Fibrotic Response

It is expected that efforts to maximize the anti-fibrotic response of MSCs will greatly
enhance their beneficial role in regenerative therapies. In general, there are two main strate-
gies: (i) promoting higher expression and secretion of anti-fibrotic factors and (ii) enhancing
survival and retention of MSCs at the target site. The first approach could be achieved by
genetically modifying cells to overexpress selected anti-fibrotic cytokines or growth factors.
For example, Zhao et al. induced overexpression of HGF in MSCs following administration
into a mouse model of MI, thereby improving cardioprotection and reducing fibrosis [110].
In addition, the ratio of MMPs to TIMPs in MSCs can be modulated through gene silencing
or overexpression. In order to improve the survival of MSCs in vivo, they could be trans-
fected with cell-derived factor-1oc (SDF-1c), Akt, integrin-linked kinase (ILK), or islet-1
(ISL1). In detail, in a rat model of MI, it was shown that transplanted SDF-1x-MSCs showed
improved tolerance to hypoxic injury and increased viability in infarcted hearts, thereby
attenuating cardiac fibrosis [14]. Treatment with MSCs that overexpress the pro-survival
protein Akt, a serine-threonine kinase involved in survival and proliferation of MSCs,
resulted in a significant decrease in cardiac fibrosis in a pig model of ischemic injury [111].
Similarly, overexpression of ILK in MSCs led to increased survival and reduced cardiac
fibrosis in a rat model of MI [112], and overexpression of the LIM-homeobox transcription
factor ISL1 improved the survival of transplanted human MSCs in a murine MI model [113].
In addition to genetic modification, the survival of MSCs at the target site can be improved
by pre-transplantation treatment with growth factors, such as insulin-like growth factor 1,
FGF-2, bone morphogenetic protein-2, sphingosine 1-phosphate, or haemin, as shown in
rodent models of MI [114-116]. Accordingly, surviving MSCs showed greater efficiency
in promoting heart repair and reducing infarct size. Similarly, pre-treatment of MSCs
with the hormone melatonin or the pharmacological compound trimetazidine increased
their anti-fibrotic activity due to the improvement in MSC survival compared to untreated
cells [117,118]. In addition, there is a high probability that a certain degree of cardiomyo-
genic differentiation of MSCs by pre-exposure to a cocktail of multiple growth factors and
induction factors prior to transplantation will result in higher engraftment efficiency [119].
Indeed, the injection of these so-called cardiopoietic MSCs (cpMSCs) led to therapeutic
benefits in a mouse model of chronic ischemic cardiomyopathy [120]. A first report on the
safety and efficacy of intramyocardial administration of human cpMSCs in immunocom-
promised pigs after MI showed promising therapeutic results, including a smaller infarct
size compared to controls [121]. The first clinical study with cpMSCs was the C-CURE
trial [122] with patients suffering from chronic heart failure who were treated with cpMSCs
by transendocardial injection. As a result, they showed improved left ventricular ejection
fraction and functional capacity compared to control patients who received standard care.
These data led to a larger study, the CHART-1 trial [123], in which the effect of cpMSCs
in ischemic heart failure was investigated. After 39 weeks, however, there was no differ-
ence in the primary efficacy endpoint between patients who received cpMSCs and control
patients with no cell injection. At least the subgroup analysis indicated that a subset of
the population with more severe cardiac dilation could benefit from these cells. Besides
that, hypoxic preconditioning of MSCs has also been shown to increase their retention
and survival capacity at the target site and enhance their paracrine abilities [124,125]. In
addition, when grown on three-dimensional (3D) platforms prior to clinical use, MSCs
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have improved regenerative properties by increasing the production of trophic factors and
modifying their immunomodulatory and fibrogenic phenotype [126].

In summary, various preconditioning strategies for MSCs have been developed to
improve their anti-fibrotic properties for an optimized treatment of pathological cardiac
fibrosis (Figure 1).

PP, = -’ .
.~ MSCs
]
Preconditioning
é J
Genetic Incubation with Hypoxia Supporting
modification  modulating agents material
L )
A4
? Expression and secretion of Retention and survival
anti-fibrotic factors and EVs at the target site

!
E ::Impﬁed MSCs
e . l >

MSC therapy

Targeting pathological cardiac fibrosis
via paracrine signaling and intercellular communication

- Regression of inflammation + Inhibition of pro-fibrotic pathways

* Reduction of oxidative stess - Direct ECM degradation

Figure 1. Targeting pathological cardiac fibrosis by MSC therapy. Optimization of MSCs by improv-
ing their secretion of anti-fibrotic factors and enhancing their survival and engraftment at the target
site through preconditioning prior to transplantation could lead to novel effective MSC therapies
for cardiac fibrosis. Intriguingly, as MSC-derived EVs, at least in part, exert therapeutic effects
comparable to their parental cells, they represent an alternative cell-free approach for the treatment
of cardiac fibrosis (created with BioRender.com, accessed on 29 October 2021). MSCs, mesenchymal
stromal cells; EVs, extracellular vesicles.

5. Challenges and Future Prospects of MSCs for Anti-Fibrotic Therapy

The potential of MSC-based therapies to stimulate cardiac regeneration after MI has
been explored for many years, with small animal studies that have shown promising
results and large animal trials with encouraging outcomes. However, while endpoints
such as scar reduction were observed in large animal trials, functional recovery was not
significant even in porcine models of MI [127,128]. Similarly, the majority of clinical trials
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demonstrated that cell therapy with MSCs did not meet the therapeutic endpoints at a
clinically relevant level [129]. Most protocol adjustments regarding administration, cell
modification, and timing that could improve MSC performance have only been tested
in the preclinical setting. For example, one viable option to increase cell retention is to
encapsulate MSCs in the ECM, as shown by Blocki et al. [130]. The aggregation of MSCs
into 3D microtissues prior to transplantation is another option to improve cell retention,
survival, and engraftment, as demonstrated by a transcatheter-based intramyocardial
transplantation of MSC aggregates in a pig model [131,132]. In addition, it has been
shown that the self-assembly of cpMSCs into 3D microtissues significantly improved their
angiogenic potential and neovascularization capacity [133]. Similarly, for cardiac progenitor
cells, Terrovitis and colleagues [86] have shown in animal trials that retention of up to 30%
of injected cells for more than three weeks can be achieved when a fibrin-based vehicle is
used for administration. The higher retention rate also resulted in a smaller scar size.

Another strategy that has gained traction in recent years is to use EVs from various
cell sources to capitalize on the paracrine effects of cell therapy. While there is a large
body of preclinical trials in rodent models of myocardial injury utilizing MSC-derived
EVs, the majority of porcine trials have been performed with CPC-derived EVs. To date,
only Charles and colleagues [134] have utilized MSC-derived EVs to test myocardial
recovery after intravenous application of EVs for seven consecutive days post-MI. As a
result, they found less cardiac remodeling, indicated by the reduction in infarct size in
magnetic resonance imaging, without a pronounced difference in heart function between
the intervention and control group. Similar results were achieved with CPC-derived EVs
in porcine trials [135,136]. Compared to cell therapy, these cell-free products may also
have some advantages from a regulatory point of view. Additionally, EVs can be offered
as an off-the-shelf product without the need for expensive cryo storage facilities, which
are often needed for cell-based products [137]. Regarding the selection of the cell source
for EV production, extensive comparative data is still lacking, but necessary, to determine
the most appropriate candidate(s). The advantages and disadvantages of EVs derived
from various stem cells for cardiac repair were recently reviewed by Fan et al. [138]. In
addition, as a prerequisite for clinical application, further studies on the route, dose, and
duration of administration of EVs are necessary, and it must be ensured that MSC-derived
EVs can be produced in sufficient quantities and reproducible quality. Furthermore, as
there is evidence that MSCs exert their effects through both paracrine effects and direct
cell contacts, mimicking intercellular communication should also be considered when
developing maximum effective MSC-based products for the treatment of pathological
cardiac fibrosis.

6. Conclusions

Cardiac fibrotic responses triggered by pathological and environmental stimuli include
the recruitment and activation of myofibroblasts, which are critical to physiological cardiac
repair in the short term, but these events can also lead to unfavorable scarring and heart
failure in the long term. In order to develop new therapeutic strategies, it is important
to better understand the processes that either lead to physiological or pathological tissue
remodeling. In the last few decades, the application of MSCs has been pursued as a
promising approach to mitigate excessive and persistent cardiac fibrosis and to stop the
progression towards heart failure due to their paracrine secretion of anti-fibrotic factors.
However, the use of MSCs still faces challenges, such as poorly targeted migration, low
survival rates at the site of injury, and lack of knowledge about the optimal time and
duration of application. Methods for isolating and expanding MSCs, dosage, and cell
delivery routes have already been tested in preclinical and clinical trials, but require further
investigation. Instead, increasing evidence suggests that EVs derived from MSCs could be
an attractive cell-free alternative for reducing pathological cardiac fibrosis. Investigating
EVs will provide new insights into the exact mechanism of cardiac regeneration and repair,



Int. J. Mol. Sci. 2021, 22, 13000 9 of 14

can help optimize therapies to delay or even prevent the onset of heart failure after an
injury, and ultimately reduce the number of people suffering from this disease.
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