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1. Results

Table S1. The activity landscape and LipE profile of the IPsR ligand dataset.

Comp I1Cso(uM) logP(o/w) cLogp pIC50 LipE Ref
A2 0.02 -7.5 -7.2 1.8 15.1 [1]
A8 0.04 6.2 5.8 0.4 13.1 1]

A10 0.01 -6.6 -5.7 1.9 13.9 [2]
A6 0.43 -7.7 -8.5 0.2 14.9 [2]
M2 0.02 -4.8 -7.2 7.5 17.5 [3]
Al 0.03 7.5 7.2 16 14.8 2]
A9 0.62 7.7 7.2 13 134 2]
A7 3.01 -6.4 -5.8 2.2 14.1 [1]
M19 0.05 1.5 2.71 6.7 45 [4]
A5 0.17 -7.5 -6.7 0.7 13.4 [1]
C2 0.19 -2.8 -6.1 6.7 17.2 [5]
C3 0.38 -3.9 -8.2 6.4 14.7 [5]
C1 0.42 -1.2 -4.2 6.3 14.9 [5]
A3 0.05 0.05 0.05 0.05 0.05 [2]
Ad 6.4 -6.4 6.4 6.4 6.4 1]
B3 5.86 6.5 6.8 5.2 15 [6]
Bl 6.60 5.7 4.7 5.2 0.5 [7]
B5 2.53 7.3 8.1 5.6 -2.4 [6]
M4 5.00 -0.6 1.9 5.3 3.3 [8]
M3 5.00 1.5 7.2 5.3 -1.9 [9]
B6 0.65 73 8.0 6.2 1.8 [6]
B2 5.01 6.8 7.2 5.3 -1.9 [10]
B4 6.40 6.3 6.8 5.2 15 [7]
M5 15.0 23 1.6 48 32 [11]
Al2 20.0 55 43 05 9.1 [12]
M13 22.0 6.1 5.6 4.6 -0.9 [13]
M1 34.0 -2.9 -5.4 4.4 9.9 [14]
M7 50.0 2.2 1.9 43 2.4 [8]
Mé 50.0 1.9 4.2 4.3 0.1 [15]
All 93.0 6.9 5.8 13 9.8 [12]
M9 120 0.9 3.5 3.9 0.3 [16]
M14 140 3.1 3.5 3.8 0.3 [13]
M15 145 46 43 38 0.5 [13]
M16 160 3.1 4.0 3.7 -0.2 [13]
M8 340 1.1 23 34 1.1 [16]
M17 450 5.3 42 3.3 0.9 [13]
M18 2000 1.7 2.8 2.6 -0.1 [4]
M10 3300 -2.5 -2.9 2.4 5.4 [16]
M11 8700 -1.9 -1.9 2.0 3.9 [16]
M12 20000 -2.3 -2.0 1.6 3.7 [16]
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Figure S1. The physicochemical (molecular weight, TPSA, molar refractivity, and hydrogen bond acceptor/donor) prop-
erties of the IPsR ligand dataset.
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Figure S2. A plot of pICso (inhibitory Potency) versus clogP showing Lipophilic Efficiency (LipE)
profile of IP:R inhibitors. M1s (Ryanodine) is circled red and selected as a template molecule because

of the lipophilic efficiency profile (the most potent compound in the dataset (ICso: 0.055 uM) with a
clogP value of 2.71 and LipE value of 4.6).
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Figure S3: Shows the chemical features of the pharmacophore model responsible for the activity of
ryanodine. The yellow circle represents the hydrophobic region. The hydrogen bond acceptor and
hydrogen bond donors are represented by red and green circles respectively.
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Figure S4. ROC curve between true positive (TP) rates (sensitivity) vs. false positive rate (1-speci-
ficity) of final selected pharmacophore model. Overall, out of 33 active compounds 30 were pre-
dicted as actives (TP) and 3 were predicted as inactive (FN).
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Figure S5. The chemical structures of the compounds of the external test set used to validate the
pharmacophore model. This test set is named as ‘Blind set’, as the ICso values were not defined in

the literature [17-19].
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Figure S6. The chemical (2D) structures of the potential hit compounds shortlisted after pharmacophore based virtual
screening of National Cancer Institute (NCI) database, ZINC database, and ChemBridge database.
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Figure S7. A step by step protocol of the ligand based virtual screening. The 735735 compounds
from ChemBridge database, 885 (natural) compounds from Zinc database, and 265242 compounds
from the National Cancer Institute (NCI) database were screened. After several filters application
and Pharmacophore model screening the 4 hits from ChemBridge, 4 hits from NCI and 2 hits from
Zinc database were shortlisted as IPsR modulators (antagonists).
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Figure S8. The best docked poses of shortlisted hits within the binding pocked of protein. The IPsRs protein is shown in
backbone secondary structure and the interacting residues are shown in stick representation. Mostly, the ligand molecules
interacted with Lys-569 and Lys-507 forming a mt-7t interaction or surface contacts. Ligands interacted with Arg-503 and

Arg-510 via hydrogen bond acceptor and donor interactions.
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lar weight, describing the data diversity.

1.

Principal Component Analysis:

The principal component analysis (PCA) [20] was performed to determine the struc-
tural variance in the training dataset by computing the complete GRIND descriptors set.
In the training data set, 40 % structural variance has been described by the first two prin-
cipal components (PC1 & PC2) (figure S9). The compounds in the form of a cluster at the
right bottom side showed the molecules with a small structure containing only one hy-
drophobic ring, mainly class ‘A’ compounds and some from the class ‘M’. Overall, the
other compounds are more diverse with elongated chemical scaffolds and larger molecu-
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Figure S9. A PCA plot between the first two principal components (PC1 & PC2) defining the de-

scriptor space of the training set and test set.
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Figure 510. Representing a correlation plot between experimental versus predicted inhibitory po-
tencies (pICso) of IPsR antagonists. The training set is represented by black circles while the test set
is represented by red circles.
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Table S2. The statistical parameters of PLS models generated by GRIND measured by cross-valida-

tion method.

Fractional Factorial Design (FFD) Cycle

Cross-Validation

Method Complete FFD: FFD:
Q2 R? SDEP Q2 R? SDEP Q2 R? SDEP

LOO 0.61 0.64 1.1 0.68  0.71 1.0 0.70  0.72 0.9
LFO (1-5) 0.60 0.62 1.2 0.62  0.63 1.1 0.64 0.66 1.0
LFO (5-10) 0.62 0.64 1.1 0.64 0.65 1.0 0.62  0.65 1.1
LFO (10-15) 0.59 0.61 1.3 0.59  0.60 1.2 0.59  0.61 1.3
LFO (16-20) 0.58 0.60 1.2 059  0.61 1.1 0.60 0.61 1.1
LFO (21-25) 0.59 0.62 1.4 0.58  0.61 1.3 0.60  0.62 1.2
LFO (26-30) 0.61 0.63 1.2 0.61  0.60 1.3 0.60 0.61 1.3

LOO = Leave-One-Out, LFO = Leave-Five-Out

Table S3. The experimental inhibitory potency compared with inhibitory potency predicted by GRIND. The residual val-

ues of + 2 log units are considered optimal.

CompExperimentalPredicted Residual m? Swew AD (Outlier) Comp Experimental Predicted = Residual M Snew (gllljt-
pICso pICso Value pICso pICso Value lier)
Training Set Training Set

A 2.53 1.24 1.28 -0.33  1.29 - Ms 4.3 4.36 -0.06 324 259 -
As 0.36 1.12 -0.76 046  0.96 - My 4.3 4.24 0.05 3.33 0.8 -
As 1.28 1.09 0.18 0.73 2.61 - Al 1.57 1.56 0.01 1.43 1.12 -
An -0.47 1.08 -1.55 0.11 093 - Mo 3.92 4.32 -0.4 144  1.52 -
Az 2.21 1.16 1.05 -0.05  0.96 - C2 6.7 4.9 1.8 -2.28  1.18 -
An -1.3 -1.56 0.26 -0.63  0.59 - As 0.76 1.28 -0.52 021  1.69 -
Bs 5.59 5.15 0.43 1.92 1.21 - As 0.2 1.03 -0.82 0.01 1.31 -
B4 5.19 4.51 0.67 0.94 1.1 - Ci 6.3 4.46 1.84 -2.24  1.61 -
Bi 5.18 3.69 1.48 -1.12 113 - Mis 4.65 5.15 -0.49 139  1.53 -
B> 5.3 4.43 0.86 038 1.15 - Mis 3.85 4.95 -1.1 -0.18  1.47 -
Bs 5.23 4.56 0.66 098  1.34 - Mis 3.83 3.84 -0.01 344 079 -
Cs 6.42 2.9 3.51 -5.6 1.58 - Mis 3.79 3.85 -0.06 2.86  0.89 -
M 4.46 2.93 1.53 -1.05  1.04 - Az 1.85 1.38 0.46 059 1.19 -
M 5.3 4.32 0.97 0.08 249 - Ao 1.35 1.28 0.07 099  1.07 -
Ms 4.82 4.33 0.48 1.48 1.82 - Mig 7.25 5.53 1.72 225  1.69 -
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Table S4. The experimental inhibitory potency of test set compared with inhibitory potency predicted by GRIND. The
modified 12 (rm?) calculated and the values greater than 0.5 are considered optimal.

Experi- . )
Predicted | Residual AD_Info
Comp mental rm2 | Snew .
pICso Value (Outlier)
pICso
Test Set
Ms 3.46 3.55 -0.09 2434 1.29 -
Mu 2.06 1.24 0.81 0.195| 1.13 -
Mi2 1.69 2.63 -0.93 0.576 | 1.16 -
Mo 2.48 1.51 0.96 0464 | 1.72 -
Miz 3.34 3.74 -0.4 1.222 | 1.42 -
Mis 2.69 3.42 -0.72 0.393 | 0.92 -
A1 1.96 1.18 0.78 0.596 | 0.54 -
Be 6.18 4.94 1.23 0.966 | 2.29 -

Figure S11. (A). TIP contour around the template molecule showing the curved molecular boundary
at a wider distance of 16.40 A - 16.80A is positively correlated with the inhibitory potency of IPsR.
(B). whereas, the linear formed TIP at a shorter distance of 10.00 A - 10.40A is negatively correlated
with the inhibitory potency of IPsR.
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Thr-266

Figure S12. The binding pose of template molecule representing important pharmacophoric fea-
tures in complementing with amino acid residues within IPsR binding core.
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2. Materials and Methods
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Figure S13. Step-by-step data curation process to obtain a master database of IPsR.
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Figure S14. A correlation plot between binding energies of top docked poses vs. potential inhibitory
potency (pICso) showing good correlation i.e. 0.63.
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2. Conformational Analysis of Ligand dataset for GRIND:

1. Energy minimized conformations

Briefly, a stochastic search algorithm in MOE 2019.01 [21] was applied to generate en-
ergy minimized conformations of the ligand dataset. The generated conformations were
ranked according to their energy values and a total of 300 conformations were pro-
duced. Each ligand with the lowest energy score was considered for the GRIND analy-
sis.

2. Standard 3D conformations

To obtain standard 3D conformations of the ligand dataset, an online version of
CORINA software [22] was used. The 3D model of a molecule is built-in CORINA by
connecting the mono-centric fragments with standard bond lengths and bond angles.
The dihedral angles along with torsion angles of ring systems and the Van der Waals
and electrostatic (non-bonded) interactions are also considered and minimized. The fi-
nal 3D conformation of each ligand was further subjected to Pentacle v 1.0.7 [23] as
input for GRIND analysis.
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