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Abstract: Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca2+ signaling plays a pivotal role
in different cellular processes, including cell proliferation and cell death. Remodeling Ca2+ signals
by targeting the downstream effectors is considered an important hallmark in cancer progression.
Despite recent structural analyses, no binding hypothesis for antagonists within the IP3-binding core
(IBC) has been proposed yet. Therefore, to elucidate the 3D structural features of IP3R modulators,
we used combined pharmacoinformatic approaches, including ligand-based pharmacophore models
and grid-independent molecular descriptor (GRIND)-based models. Our pharmacophore model illu-
minates the existence of two hydrogen-bond acceptors (2.62 Å and 4.79 Å) and two hydrogen-bond
donors (5.56 Å and 7.68 Å), respectively, from a hydrophobic group within the chemical scaffold,
which may enhance the liability (IC50) of a compound for IP3R inhibition. Moreover, our GRIND
model (PLS: Q2 = 0.70 and R2 = 0.72) further strengthens the identified pharmacophore features of
IP3R modulators by probing the presence of complementary hydrogen-bond donor and hydrogen-
bond acceptor hotspots at a distance of 7.6–8.0 Å and 6.8–7.2 Å, respectively, from a hydrophobic
hotspot at the virtual receptor site (VRS). The identified 3D structural features of IP3R modula-
tors were used to screen (virtual screening) 735,735 compounds from the ChemBridge database,
265,242 compounds from the National Cancer Institute (NCI) database, and 885 natural compounds
from the ZINC database. After the application of filters, four compounds from ChemBridge, one
compound from ZINC, and three compounds from NCI were shortlisted as potential hits (antago-
nists) against IP3R. The identified hits could further assist in the design and optimization of lead
structures for the targeting and remodeling of Ca2+ signals in cancer.

Keywords: IP3R-mediated Ca2+ signaling; IP3R modulators; pharmacophore modeling; virtual
screening; hits; GRIND model; PLS co-efficient correlogram

1. Introduction

Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca2+ signaling is an important
regulatory factor in cancer progression, including invasiveness and cell proliferation [1–3].
In carcinogenesis, the Ca2+ signals are remodeled to regulate the cell cycle by inducing the
early response genes (JUN and FOS) in the G1 phase and have a direct influence on cell
death [2–4]. Thus, the response of malignant cell is overwhelmed by Ca2+ signaling by
providing them an unconditional advantage of unrestricted cell multiplication and pro-
liferation [5,6], avoiding programmed cell death [7,8], and providing specific adaptations
to limited cellular conditions. Therefore, Ca2+ signals are known to facilitate metastasis
from the primary point of initiation [9,10]. Nevertheless, remodeling of Ca2+ signaling
by downstream Ca2+-dependent effectors is considered a prime reason for sustaining the
cancer hallmark [11,12].

Cancer cells rely on the constitutive Ca2+ transfer from the endoplasmic reticulum
(ER) to mitochondria to sustain their high stipulation of building blocks for ATP production
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and proteins. Similarly, cancer cells also manipulate the mitochondrial tricarboxylic acid
(TCA) cycle and mitochondrial oxidative phosphorylation process to meet their anabolic
demands [13,14]. In addition to the pro-invasive and pro-apoptotic role, the overexpression
of IP3Rs was associated with various cancer types [15]. Among three isoforms of IP3R (R1,
R2„ and R3), the subtype IP3R3 is considered a leading participant in carcinogenesis, since its
expression level is associated with the aggressive behavior of colorectal carcinoma cells [16].
Inhibition of IP3R3 results in a decreased level of cell proliferation in breast cancer [17] and
reduced invasion, cell migration, and survival rates in glioblastoma cells [18].

Briefly, the inositol 1,4,5-trisphosphate receptor (IP3R), an endoplasmic reticulum
(ER) resident intracellular Ca2+ release channel, is an essential determinative for Ca2+-
dependent cellular processes [19,20]. Structurally, each IP3R molecule in a tetramer is
categorized as a large subunit forming a single channel (Ca2+ ion-permeable) with a
single IP3-binding site [21–24]. Further, IP3 receptor protein can be subdivided into a
cytosolic domain and a Ca2+ channel domain [25,26]. All of the crucial functional sites
responsible for the regulation and function of receptor protein are located in the cytosolic
domain. These include an IP3-binding core (IBC) region and a suppressor domain (residues
~600) at the N terminus of the protein. The cytosolic domain also includes a central
modulatory region (which mostly interacts with regulatory proteins) and a channel (pore)
with six putative transmembrane (TM) domains (residues 2276–2589) near the protein’s C
terminus [23,27–29]. Recent structural investigations of IP3Rs [26,30] and availability of the
3D structure of IP3R3 in apostate and ligand-bound states [30,31] paved the way to study
the binding hypothesis of the IP3 molecule and antagonists to elucidate the effect of IP3R
inhibition upon channel gating.

Depending upon the micro-environment of the cell, inhibition of IP3R-mediated Ca2+

signal activates autophagy as a pro-survival or pro-death response in normal healthy
cells [32,33]. Furthermore, pharmacological inhibition of IP3R signaling in tumorigenic
cells is the key player to impair mitochondrial bioenergetics resulting in the activation of
AMP-kinases (AMPK), successively leading towards autophagy followed by necrotic cell
death [17,33]. Deficiency in mitochondrial substrates results in the cell death of cancer cells
independent of oxidative stress or autophagy as reported by Cárdenas et al. [33].

Considering the importance of IP3R-mediated Ca2+-signaling inhibition in cancer
cells, in the present study, a ligand-based pharmacophore model was generated to identify
important features of antagonists that are essential for interaction with the receptor. Fur-
ther, the virtual screening (VS) was performed based upon the pharmacophore model to
identify new potential hits against IP3R. The application of GRIND in many computational
drug discovery pipelines is evident, including molecular-docking studies [34], 3D-QSAR
analysis [35], metabolism profiling [36], molecular kinetics [37,38], ADME prediction, and
high-throughput virtual screening [39]. Previously, no predictive QSAR models against
IP3R antagonists were reported due to the availability of limited and structurally diverse
datasets. Therefore, in the present study, alignment-independent molecular descriptors
based on molecular interaction fields (MIFs) were used to probe the 3D structural features
of IP3R antagonists. Additionally, a grid-independent molecular descriptor (GRIND) model
was developed to evaluate the proposed pharmacophore model and to establish a binding
hypothesis of antagonists with IP3R. Overall, this study may add value to recognize the
essential pharmacophoric features and their mutual distances and to design new potent
ligands required for IP3R inhibition.

2. Results
2.1. Preliminary Data Analysis and Template Selection

Overall, the dataset of 40 competitive compounds exhibiting 0.0029 µM to 20,000 µM
half-maximal inhibitory concentration (IC50) against IP3R was selected from the ChEMBL
database [40] and literature. Based upon a common scaffold, the dataset was divided into
four classes (Table 1). Class A consisted of inositol derivatives, where phosphate groups
with different stereochemistry are attached at positions R1–R6. Similarly, Class B consisted
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of cyclic oxaquinolizidine derivatives commonly known as xestospongins, whereas, Class
C was composed of biphenyl derivatives, where phosphate groups are attached at different
positions of the biphenyl ring (Table 1). However, Class M consisted of structurally diverse
compounds. The chemical structures of Class M are illustrated in Figure 1.

Figure 1. Chemical structure of the compounds in Class M with inhibitory potency (IC50) and lipophilic efficiency
(LipE) values.
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Table 1. Ligand dataset of IP3R showing calculated log p values and LipE values.

Inositol Phosphate (IP)
(Class A)

Comp.
No. R1 R2 R3 R4 R5 R6 Conformation Key Name IC50

(µM) logP clogP pIC50 LipE Ref.

A1 PO3
−2 PO3

−2 OH PO3
−2 PO3

−2 OH R,S,S,S,S,S DL-Ins(1,2,4,5)P4 0.03 −7.5 −7.2 1.6 14.8 [41]

A2 PO3
−2 PO3

−2 OH PO3
−2 PO3

−2 OH S,S,S,R,R,R scyllo-Ins(1,2,4,5)P4 0.02 −7.5 −7.2 1.8 15.1 [42]

A3 PO3
−2 PO3

−2 OH PO3
−2 OH OH S,S,R,R,R,R DL-scyllo-Ins(1,2,4)P3 0.05 −6.4 −5.7 1.3 13.1 [41]

A4 PO3
−2 OH PO3

−2 PO3
−2 PO3

−2 OH R,S,S,S,S,S Ins(1,3,4,5)P4 0.01 −7.5 −6.5 2.5 15.1 [42]

A5 PO3
−2 OH PO3

−2 PO3
−2 OH PO3

−2 R,S,R,S,S,R D-chiro-Ins(1,3,4,6)P4 0.17 −7.5 −6.7 0.7 13.4 [42]

A6 PO3
−2 OH OH PO3

−2 PO3
−2 PO3

−2 R,S,S,R,R,S Ins(1,4,5,6)P4 0.43 −7.7 −8.5 0.2 14.9 [41]

A7 PO3
−2 OH OH PO3

−2 PO3
−2 OH R,R,S,R,R,S Ins(1,4,5)P3 3.01 −6.4 −5.8 2.2 14.1 [42]

A8 PO3
−2 OH OH OH PO3

−2 PO3
−2 R,R,S,R,R,S Ins(1,5,6)P3 0.04 −6.2 −5.8 0.4 13.1 [42]

A9 OH OH PO3
−2 PO3

−2 PO3
−2 PO3

−2 S,R,R,S,R,S Ins(3,4,5,6)P4 0.62 −7.7 −7.2 1.3 13.4 [41]

A10 OH OH PO3
−2 PO3

−2 PO3
−2 OH S,S,R,R,S,S Ins(3,4,5)P3 0.01 −6.6 −5.7 1.9 13.9 [41]

A11 OH OH OH PO3
−2 PO3

−2 PO3
−2 R,S,S,S,R,S Ins(4,5,6)P3 93.0 −6.9 −5.8 −1.3 9.8 [43]

A12 OH OH OH PO3
−2 PO3

−2 OH R,R,S,S,R,S Ins(4, 5)P2 20.0 −5.5 −4.3 −0.5 9.1 [43]
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Table 1. Cont.

Xestospongins (Xe)
(Class B)

Comp.
No. R1 R4 R5 R8 Conformation Key Name IC50 (µM) logP clogP pIC50 LipE Ref.

B1 OH — OH — R,R,S,R,R,S Araguspongine C 6.60 5.7 4.7 5.2 0.5 [44]

B2 OH — — CH3 S,S,R,S,R,R,R Xestospongin B 5.01 6.8 7.2 5.3 −1.9 [45]

B3 OH — — — S,S,R,R,S,R Demethylated
Xestospongin B 5.86 6.5 6.8 5.2 −1.5 [46]

B4 — OH — — S,S,R,R,S,S,R 7-(OH)-XeA 6.40 6.3 6.8 5.2 −1.5 [44]

B5 — — — — S,S,R,S,S,R Xestospongin A 2.53 7.3 8.1 5.6 −2.4 [46]

B6 — — — — R,S,R,R,S,R Araguspongine B 0.65 7.3 8.0 6.2 −1.8 [46]
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Table 1. Cont.

Benzene Phosphate Derivatives
(Class C)

Comp.
No. R2 R2′ R3′ R4 R4′ R5 R5′ R6 Key Name IC50

(µM) logP clogP pIC50 LipE Ref.

C1 PO3
−2 — PO3

−2 PO3
−2 — —- PO3

−2 PO3
−2 BiPh(2,3′,4,5′,6)P5 0.42 −1.2 −4.2 6.3 14.9 [47]

C2 PO3
−2 PO3

−2 — PO3
−2 PO3

−2 PO3
−2 PO3

−2 — BiPh(2,2′4,4′,5,5′)P6 0.19 −2.8 −6.1 6.7 17.2 [47]

C3 PO3
−2 PO3

−2 — PO3
−2 PO3

−2 PO3
−2 PO3

−2 — 1,2,4-Dimer
Biph(2,2′,4,4′,5,5′)P6 0.38 −3.9 −8.2 6.4 14.7 [47]
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By careful inspection of the activity landscape of the data, the activity threshold was
defined as 160 µM (Table S1). The inhibitory potencies (IC50) of most actives in the dataset
ranged from 0.0029 µM to 160 µM, whereas inhibitory potency (IC50) of least actives was in
the range of 340 µM to 20,000 µM. The LipE values of the dataset were calculated ranging
from−2.4 to 17.2. The physicochemical properties of the dataset are illustrated in Figure S1.

2.2. Pharmacophore Model Generation and Validation

Previously, different studies proposed that a range of clogP values between 2.0 and 3.0
in combination with lipophilic efficiency (LipE) values greater than 5.0 are optimal for an
average oral drug [48–51]. By this criterion, ryanodine (IC50: 0.055 µM) with a clogP value
of 2.71 and LipE value of 4.6 (Table S1) was selected as a template for the pharmacophore
modeling (Figure 2). A lipophilic efficacy graph between clogP versus pIC50 is provided in
Figure S2.

Figure 2. The 3D molecular structure of ryanodine (template) molecule.

Briefly, to generate ligand-based pharmacophore models, ryanodine was selected as a
template molecule. The chemical features within the template, e.g., the charged interactions,
lipophilic regions, hydrogen-bond acceptor and donor interactions, and steric exclusions,
were detected as important pharmacophoric features. Thus, 10 pharmacophore models
were generated by using the radial distribution function (RDF) code algorithm [52]. Once
models were generated, each model was validated internally by performing the pairing
between pharmacophoric features of the template molecule and the rest of the data to
create geometric transformations based upon minimal squared distance deviations [53].
The generated models with the chemical features, the distances within these features, and
the statistical parameters to validate each model are shown in Table 2.
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Table 2. The identified pharmacophoric features and mutual distances (A◦), along with ligand scout score and statistical evaluation parameters.

Model No. Pharmacophore Model
(Template) Model Score Model Distance Model Statistics

1. 0.68 *

Hyd HBA1 HBA2 HBD1 HBD2

TP:
TN:
FP:
FN:

MCC:

87%
72%
06%
03%
0.76

Hyd 0

HBA1 2.62 0

HBA2 4.79 2.61 0

HBD1 5.56 3.64 4.57 0

HBD2 7.68 5.58 3.11 6.97 0

2. 0.67

Hyd HBA1 HBD1 HBD2 HBD3 TP:
TN:
FP:
FN:

MCC:

51%
70%
14%
18%
0.26

Hyd 0

HBA1 2.48 0

HBD1 3.46 4.17 0

HBD2 5.56 3.63 6.33 0

HBD3 7.43 5.58 7.8 7.01 0

3. 0.66

Hyd HBA HBD1 HBD2 HBD3

TP:
TN:
FP:
FN:

MCC:

72%
29%
12%
33%
0.02

Hyd 0

HBA 3.95 0

HBD1 3.97 3.87 0

HBD2 7.09 4.13 2.86 0

HBD3 7.29 3.41 7.01 2.62 0
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Table 2. Cont.

Model No. Pharmacophore Model
(Template) Model Score Model Distance Model Statistics

4. 0.65

Hyd HBA HBD1 HBD2 Hyd

TP:
TN:
FP:
FN:

MCC:

49%
71%
14%
27%
0.23

Hyd 0

HBA 2.32 0

HBD1 3.19 1.62 0

HBD2 7.69 6.91 4.57 0

Hyd 6.22 4.41 3.17 2.04 0

5. 0.64

Hyd HBA HBD1 HBD2 HBD3

TP:
TN:
FP:
FN:

MCC:

54%
57%
28%
27%
0.13

Hyd 0

HBA 2.32 0

HBD1 4.56 3.01 0

HBD2 2.92 1.05 3.61 0

HBD3 7.06 5.09 7.53 5.28 0

6. 0.63

Hyd HBA1 HBA2 HBD1 HBD2

TP:
TN:
FP:
FN:

MCC:

60%
29%
57%
45%
−0.07

Hyd 0

HBA1 4.32 0

HBA2 4.46 2.21 0

HBD1 6.87 3.07 5.73 0

HBD2 4.42 6.05 5.04 9.61 0
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Table 2. Cont.

Model No. Pharmacophore Model
(Template) Model Score Model Distance Model Statistics

7. 0.62

Hyd HBA HBD1 HBD2 HBD3

TP:
TN:
FP:
FN:

MCC:

63%
71%
14%
42%
0.32

Hyd 0

HBA 2.49 0

HBD1 4.06 2.07 0

HBD2 5.08 2.8 2.38 0

HBD3 6.1 6.48 8.87 6.56 0

8. 0.61

Hyd HBA1 HBA2 HBD

TP:
TN:
FP:
FN:

MCC:

55%
57%
42%
48%
0.08

Hyd 0

HBA1 4.28 0

HBA2 4.26 2.8 0

HBD 7.08 6.94 5.42 0

9. 0.60

HBA1 HBA2 HBA3 HBD1 HBD2

TP:
TN:
FP:
FN:

MCC:

58%
28%
57%
48%
−0.09

HBA1 0

HBA2 2.52 0

HBA3 2.05 2.07 0

HBD1 4.65 2.28 4.06 0

HBD2 6.9 7.96 5.75 8.96 0
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Table 2. Cont.

Model No. Pharmacophore Model
(Template) Model Score Model Distance Model Statistics

10. 0.60

HBA1 HBA2 HBD1 HBD2

TP:
TN:
FP:
FN:

MCC:

51%
42%
40%
54%
−0.01

HBA1 0

HBA2 3.26 0

HBD1 3.65 6.06 0

HBD2 6.96 6.09 6.33 0

Where, Hyd = Hydrophobic, HBA = Hydrogen bond acceptor, HBD = Hydrogen bond donor, TP = True positives, TN = True negatives, FP = False positives, FN = False negatives and MCC = Matthew’s
correlation coefficient. * Finally selected model based upon ligand scout score, sensitivity, specificity, and Matthew’s correlation coefficient.
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Overall, in ligand-based pharmacophore models, hydrophobic features with hydrogen-
bond acceptors and hydrogen-bond donors mapped at variable mutual distances (Table 2)
were found to be important. Therefore, based on the ligand scout score (0.68) and Matthew’s
correlation coefficient (MCC: 0.76), the pharmacophore model 1 was finally selected for
further evaluation. The model was generated based on shared-feature mode to select
only common features in the template molecule and the rest of the dataset. Based on
3D pharmacophore characteristics and overlapping of chemical features, the model score
was calculated. The conformation alignments of all compounds (calculated by clustering
algorithm) were clustered based upon combinatorial alignment, and a similarity value
(score) was calculated between 0 and 1 [54]. Finally, the selected model (model 1, Table 2)
exhibits one hydrophobic, two hydrogen-bond donor, and two hydrogen-bond acceptor
features. The true positive rate (TPR) of the final model determined by Equation (4) was
94% (sensitivity = 0.94), and true negative rate (TNR) determined by Equation (5) was
86% (specificity = 0.86). The tolerance of all the features was selected as 1.5, while the
radius differed for each feature. The hydrophobic feature was selected with a radius of
0.75, the hydrogen-bond acceptor (HBA1) has a 1.0 radius, and HBA2 has a radius of 0.5,
while both hydrogen-bond donors (HBD) have 0.75 radii. The hydrophobic feature in
the template molecule was mapped at the methyl group present at one terminus of the
molecule. The carbonyl oxygen present within the scaffold of the template molecule is
responsible for hydrogen-bond acceptor features. However, the hydroxyl group may act as
a hydrogen-bond donor group. The richest spectra about the chemical features responsible
for the activity of ryanodine and other antagonists were provided by model 1 (Figure S3).

The final ligand-based pharmacophore model emphasized that, within a chemical
scaffold, two hydrogen-bond acceptors must be separated by a shorter distance (of not
less than 2.62 Å) compared to two hydrogen-bond donors (may be 6.97 Å). Additionally,
the distance between a hydrogen-bond acceptor and a hydrogen-bond donor should not
exceed 3.11–5.58 Å. Moreover, the existence of two hydrogen-bond acceptors (2.62 Å and
4.79 Å) and two hydrogen-bond donors (5.56 Å and 7.68 Å) mapped from a hydrophobic
group (yellow circle in Figure S3) within the chemical scaffold may enhance the liability
(IC50) of a compound for IP3R inhibition.

The finally selected pharmacophore model was validated by an internal screening of
the dataset and a satisfactory MCC = 0.76 was obtained, indicating the goodness of the
model. A receiver operating characteristic (ROC) curve showing specificity and sensitivity
of the final model is illustrated in Figure S4. However, for a predictive model, statistical
robustness is not sufficient. A pharmacophore model must be predictive to the external
dataset as well. The reliable prediction of an external dataset and distinguishing the
actives from the inactive are considered critical criteria for pharmacophore model valida-
tions [55,56]. An external set of 11 compounds (Figure S5) defined in the literature [57–59] to
inhibit the IP3-induced Ca2+ release was considered to validate our pharmacophore model.
Our model predicted nine compounds as true positive (TP) out of 11, hence showing the
robustness and productiveness (81%) of the pharmacophore model.

2.3. Pharmacophore-Based Virtual Screening

In the drug discovery pipeline, virtual screening (VS) is a powerful method to iden-
tify new hits from large chemical libraries/databases for further experimental validation.
The final ligand-based pharmacophore model (model 1, Table 2) was screened against
735,735 compounds from the ChemBridge database [60], 265,242 compounds in the Na-
tional Cancer Institute (NCI) database [61,62], and 885 natural compounds from the ZINC
database [63]. Initially, the inconsistent data was curated and preprocessed by removing
fragments (MW < 200 Da) and duplicates. The biotransformation of the 70–80% drugs
was carried out by cytochromes P450 (CYPs), as they are involved in pharmacodynamics
variability and pharmacokinetics [63]. The five cytochromes P450 (CYP) isoforms (CYP
1A2, 2C9, 2C19, 2D6, and 3A4) are most important in human drug metabolism [64]. Thus,
to obtain non-inhibitors, the CYPs filter was applied by using the Online Chemical Mod-
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eling Environment (OCHEM) [65]. The shortlisted CYP non-inhibitors were subjected
to a conformational search in MOE 2019.01 [66]. For each compound, 1000 stochastic
conformations [67] were generated. To avoid hERG blockage [68,69], these conformations
were screened against a hERG filter [70]. Briefly, after pharmacophore screening, four com-
pounds from the ChemBridge database, one compound from the ZINC database, and three
compounds from the NCI database were shortlisted (Figure S6) as hits (IP3R modulators)
based upon an exact feature match (Figure 3). A detailed overview of the virtual screening
steps is provided in Figure S7.

Figure 3. Potential hits (IP3R modulators) identified by virtual screening (VS) of National Cancer
Institute (NCI) database, ZINC database, and ChemBridge database. After application of several
filters and pharmacophore-based virtual screening, these compounds were shortlisted as IP3R
potential inhibitors (hits). These hits (IP3R antagonists) are showing exact feature match with the
final pharmacophore model.
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The current prioritized hits (antagonists) were based upon a data-driven pipeline in the
early stages of the drug design process that however, require bioactivity data against IP3R.

2.4. Molecular-Docking Simulation and PLIF Analysis

Briefly, the top-scored binding poses of each hit (Figure 3) were selected for protein–
ligand interaction profile analysis using PyMOL 2.0.2 molecular graphics system [71].
Overall, all the hits were positioned within the α-armadillo domain and β-trefoil region
of the IP3R3-binding domain as shown in Figure 4. The selected hits displayed the same
interaction pattern with the conserved residues (arginine and lysine) [19,26,72] as observed
for the template molecule (ryanodine) in the binding pocket of IP3R.

Figure 4. The docking orientation of shortlisted hits in the IP3R3-binding domain. The secondary
structure of the IP3R3-binding domain is presented where the α domain, β-trefoil region, and turns
are presented in red, yellow, and blue, respectively. The template molecule (ryanodine) is shown in
red (ball and stick), and the hits are shown in cyan (stick).

The fingerprint scheme in the protein–ligand interaction profile was analyzed using
the Protein–Ligand Interaction Fingerprint (PLIF) tool in MOE 2019.01 [66]. To observe the
occurrence frequency of interactions, a population histogram was generated between the
receptor protein (IP3R3) and the shortlisted hit molecules. In the PLIF analysis, the side
chain or backbone hydrogen-bond (acceptor or donor) interactions, surface contacts, and
ionic interactions were calculated on the basis of distances between atom pairs and their ori-
entation contacts with protein. Our dataset (ligands and hits) revealed the surface contacts
(π–π interactions) and hydrogen-bond acceptor and donor (HBA and HBD) interactions
with Arg-503, Lys-507, Arg-568, and Lys-569 (Figure S8). Overall, 85% of the docked poses
formed either side chain or backbone hydrogen-bond acceptor and donor (HBA and HBD)
interactions with Arg-503. Moreover, 73% of the dataset interacted with Lys-569 through
surface contacts (π–π interactions) and hydrogen-bond interactions. Similarly, 65% of the
hits showed hydrophobic interactions and surface contacts with Lys-507, whereas 50% of
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the dataset showed π–π interactions and direct hydrogen-bond interactions with Arg-510
and Tyr-567 (Figure 5).

Figure 5. A summarized population histogram based upon occurrence frequency of interaction
profiling between hits and the receptor protein. Most of the residues formed surface contact (π–π
interactions), whereas some were involved in side chain hydrogen-bond interactions. Overall,
Arg-503 and Lys-569 were found to be most interactive residues.

In site-directed mutagenic studies, the arginine and lysine residues were found to be
important in the binding of ligands within the IP3R domain [72,73], wherein the residues
including Arg-266, Lys-507, Arg-510, and Lys-569 were reported to be crucial. The docking
poses of the selected hits were further strengthened by previous study where IP3R antago-
nists interacted with Arg-503 (π–π interactions and hydrogen bond), Ser-278 (hydrogen-
bond acceptor interactions), and Lys-507 (surface contacts and hydrogen-bond acceptor
interactions) [74].

2.5. Grid-Independent Molecular Descriptor (GRIND) Analysis

To quantify the relationships between biological activity and chemical structures of
the ligand dataset, QSAR is a generally accepted and well-known diagnostic and predictive
method. To develop a 3D-QSAR model using GRIND descriptors, three sets of molec-
ular conformations (provided in supporting information in the Materials and Methods
section) of the training dataset were subjected independently as input to the Pentacle
version 1.07 software package [75], along with their inhibitory potency (pIC50) values. To
identify more important pharmacophoric features at VRS and to validate the ligand-based
pharmacophore model, a partial least square (PLS) model was generated. The partial least
square (PLS) method correlated the energy terms with the inhibitory potencies (pIC50)
of the compounds and found a linear regression between them. The variation in data
was calculated by principal component analysis (PCA) and is described in the supporting
information in the Results section (Figure S9).

Overall, the energy minimized and standard 3D conformations did not produce good
models even after the application of the second cycle of the fractional factorial design (FFD)
variable selection algorithm [76]. However, the induced fit docking (IFD) conformational
set of data revealed statistically significant parameters. Independently, three GRIND
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models were built against each previously generated conformation, and the statistical
parameters of each developed GRIND model were tabulated (Table 3).

Table 3. Summarizing the statistical parameters of independent partial least square (PLS) models generated by using
different 3D conformational inputs in GRIND.

Conforma-
tional

Method

Fractional Factorial Design (FFD) Cycle
Comments
FFD2 (LV2)Complete FFD1 FFD2

Q2
LOO R2 SDEP Q2

LOO R2 SDEP Q2
LOO R2 SDEP

Energy
Minimized 0.07 0.93 2.8 0.12 0.93 2.7 0.23 0.94 2.5 Inconsistent for auto- and

cross-GRID variables

Standard 3D 0.59 0.68 3.5 0.15 0.56 3.5 0.05 0.53 3.5 Inconsistent for auto- and cross-GRID
variables

Induced Fit
Docked 0.61 0.64 1.1 0.68 0.71 1.0 *0.70 0.72 0.9 Consistent for Dry-Dry, Dry-O, Dry-N1,

and Dry-Tip correlogram (Figure 3)

* Bold values show the statistics of the final selected model.

Therefore, based upon the statistical parameters, the GRIND model developed by the
induced fit docking conformation was selected as the final model. Further, to eliminate
the inconsistent variables from the final GRIND model, a fractional factorial design (FFD)
variable selection algorithm [76] was applied, and statistical parameters of the model
improved after the second FFD cycle with Q2 of 0.70, R2 of 0.72, and standard deviation of
error prediction (SDEP) of 0.9 (Table 3). A correlation graph between the latent variables
(up to the fifth variable, LV5) of the final GRIND model versus Q2 and R2 values is shown
in Figure 6. The R2 values increased with the increase in the number of latent variables
and a vice versa trend was observed for Q2 values after the second LV. Therefore, the final
model at the second latent variable (LV2), showing statistical values of Q2 = 0.70, R2 = 0.72,
and standard error of prediction (SDEP) = 0.9, was selected for building the partial least
square (PLS) model of the dataset to probe the correlation of structural variance in the
dataset with biological activity (pIC50) values.

Figure 6. Correlation plot between Q2 and R2 values of the GRIND model developed by induced fit
docking (IFD) conformations at latent variables (LV 1–5). The final GRIND model was selected at
latent variable 2.



Int. J. Mol. Sci. 2021, 22, 12993 17 of 33

Briefly, partial least square (PLS) analysis [77] was performed by using leave-one-
out (LOO) as a cross-validation procedure [78] to correlate the 3D molecular structure
features with the inhibitory potency (pIC50) values against IP3R. Furthermore, a plot of
actual versus predicted inhibitory potency (pIC50) values obtained after multiple linear
regression analysis using the leave-one-out (LOO) cross-validation [78,79] of the training
dataset is illustrated in Figure S10 in the Results section. The model was validated by using
cross-validation methods [79], including the leave-five-out (LFO) method (Table S2). The
actual and predicted inhibitory potency values (pIC50) of the training and test datasets
with the residual differences were also tabulated (Tables S3 and S4). All the compounds
in the training set (R2 = 0.76), as well as in the test set (R2 = 0.65), were predicted with a
residual difference of ±2 log units.

Moreover, the partial least square (PLS) coefficients correlogram (Figure 7) containing
auto (Dry-Dry, Tip-Tip, O-O, and N1-N1) and cross variables (Dry-O, Dry-Tip, Dry-N1, Tip-
O, Tip-N1, O-N1) correlated positively and negatively with the inhibitory potency (pIC50)
of IP3R. Noticeably, Dry-Dry, Dry-O, Dry-N1, and Dry-Tip variables correlated positively
and had a major influence in defining the inhibitory potency of a compound against IP3R.
However, the N1-N1 variable corresponded negatively to the biological activity (pIC50)
and depicted the more prominent 3D structural feature in the least potent inhibitors of
the dataset.

Figure 7. Partial least square (PLS) coefficient correlogram plot representing direct (positive values) and inverse (negative
values) correlations of the GRIND variables with inhibitory potency (pIC50) against IP3R antagonists.

More explicitly, the Dry-Dry auto variable (Figure 7) represented the pair of two
hydrophobic nodes interacting favorably at a mutual distance of 6.4–6.8 Å at the virtual
receptor site (VRS). Since the present data was a set of diverse compounds, many such
variables were found in all active compounds (0.0029–160 µM) within a defined distance.
Additionally, at a shorter distance of 5.20–5.60 Å, this variable was present in the moderately
active compound M9 (120 µM). Mostly, the active compounds consisted of two or more
aromatic rings. However, more than two rings (aromatic moieties or aryl) were present
in the M19 structure (Figure 8A) and created a hydrophobic cloud surrounding the ring
and provided a significant basis for the hydrophobic (π–π/surface contact) interactions.
Further, the presence of nitrogen at the ortho position of the ring may facilitate the aromatic
feature (Dry) at the virtual receptor site (VRS). Similarly, the Arg-266, Ser-278, Arg-510,
and Tyr-567 residues present in the binding core of IP3R were found to be involved in the
hydrophobic interactions (Figure 9). Previously, Arg-266 was determined as an important
facilitator of hydrophobic interactions [74].
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Figure 8. (A) Dry-Dry probes represent the presence of hydrophobic moiety within the highly active compounds
(0.0029–160 µM) at a distance of 6.4–6.8 Å, and (B) represents the Dry-N1 set of probes within a hydrophobic region
and a hydrogen-bond acceptor group (nitrogen of M7) present at a mutual distance of 7.6–8.0 Å in highly active compounds.
Similarly, (C) reflects the presence of a hydrophobic region and a hydrogen-bond donor (oxygen of M15) contour designated
by a Dry-O peak in the correlogram at a mutual distance of 6.8–7.2 Å. (D) depicts the Dry-Tip pair of probes describing the
presence of a hydrophobic contour in combination with a steric hotspot separated by a mutual distance of 5.60–6.00 Å in
highly active compounds. (E) represents the O-O probes defining the two hydrogen-bond donor groups at a shorter distance
of 2.4–2.8 Å present in the least active compounds and implicating a negative effect on the inhibitory potency of a compound
against IP3R, and (F) shows the positive effect of two hydrogen-bond donor contours (O-O probe) separated by a larger
distance ranging from 10.4–10.8 Å in the molecule (M19). This was present in all active compounds (0.0029–160 µM) of the
dataset. (G) represents the N1-N1 probe indicating the presence of two hydrogen-bond acceptor hotspots in a molecule
at a mutual distance of 9.2–9.8 Å, surrounding the data with the least inhibition potential (IC50) values between 2000 and
20,000 µM.
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Figure 9. Representing the important hotspots (contours define the virtual receptor site (VRS))
identified by the GRIND model for the high inhibitory potency of antagonist–IP3R interaction.
Yellow contour defines the hydrophobic region present in the binding pocket. The presence of
a ring structure against Arg-266 and Arg-270 complemented the hydrophobic (π–π) interactions.
Similarly, blue contour defines the hydrogen-bond acceptor group complementing the presence of
side chains of Arg-510 and Tyr-567 residues. The amide group of Arg-510 in the binding pocket of
IP3R complemented the hydrogen-bond acceptors contour.

Similarly, the Dry-N1 probe in the correlogram (Figure 7) was positively correlated
with the activity of the compound against IP3R. It depicted a hydrophobic and a hydrogen-
bond donor hotspot at a distance of 7.6–8.0 Å in the virtual receptor site (VRS). Most of the
active compounds, M19, M4, and M7 (0.0029–160 µM), in the dataset were characterized
by having carbonyl oxygen attached with ring structures (Figure 8B). The presence of a
hydrogen-bond acceptor group at a distance of 4.79 Å from the hydrophobic feature of the
template molecule was identified as an important feature in defining the inhibitory potency
of a compound by our ligand-based pharmacophore model (Table 4). The difference in
distances can be correlated to the mapped virtual site receptor in the GRIND versus ligand
features in the pharmacophore modeling. Furthermore, the IP3R-binding core (IBC) had a
predominantly positive electrostatic potential where hydrogen-bond (acceptor and donor)
and ionic interactions were facilitated by multiple basic amino acid residues [44]. The
Glu-511 residue may provide a proton from its carboxyl group in the receptor-binding
site and complemented the hydrogen-bond donor contour predicted by GRIND (Figure 9).
Similarly, the Lys-569 residue and the α-amino nitrogen group found in the side chains of
Arg-510, Arg-266, and Arg-270 harbored the ryanodine ligand by enabling the hydrogen-
bond donor and acceptor interactions.

Table 4. The pairwise comparison of the ligand-based pharmacophore features with their comple-
mentary GRIND model features representing the virtual receptor site (VRS).

Pharmacophore (Ligand-Based) GRIND (Correlogram)

Pharmacophore
Variables Distances GRIND

Variables
Features at

VRS Distance

Hydro-HBA
Hydro-HBD
HBD-HBD

4.79 Å
5.56 Å
6.97 Å

Dry-N1
Dry-O
O-O

Hyd-HBD
Hyd-HBA
HBA-HBA

7.6–8 Å
6.8–7.2 Å

10.4–10.8 Å

Further, the Dry-O peak in the correlogram (Figure 7) represented the hydrogen-bond
acceptor contour at a distance of 6.8–7.2 Å from the hydrophobic region in the VRS. The
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M19 and M15, the most active compounds (0.0029–160 µM) of the dataset, consisted of
protonated nitrogen in the ligand structure (Figure 8C) that provided hydrogen-bond donor
characteristics complementing the hydrogen-bond acceptor contour at the virtual receptor
site. Also, the hydroxyl group found on the side chain of the template molecule may exhibit
hydrogen-bond donor qualities. Furthermore, in the ligand-based pharmacophore model,
the hydrogen-bond donor (HBD) group present at a distance of 5.56 Å from the hydrophobic
feature seemed to be a more influential one in defining the inhibitory potency of IP3R
(Table 4). This further strengthened the authenticity of our GRIND model outcomes. The
presence of a hydrogen-bond acceptor complemented the α-amino nitrogen group found
in the side chain of Arg-510 and the polar amino acid residue Tyr-567 in the binding core
of IP3R. However, Tyr-567 facilitated the hydrogen-bond donor and acceptor interactions
simultaneously. In the receptor-binding site, the side chains of Ser-278, Lys-507, and Lys-569
complemented the presence of hydrogen-bond acceptor contours predicted by GRIND in
the virtual receptor site (Figure 9).

Furthermore, the presence of a hydrophobic moiety and a steric hotspot at a mutual
distance of 5.60–6.00 Å in VRS defining the 3D molecular shape of the antagonists is
represented by the Dry-Tip peak in the correlogram (Figure 7). The ring (aryl/aromatic)
structure present in most of the compounds represented the hydrophobic characteristics of
the particular compound (Figure 8D). Here, the molecular boundaries of the hydrophobic
groups were suggested with the combination of a steric hotspot. Considering the important
role of Arg-266 and Arg-510 in the binding core of IP3R [74], the presence of a steric hotspot
along with a hydrophobic region represented the hydrophobic interactive nature of the
receptor-binding site. The shape complementarity of the Tip contour defined by GRIND
may be supported by the presence of Arg-266 in the β-trefoil (226–435) region and Tyr-
567 in the α-helix (436–604) region of the IP3R-binding core (Figure 9) [30,31]. The two
structurally distinct domains, β-trefoil and α-armadillo repeats, created an L-shaped cleft
structure generated by the perpendicular position of the two domains and surrounded by
a cluster of several basic amino acids, forming the InsP3-binding site [26]. Interestingly, the
curved molecular boundary at a longer distance of 16.40 Å–16.80 Å exhibited a significant
impact in defining a compound’s inhibitory potency as compared to the linear-shaped
boundary at a shorter distance of 10.00 Å–10.40 Å (Figure S11). Overall, the hydrophobic
region (Dry in GRIND and Hyd in ligand-based pharmacophore) seemed to be the most
important contour, as the other pharmacophoric features (including a hydrogen-bond
donor (N1), a hydrogen-bond acceptor (O) contour, and the steric molecular hotspot (Tip)),
were mapped and all distances were calculated from this region.

Moreover, the correlogram (Figure 7) indicated the O-O auto probe, at a shorter
distance of 2.4–2.8 Å, was negatively correlated (Figure 8E), while at a longer distance
of 10.4–10.8 Å, it was positively correlated (Figure 8F) with the inhibitory potency of a
compound against IP3R. In the present dataset, the presence of the nitrogen and hydroxyl
groups complemented the presence of two hydrogen-bond donor contours in compounds
having IC50 in the range of 93 µM to 160 µM (moderately active). In the receptor-binding
site, the presence of two hydrogen-bond acceptors at a wider range was augmented by
the presence of side chains of Ser-278, Lys-507, and Lys-569 (Figure 9). Our ligand-based
pharmacophore model also substantiated the existence of two hydrogen-bond donor
groups at a distance of 6.97 Å that played an important role in defining the inhibitory
potency of a molecule against IP3R.

In the partial least square (PLS) correlogram (Figure 7), the N1-N1 contour was nega-
tively correlated with the activity of compounds, defining the presence of two hydrogen-
bond donor contours at a mutual distance of 9.2–9.8 Å in VRS. The compounds with the
least inhibition potential (IC50) values between 2000 and 20,000 µM had diverse scaffold
structures and one to four hydrogen-bond acceptor groups complementing the N1-N1
hotspot region (Figure 8G). However, none of the active compounds (0.0029–160 µM) in the
dataset showed the N1-N1 hotspot, mainly due to the absence of a second hydrogen-bond
acceptor group. Thus, the presence of two hydrogen-bond acceptor groups complementing
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the N1-N1 (hydrogen-bond donor) probe at a distance of 9.2–9.8 Å may reduce the IP3R
inhibition potential.

Taking into account the combined pharmacophore model and the GRIND, the pres-
ence of a hydrogen-bond acceptor (4.79 Å) and a hydrogen-bond donor (5.56 Å) group
mapped from a hydrophobic feature within the chemical scaffold of a compound may
be responsible for enhanced inhibitory potency against IP3R. Similarly, the presence of
a hydrogen-bond donor and hydrogen-bond acceptor groups at a distance of 7.6–8 Å
and 6.8–7.2 Å, respectively, mapped from a hydrophobic hotspot having a particular hy-
drophobic edge (Tip) in the virtual receptor site may be associated with the increase of the
biological activity of IP3R inhibitors. In the receptor-binding site, the α-amino nitrogen
group found in the side chain of Arg-510 and the polar amino acid residue Tyr-567 in
the binding pocket of IP3R facilitated the hydrogen-bond acceptor interactions (Figure 9).
Furthermore, Tyr-567 residue showed the hydrogen-bond donor and acceptor interactions
simultaneously, whereas Glu-511 may provide a proton from its carboxyl group in the
receptor-binding site and complement the hydrogen-bond donor contours. Moreover,
Arg-266, Tyr-567, and Ser-278 provided the hydrophobic interactions in the binding cavity
of IP3R. The Tip formed around the ring structure defined the hydrophobic nature of the
molecular boundary, as well as the receptor-binding site (Figure 9).

2.6. Validation of GRIND Model

The validation of the GRIND model was the most crucial step [80], including the
assessment of data quality and the mechanistic interpretability of model applicability, in
addition to statistical parameters [81,82]. The performance of the model can be checked
by various methods. Conventionally, the GRIND model was assessed by multiple linear
regression analysis R2 or Ra2 (the explained variance) with a threshold value greater than
0.5. However, statistical parameters of models are not always sufficient and acceptable to
analyze the model quality and predictive ability. Therefore, further validation techniques
are required to validate the developed model quality and optimal predictive ability. The
predictive potential of a model can be judged by both internal and external validation
methods. For internal validation, conventional methods include the calculation of correla-
tion coefficient (Q2), and for external validation, a predictive correlation coefficient (R2

-pred)
bearing a threshold of 0.5 [80].

The cross-validation (CV) method is considered a superior method [64,83] over ex-
ternal validation [84,85]. Therefore in this study, the reliability of the proposed GRIND
model was validated via cross-validation methods. The leave-one-out (LOO) method of
CV yielded a Q2 value of 0.61. However, after successive applications of FFD, the second
cycle improved the model quality to 0.70. Similarly, the leave-many-out (LMO) method
is a more correct one compared to the leave-one-out (LOO) method in CV, specifically
when the training dataset is considerably small (≤20 ligands) and the test dataset is not
available for external validation. The application of the LMO method on our QSAR model
produced statistically good enough results (Table S2), although internal and external vali-
dation results (if they exhibited a good correlation between observed and predicted data)
are considered satisfactory enough. However, Roy and coworkers [81–83] introduced an
alternative measure rm

2 (modified R2) for the selection of the best predictive model. The
rm

2 (Equation (1)) is applied to the test set and is based upon the observed and predicted
values to indicate the better external predictability of the proposed model.

rm
2=r2

(
1−
∣∣∣√r2−r02

∣∣∣) (1)

where r2 shows the correlation coefficient of observed values and r0
2 is the correlation

coefficient of predicted values with the zero intersection axes. The rm
2 values of the test set

were tabulated (Table S4). Good external predictability is considered for the values greater
than 0.5 [83].
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Moreover, the reliability of the proposed model was analyzed via applicability do-
main (AD) analysis by using the “applicability domain using standardization approach”
application developed by Roy and coworkers [84]. The response of a model (test set) was
defined by the characterization of the chemical structure space of the molecules present in
the training set. The estimation of uncertainty in predicting a molecule’s similarity (how
similar it is with the prediction) to construct a GRIND model is a critical step in the domain
of applicability analysis. The GRIND model is only acceptable when the prediction of the
model response falls within the AD range. Ideally, a normal distribution [85] pattern must
be followed by the descriptors of all compounds in the training set. Thus, according to
this rule (distribution), most of the population (99.7%) in the training and test data may
exhibit ≤±3 mean of standard deviation (SD) range in the AD. Any compound outside
the AD is considered an outlier. In our GRIND model, the SD mean was in the range
of ±1, while none of the compounds in the training set or test set was predicted as an
outlier (Tables S3 and S4). A detailed computation of the AD analysis is provided in the
supplementary file.

3. Discussion

Considering the indispensable role of Ca2+ signaling in cancer progression, different
studies identified the subtype-specific expression of IP3R remodeling in many cancers. The
significant remodeling and altered expression of IP3R were associated with a particular
cancer type in many cases [1,86]. However, in some cancer cell lines, the sensitivity of cancer
cells toward the disruption of Ca2+ signaling was evident, in such a way that, inhibition of
IP3R-mediated Ca2+ signaling may induce cell death instead of pro-survival autophagy
response [33,87]. Thus, the inhibition of IP3R-mediated Ca2+ signaling may represent one
of the promising cancer therapies. Even though IP3R channels were implicated in a variety
of human disorders, the structural basis for signal recognition and gating mechanism is not
well known. Despite the recent availability of structural details of IP3R [19,31,88], the exact
binding mechanism of antagonists within the IP3-binding core remains elusive. Therefore,
in this study, we hypothesized 3D-binding features of IP3R modulators by using combined
pharmacoinformatic approaches, including ligand-based pharmacophore modeling, virtual
screening, and grid-independent molecular descriptor (GRIND) models.

Our ligand-based pharmacophore model’s results emphasized the presence of a
hydrogen-bond acceptor separated from a hydrogen-bond donor group by a distance of
3.64 Å, facilitating the compound to interact more effectively against IP3R. Shorter distances
between both the hydrogen-bond features (hydrogen-bond acceptor and donor) may result
in more binding potential compared to the longer distance. This was further strength-
ened by our GRIND model, where a longer distance between the hydrogen-bond donor
and acceptor group at the virtual receptor site negatively correlated with the inhibiting
potency of IP3R. Our findings were in consistent with the previously proposed phosphorus–
phosphorus distances (4.3 Å), where phosphate groups (interacting as hydrogen-bond
acceptors and donors) at positions R4 and R5 of an AdA (adenophostin A) molecule bound
with the PH domain [89]. Our predicted distance varied slightly with the Bosanac et al.
findings for the similar pair of phosphate groups, i.e., 5.0 Å. Previously, this distance was
revealed to be significant in defining the binding potential of the modulators with IP3R [90].

It was also hypothesized from our results that the hydrogen-bond acceptor group
and a hydrogen-bond donor group mapped from a hydrophobic feature may enhance the
inhibitory potency of a compound against IP3R. The presence of a hydrophobic feature
within the chemical scaffold and at the virtual receptor site implicated its influential
role in determining the inhibition potential of the compound. Thus, it was tempting to
conclude that the most important feature in defining the inhibitory potency of a compound
against IP3R is the hydrophobic feature, as all other features were mapped from this
particular feature. Our GRIND model results further reinforced the importance of a
hydrophobic feature in the binding core of IP3R. Previously, in the α-domain of IP3R
(mouse), two highly conserved but relatively large surface areas were identified. These
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conserved areas encompassed a relatively high proportion of aromatic residues that might
serve as a hydrophobic interactive site of the receptor [73,90,91]. Moreover, structure-
based and site-directed mutagenesis studies demonstrated a key role of arginine and lysine
residues in IP3R’s binding core, where the Arg-266, Lys-508, and Arg-510 were considerably
more crucial in binding [72,92]. Furthermore, it was proposed that the ‘adenophostin A’
modulator interacted within the binding core of IP3R more effectively via hydrophobic
interactions [89,93,94]. Recently, hydrophobic and surface contacts of antagonists were
found with the Arg-266, Thr-268, Ser-278, Lys-507, and Tyr-569 backbone and side-chain
amino acid residues. However, Arg-266, Arg-510, and Ser-278 residues were found to be
involved in π–π interactions specifically [74].

Similarly, the hydrogen-bond acceptor group (HBA) present at a shorter distance from
a hydrophobic feature in the chemical scaffold may exhibit more potential for binding
activity compared to the one present at a wider distance. This was further confirmed by
our GRIND model by complementing the presence of a hydrogen-bond donor contour (N1)
at a distance of 7.6–8 Å from the hydrophobic contour. In the receptor-binding site, this was
compatible with the previous studies, where a conserved surface area with mostly positive
charged amino acids was found to play an important role in facilitating hydrogen-bond
interactions [90,95]. Also, the positive allosteric potential of the IP3R-binding core may
be due to the presence of multiple basic amino acid residues that facilitated the ionic and
hydrogen-bond (acceptor and donor) interactions [88]. Arginine residues (Arg-510, Arg-266,
and Arg-270) were predominantly present and broadly distributed throughout the IP3R-
binding core (Figure S12), providing α-amino nitrogen on their side chains and allowing
the ligand to interact via hydrogen-bond donor and acceptor interactions. This was further
strengthened by the binding pattern of IP3 where residues in β domain-mediated hydrogen-
bond interactions by anchoring the phosphate group at position R4 within the binding
core of IP3R [74,90,96]. In previous studies, an extensive hydrogen-bond network was
observed between the phosphate group at position R5 and Arg-266, Thr-267, Gly-268,
Arg-269, Arg-504, Lys-508, and Tyr-569 [74,96,97]. Furthermore, two hydrogen-bond donor
groups at a longer distance were correlated with the increased inhibitory potency (IC50)
of antagonists against IP3R. Our GRIND model’s outcomes agreed with the presence of
two hydrogen-bond acceptor contours at the virtual receptor site. In the receptor-binding
site, the presence of Thr-268, Ser-278, Glu-511, and Tyr-567 residues complemented the
hydrogen-bond acceptor properties (Figure S12).

In the GRIND model, the molecular descriptors were calculated in an alignment-
free manner, but they were 3D conformational dependent [98]. Docking methods are
widely accepted and less demanding computationally to screen large hypothetical chemical
libraries to identify new chemotypes that potentially bind to the active site of the receptor.
During binding-pose generation, different conformations and orientations of each ligand
were generated by the application of a search algorithm. Subsequently, the free energy
of each binding pose was estimated using an appropriate scoring function. However, a
conformation with RMSD < 2 Å may be generated for some proteins, but this may be
less than 40% of conformational search processes. Therefore, the bioactive poses were not
ranked up during the conformational search process [99]. In our dataset, a correlation
between the experimental inhibitory potency (IC50) and binding affinities was found to be
0.63 (Figure S14).

For the confident predictions and acceptability of QSAR models, one of the most
decisive steps is the use of validation strategies [100]. The Q2

LOO with a value slightly
higher than 0.5 is not considered a good indicative model, but a highly robust and predictive
model is considered to have values not less than 0.65 [83,86,87]. Similarly, the leave-
many-out (LMO) method is a more correct one compared to the leave-one-out (LOO)
method in cross validation (CV), specifically when the training dataset is considerably
small (≤20 ligands) and the test dataset is not available for external validation. Application
of the leave-Five-out (LFO) method on our QSAR model produced statistically well enough
results (Table S2). For a good predictive model, the difference between R2 and Q2 must



Int. J. Mol. Sci. 2021, 22, 12993 24 of 33

not exceed 0.3. For an indicative and highly robust model, the values of Q2
LOO and

Q2
LMO should be as similar or close to each other as possible and must not be distant

from the fitting value R2 [88]. In our validation methods, this difference was less than
0.3 (LOO = 0.2 and LFO = 0.11). Additionally, the reliability and predictive ability of
our GRIND model was validated by applicability domain analysis, where none of the
compound was identified as an outlier. Hence, based upon the cross-validation criteria
and AD analysis, it was tempting to conclude that our model was robust. However, the
presence of a limited number of molecules in the training dataset and the unavailability of
an external test set limited the indicative quality and predictability of the model.

Thus, based upon our study, we can conclude that a novel or highly potent antagonist
against IP3R must have a hydrophobic moiety (may be aromatic, benzene ring, aryl group)
at one end. There should be two hydrogen-bond donors and a hydrogen-bond acceptor
group within the chemical scaffold, distributed in such a way that the distance between the
hydrogen-bond acceptor and the donor group is shorter compared to the distance between
the two hydrogen-bond donor groups. Moreover, to obtain the maximum potential of the
compound, the hydrogen-bond acceptor may be separated from a hydrophobic moiety at a
shorter distance compared to the hydrogen-bond donor group.

4. Materials and Methods

A detailed overview of methodology has been illustrated in Figure 10.

Figure 10. Detailed workflow of the computational methodology adopted to probe the 3D features of
IP3R antagonists. The dataset of 40 ligands was selected to generate a database. A molecular docking
study was performed, and the top-docked poses having the best correlation (R2 > 0.5) between
binding energy and pIC50 were selected for pharmacophore modeling. Based upon pharmacophore
model, the ChemBridge database, National Cancer Institute (NCI) database, and ZINC database were
screened (virtual screening) by applying different filters (CYP and hERG, etc.) to shortlist potential
hits. Furthermore, a partial least square (PLS) model was generated based upon the best-docked
poses, and the model was validated by a test set. Then pharmacophoric features were mapped at the
virtual receptor site (VRS) of IP3R by using a GRIND model to extract common features essential for
IP3R inhibition.
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4.1. Ligand Dataset (Collection and Refinement)

A dataset of 23 known inhibitors competitive to the IP3-binding site of IP3R was
collected from the ChEMBL database [40]. Additionally, a dataset of 48 inhibitors of IP3R,
along with biological activity values, was collected from different publication
sources [45,46,101–105]. Initially, duplicates were removed, followed by the removal
of non-competitive ligands. To avoid any bias in the data, only those ligands having IC50
values calculated by fluorescence assay [106,107] were shortlisted. Figure S13 represents
the different data preprocessing steps. Overall, the selected dataset comprised 40 ligands.
The 3D structures of shortlisted ligands were constructed in MOE 2019.01 [66]. Further-
more, the stereochemistry of each stereoisomer was corrected and redrawn manually using
MarvinSketch 18.8 [108]. The protonation (with 80% solvent) was performed in MOE at
pH 7.4, followed by an energy minimization process using the MMFF94x force field [109].
Further, to build a GRIND model, the dataset was divided into a training set (80%) and test
set (20%) using a diverse subset selection method as described by Gillet et al. [110] and in
various other studies [111–115]. Briefly, 379 molecular descriptors (2D) available in MOE
2019.01 [66] were computed to calculate the molecular diversity of the dataset. To construct
the GRIND model, a training set of 33 compounds (80%) was selected while the remaining
compounds (20% data) were used as the test set to validate the GRIND model.

4.2. Molecular-Docking Simulations

The receptor protein, IP3R3(human) (PDB ID: 6DQJ) was prepared by protonating at
pH 7.4 with 80% solvent at 310 K temperature in the Molecular Operating Environment
(MOE) version 2019.01 [66]. The [6DQJ] receptor protein is a ligand-free protein in a pre-
activated state that requires IP3 ligand or Ca+2 for activation. This ready-to-bound structure
was considered for molecular-docking simulations. The energy minimization process with
the ‘cut of value’ of 8 was performed by using the AMBER10:EHT force field [116,117].
In molecular-docking simulations, the 40 compounds of the final selected dataset were
considered as a ligand dataset, and induced fit docking protocol [118] was used to dock
them within the binding pocket of IP3R3. Previously, the binding coordinates of IP3R were
defined via mutagenesis studies [72,119]. The amino acid residues in the active site of
the IP3R3 included Arg-266, Thr-267, Thr-268, Leu-269, and Arg-270 positioned at the α

domain and Arg-503, Glu-504, Arg-505, Leu-508, Arg-510, Glu-511, Tyr-567, and Lys-569
from the β-trefoil domain.

Briefly, for each ligand, 100 binding solutions were generated using the default place-
ment method Alpha Triangle and scoring function Alpha HB. To remove bias, the ligand
dataset was redocked by using different placement methods and combinations of differ-
ent scoring functions, such as London dG, Affinity dG, and Alpha HB provided in the
Molecular Operating Environment (MOE) version 2019.01 [66]. Based on different scoring
functions, the binding energies of the top 10 poses of each ligand were analyzed. The best
scores provided by the Alpha HB scoring function were considered (Table S5, docking pro-
tocol optimization is provided in supplementary Excel file). Further, the top-scored binding
pose of each ligand was correlated with the biological activity (pIC50) value (Figure S14).
The top-scored ligand poses that best correlated (R2 > 0.5) with their biological activity
(pIC50) were selected for further analysis.

4.3. Template Selection Criteria for Pharmacophore Modeling

Lipophilicity contributes to membrane permeability and the overall solubility of a
drug molecule [120]. A calculated log P (clogP) descriptor provided by Bio-Loom soft-
ware [121] was used for the estimation of molecular lipophilicity of each compound in
the dataset (Table 1, Figure 1). Generally, in the lead optimization process, increasing
lipophilicity may lead to an increase in in vitro biological activity but poor absorption and
low solubility in vivo [122]. Therein, normalization of the compound’s activity concerning
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lipophilicity was considered an important parameter to estimate the overall molecular
lipophilic efficiency (LipE) (Equation (2)) [123,124].

LipE = pIC50 − clogP (2)

Therefore, the LipE values of the present dataset were calculated using a Microsoft
Excel spreadsheet as described by Jabeen et al. [50]. From the dataset, a template molecule
based upon the active analog approach [55] was selected for pharmacophore model gen-
eration. Moreover, to evaluate drug-likeness, the activity/lipophilicity (LipE) parameter
ratio [125] was used to select the highly potent and efficient template molecule. Previ-
ously, different studies proposed an optimal range of clogP values between 2 and 3 in
combination with a LipE value greater than 5 for an average oral drug [48,49,51]. By this
criterion, the most potent compound having the highest inhibitory potency in the dataset
with optimal clogP and LipE values was selected to generate a pharmacophore model.

4.4. Pharmacophore Model Generation and Validation

To build a pharmacophore hypothesis to elucidate the 3D structural features of IP3R
modulators, a ligand-based pharmacophore model was generated using LigandScout
4.4.5 software [126,127]. For ligand-based pharmacophore modeling, the 500 structural
conformers of the template molecule were generated using an iCon setting [128] with
a 0.7 root mean square (RMS) threshold. Then, clustering of the generated conformers
was performed by using the radial distribution function (RDF) code algorithm [52] as a
similarity measure [129]. The conformation value was set as 10 and the similarity value
to 0.4, which is calculated by the average cluster distance calculation method [127]. To
identify pharmacophoric features present in the template molecule and screening dataset,
the Relative Pharmacophore Fit scoring function [54] was used. The Shared Feature option
was turned on to score the matching features present in each ligand of the screening dataset.
Excluded volumes from clustered ligands of the training set were generated, and the
feature tolerance scale factor was set to 1.0. Default values were used for other parameters,
and 10 pharmacophore models were generated for comparison and final selection of the
IP3R-binding hypothesis.

The model with the best ligand scout score was selected for further analysis. To
validate the pharmacophore model, the true positive (TPR) and true negative (TNR)
prediction rates were calculated by screening each model against the dataset’s docked
conformations. In LigandScout, the screening mode was set to ‘stop after first matching
conformation’, and the Omitted Features option of the pharmacophore model was switched
off. Additionally, pharmacophore-fit scores were calculated by the similarity index of
hit compounds with the model. Overall, the model quality was accessed by applying
Matthew’s correlation coefficient (MCC) to each model:

MCC =
TP ∗ TN− FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3)

The true positive rate (TPR) or sensitivity measure of each model was evaluated by
applying the following equation:

TPR =
TP

(TP + FN)
(4)

Further, the true negative rate (TNR) or specificity (SPC) of each model was calculated by:

TNR =
TN

(FP + TN)
(5)
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where true positives (TP) are active-predicted actives, and true negatives (TN) are inactive-
predicted inactives. False positives (FP) are inactives, but predicted by the model as actives,
while false negatives (FN) are actives predicted by the model as inactives.

4.5. Pharmacophore-Based Virtual Screening

To obtain new potential hits (antagonists) against IP3R, the ChemBridge database [60],
NCI (National Cancer Institute) database (release 4) [61,62], and ZINC database [63] were
virtually screened (VS) against the proposed final ligand-based pharmacophore model.
To curate the datasets obtained from databases, several filters (i.e., fragments, molecules
with MW < 200, and duplicate removal) were applied, and inconsistencies were removed.
Afterward, the curated datasets were processed against five CYP filters (CYP 1A2, 2C9,
2C19, 2D6, and 3A4) by using an online chemical modeling environment (OCHEM) to ob-
tain CYP non-inhibitors [65]. Furthermore for each CYP non-inhibitor, 1000 conformations
were generated stochastically in MOE 2019.01 [66], and using a hERG filter [70], the hERG
non-blockers were identified. Finally, the CYP non-inhibitors and hERG non-blockers
were screened against our final pharmacophore model. The hits (antagonists) were further
refined and shortlisted to identify compounds with exact feature matches.

Further, the prioritized hits (antagonists) were docked into an IP3R3-binding pocket us-
ing induced fit docking protocol [118] in MOE version 2019.01 [66]. The same protocol used
for the collected dataset of 40 ligands was used for docking new potential hits mentioned
earlier in the Methods and Materials section, Molecular Docking Simulations. The final
best docked poses were selected to compare the binding modes of newly identified hits
with the template molecule by using protein–ligand interaction profiling (PLIF) analysis.

4.6. Grid-Independent Molecular Descriptor (GRIND) Calculation

GRIND variables are alignment-free molecular descriptors that are highly dependent
upon 3D molecular conformations of the dataset [98,130]. To correlate the 3D structural
features of IP3R modulators with their respective biological activity values, different three-
dimensional molecular descriptors (GRIND) models were generated. Briefly, energy mini-
mized conformations, standard 3D conformations generated by CORINA software [131],
and induced fit docking (IFD) solutions were used as input to Pentacle software for the
development of the GRIND model. A brief methodology of conformation generation
protocol is provided in the supporting information.

GRIND descriptor computations were based upon the calculation of molecular in-
teraction fields (MIFs) [132,133] by using different probes. Four different types of probes
were used to calculate GRID-based fields as molecular interaction fields (MIFs), where Tip
defined steric hot spots with molecular shape and Dry was specified for the hydrophobic
contours. Additionally, hydrogen-bond interactions were represented by O and N1 probes,
representing sp2 carbonyl oxygen defining the hydrogen-bond acceptor and amide nitrogen
defining the hydrogen-bond donor probe, respectively [35]. Grid spacing was set as 0.5 Å
(default value) while calculating MIFs. Molecular interaction field (MIF) calculations were
performed by placing each probe at different GRID steps iteratively. Furthermore, total
interaction energy (Exyz) as a sum of Lennard–Jones potential energy (Elj), electrostatic
(Eel) potential interactions, and hydrogen-bond (Ehb) interactions was calculated at each
grid point as shown in Equation (6) [134,135]:

Exyz = ∑ Elj + ∑ Eel + ∑ Ehb (6)

The most significant MIFs calculated were selected by the AMANDA algorithm [136]
for the discretization step based upon the distance and the intensity value of each node
(ligand–protein complex) probe. Default energy cutoff values (−0.75, −0.5, −2.6, and −4.2
for Tip, Dry, O, and N1 probes, respectively) were used for the discretization of MIFs. The
consistently large auto and cross-correlation (CLACC) [137] algorithm was used to encode
the values of prefiltered (node–node) energy products into cross and auto correlogram
(auto (Tip-Tip, Dry-Dry, O-O, N1-N1) and cross (Tip-Dry, Tip-O, Tip-N1, Dry-O, Dry-N1,
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O-N1)) GRIND variables. The leave-one-out (LOO) [78] procedure of the partial least
square (PLS) analysis was used to correlate GRIND variables with the inhibitory potency
(pIC50) values of the training set. The quality of the PLS model was accessed by the value
of Q2’ and the standard deviation error of prediction (SDEP). To better understand how
robust the final GRIND models were, the models were validated internally by correlating
the GRIND variables with the inhibitory potency (pIC50) values of the test set. Furthermore,
a fractional factorial design (FFD) variable selection algorithm was applied [76] to remove
inconsistencies in GRIND variables and to improve the model statistics.

5. Conclusions

Despite the current therapies considering an optimal Ca2+ signaling role, pharmaco-
logical manipulation of IP3R-mediated Ca2+ signaling was proposed to improve antitumor
treatments. For this purpose, our study demonstrated the important pharmacophoric
features (a hydrogen-bond donor and acceptor group mapped from the hydrophobic group
at a distance of 4.79 Å and 5.56 Å, respectively) of IP3R antagonists that may contribute
to the effectiveness of the compounds in binding and inhibiting the IP3R-binding site.
Moreover, some potential hits were identified against IP3R via virtual screening (VS) that
may provide a solid basis for probing the IP3R inhibitors experimentally. Similarly, our
GRIND model revealed the importance of a hydrophobic region that may define a molec-
ular shape. The distances of complementary molecular features, such as hydrogen-bond
donor and hydrogen-bond acceptor groups, were computed from the hydrophobic region
at the virtual receptor site. The proposed 3D structural features of the IP3R virtual receptor
site complementary with the pharmacophoric features of antagonists may provide an
effective route for the synthesis of modulators in targeting the IP3R-binding site.
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