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Abstract: Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are
the major constraints in crop production. These abiotic stresses are likely to be amplified by climate
change with varying temporal and spatial dimensions across the globe. The knowledge about the
effects of abiotic stressors on major cereal and legume crops is essential for effective management in
unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily
diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to
abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive
investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into
the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic
stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits
associated with tolerance in plants, in addition to the molecular control of stress-responsive genes.
Some of these studies have paved the way for new opportunities to address the molecular basis of
stress responses in plants and identify novel traits and associated genes for the genetic improvement
of crop plants. The present review examines the responses of crops under abiotic stresses in terms of
changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops.
It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes
associated with stress tolerance.

Keywords: abiotic stress; drought; salinity; heat; tolerance mechanism; management

1. Introduction

Major abiotic stresses that are likely to be amplified by climate change and can destabi-
lize crop yields include drought, extreme temperatures, flooding, waterlogging, soil salinity,
acidity, mineral toxicity, and nutrient deficiency. Global climate change and environmen-
tal degradation are intensifying the severity of abiotic stresses that adversely affect the
growth, development, and productivity of crop plants. The increasing frequency of extreme
weather events due to climate change is expected to cause severe risks to sustainable crop
production for major cereal and leguminous crop species. Losses in production caused by
abiotic stresses may exceed 40% [1], and hence these stresses could be a constant threat to
global food security if not properly managed. The Food and Agricultural Organization
(FAO) has emphasized that about a 60% enhancement in food production is needed by
2050 to feed a population of about 9.3 billion. This must be achieved with no adverse
effects on the environment, which is threatened by the continuous exploitation of natural
resources and the loss of biodiversity. In order to ensure sustainability even under the
changing climate, it is essential to develop resilient cultivars of crops and suitable crop
production practices with insights on stress tolerance mechanisms and the associated traits.
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The climate resilience of agriculture depends on crop tolerance to multiple abiotic stresses
that cause considerable yield losses individually, as well as in combination. Abiotic stresses
negatively impact plant growth, development, reproduction, and ultimately crop produc-
tivity. Crops can tolerate certain environmental stresses through their innate adaptation
mechanisms, which are driven by various physiological and metabolic processes at the
cellular level and are manifested in the whole plant. However, the degree of tolerance and
adaptability to abiotic stresses may differ across species and cultivars of crops [2]. It is
necessary to understand the adaptive mechanisms of plants to identify traits associated
with tolerance to abiotic stresses. Several proteins and genes involved in abiotic stress
adaptation and mitigation have been integrated to develop varieties that are tolerant to
abiotic stresses [3–6]. The genetic engineering of crop plants with stress-responsive genes
has been demonstrated to enhance the adaptation to various abiotic stresses [1,7–9]. Much
of the gene identification efforts can be traced to model plants like Arabidopsis, and this
basic knowledge needs to be accelerated to make the crop plants resilient to abiotic stresses
in target growth environments. There is a need to explore those aspects of stress adaptation
that have not been effectively utilized or employed to improve key food grain crops.

Microbes that are associated with plants in natural habitats under diverse environ-
ments exhibit tremendous capabilities to cope with stresses caused by environmental
factors. Since plants must interact with microbes, microbes are believed to modulate plant
defense mechanisms to protect against adverse external conditions [10,11]. With better
insights into plants’ responses to environmental challenges such as drought, heat, and
salinity, improved management practices and tools can be applied to increase stable yields.
This review aims to update current knowledge about the impacts of key abiotic stresses
in major cereal and legume crops, the mechanisms of tolerance to various abiotic stresses,
and the opportunities to translate the knowledge for the development of climate-resilient
crop varieties and management practices.

2. Abiotic Stresses and Their Impacts on Grain Crops

Plants experience abiotic stresses when they are exposed to supra- or sub-optimal lev-
els of environmental factors such as temperature, soil moisture, and salts in the soil [12,13].
It is increasingly realized that climate change will lead to a decline in crop productiv-
ity, mainly by enhancing the frequency and intensity of abiotic stresses such as extreme
temperatures, droughts, salinity, and waterlogging. The ability of crops to cope with
these challenging situations is the crucial aspect of abiotic stress resilience and stable crop
productivity. Hence, genetic improvement has long been a target for crop scientists to
make crops more resilient to stresses. There is a need to accelerate the current efforts to
develop stress-tolerant genotypes, with a focus on the traits that contribute to the abiotic
stress tolerance and grain yield, which is conventionally preferred. This process would
be driven by our knowledge about plant mechanisms to survive and grow under the
constant changes and extreme environmental conditions at the whole plant, organ, tissue,
and cellular levels (Figure S1) [3,14–20].

2.1. Drought

Droughts are a major challenge faced by most food crops that are sensitive to a
soil moisture deficit. The impact of droughts on the final yield and various physiolog-
ical and biochemical processes of crops depends on its intensity, timing, and duration
(Tables 1 and 2). However, its impact is lessened in the cases of adopted and evolved crops
under the harsh conditions of semi-arid and arid regions [21]. Both the vegetative phase, as
evident from leaf growth, and the reproductive phase, as evident from floral development,
is severely affected due to soil moisture deficits [22,23]. The timing and duration of water
stress determines the impacts on developmental processes, as evident from changes in the
duration of flowering if stress is applied at the early stages of growth, and a reduction
in the grain filling duration if the stress occurs at early or terminal reproductive growth
stages [23,24]. Extreme drought conditions impair crop morphology, physiology, and
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duration, while the moisture content plays a vital role in germination as it affects the
enzyme activation that determines plant sensitivity during germination. The occurrence of
droughts when the grain filling rate is at its peak can accelerate the leaf senescence and
result in smaller grains [23,25]. There is a considerable tolerance range to drought stress
across the cereals and legume crops and their cultivars [26,27].

Table 1. Effects of drought stress on yield of different cereal and legume crops.

Crop Stress Description Yield Losses
(%) Reference

Wheat

~40% water deficit 20–25 [28,29]

No irrigation at reproductive and grain filling stages 30-32 [30]

The different deficit moisture level 25 [31]

Rice

Soils dried beyond −20 kPa 23 [32]

Withholding water at flowering (−30 ± 5 kPa) 23–24 [33]

Moderate to severe stress at flowering 51–60 [34]

Drought, water stress (~40% water deficit) >50 [29]

The different deficit moisture level 25 [31]

Maize

-40 and -80 kPa during flowering and grain filling, respectively 34–66 [35]

50% FC at tasselling stage 20 [36]

Progressive drought at vegetative stages 19–26
[37]

Progressive drought at reproductive stages 42–47

Different irrigation regimes 34–66 [35]

Drought with approximately 40% water reduction 39.3 [28]

Barley
Water stress (20% and 60% FC) during grain filling 50–60 [38]

Drought stress at the start of anthesis (Field capacities 30%) 42 [39]

Pearl millet Early drought stress from 3 weeks after germination for four weeks >50 [40]

Millets Rainfed conditions associated with terminal drought 53 [41]

Chickpea

Withholding water at reproductive stage 30–40 [42]

Withholding water at early podding 80–90 [43]

Under rainfed conditions with lifesaving irrigation 27 [44]

Beans Withholding water after 25 days 80 [45]

Pigeon pea Drought at flower initiation, soil moisture reduced from field
capacity of 16% to 5.6% 11–40 [46]

Soybean
Rainfed in comparison to fully irrigated 33 [47]

4 days of moisture stress during seed filling stage (R4–R6) 39–45 [48]

Black gram Irrigated to FC when the weight of each pot reached 50% of FC 23 [49]

Mung bean Withholding the irrigation at blooming stage to maturity stage and
seed filling stage 51–85 [49]
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Table 2. Physiological and biochemical responses of plants under drought stress.

Crop Stress Description Trait/Organ Affected/Impact Reference

Rice Soils dried beyond–20 kPa Yield loss~22.6 [32]

Wheat Drought, water stress
(~40% water deficit) Yield loss~25 [29]

Maize

5 days of drought stress at the V9 stage and
5 days after pollination stage by

maintaining 14.0–15.0% SWC

Reduced kernel size, reduced expression of
photosynthesis genes, and reduced yield [50]

Short-duration water deficits during the
rapid vegetative growth period 28–32% loss of final dry matter weight [51]

Sorghum Season-long drought stress Decreased harvest index, seed numbers, and
seed size [52]

Millets Irrigation with mannitol (200, 400, and 600
mM) for 21 days at an interval of three days

Decreased germination, RWC; chlorophyll
content increased root growth, proline, and

MDA content
[53]

Chickpea Drought, water stress for 3 weeks (40% of
FC) at vegetative and flowering

Decrease in relative chlorophyll content,
RWC; accumulation of H2O2

[54]

Pigeon pea 20 days at flowering and pod setting Flower drop and decreased flower to pod
conversion [46]

Black gram 40% of field capacity

Reduced plant growth, branches, pod
numbers, shoot and root dry weight, rate of
photosynthesis and transpiration, stomatal

conductance

[55]

Soybean Withholding irrigation at critical stages Reduced shoot biomass and seed yield, fewer
seed pods, and seeds [56]

Bean Withholding irrigation after 25 days in field
conditions

Reduced leaf area index, harvest index, pod
partitioning index [45]

2.2. High Temperatures

Projected increases in higher ambient temperatures worldwide are likely to drastically
reduce crop productivity [1,23,57]. The rise from the seasonal average temperature by 1 ◦C
was shown to reduce cereals’ grain yields by 4.1% to 10.0% [58]. High temperatures can
lead to a shorter crop life cycle and, hence, a reduction in cereals’ productivity [23,59–61].
In wheat, reductions in grain yield [23,62–64] and quality [65] have been reported. This is
mainly due to accelerated development [66], reduced photosynthesis [67], and the direct
impacts on reproductive processes [23,59]. Losses in grain yields due to high temper-
ature stress on selected cereal and legume crops are shown in Table 3. The tolerance
to high temperatures in rice is relatively higher at the early growth stage; however, the
crop is highly vulnerable to elevated temperatures at later stages, particularly at flower-
ing [59,68,69]. The high sensitivity of the reproductive stage has been reported even in
recently released cultivars of wheat [70]. Sensitive stages and temperature thresholds of
key cereals crops such as wheat [71], sorghum [23,72], and finger millet [73] are well quan-
tified. Similarly, the impact of high temperature stress on various physiological, growth,
reproductive fertility, and yield components are well documented for major cereals such as
rice [68,74], wheat [71,75,76], sorghum [77,78], and pearl millet [79]. Similarly, the impacts
on major legume crops are also well documented for crops such as the chickpea [80,81],
black gram [82], green gram [83], kidney bean [84], soybean [85], peanut [86–89], and
lentil [90,91]. The key effects of heat stress on selected crops are summarized in Table 3.
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Table 3. Effects of high temperature stress on different crop species.

Crop Temperature Growth Stage Effect Reference

Rice 40 ◦C Emergence Delay and decrease in the
emergence [92]

Wheat

45 ◦C
Reduced chlorophyll,

photosynthesis, protein
synthesis

[71,93–96]
30/25 ◦C, day/night

>32/22 ◦C, day/night

Green leaf area and productive
tillers/plant reduced

Decreased photosynthesis,
membrane damage, floret

fertility, seed numbers, seed size

Maize

35/27 ◦C in
day/night 14 days

before reproductive
to silking stage

Decreased cob weight, low sugar
content [97]

Sorghum 40/30 ◦C, day/night;
38/28 ◦C

Lipid peroxidation of chloroplast
and thylakoid membranes;

decreased floret fertility, grain
weight

[23,77,78,98–102]

Pearl millet >36/22 ◦C day/night Emergence to maturity
Booting to maturity

Decreased days to flowering,
seed yield, and seed size;

decreased pollen germination,
numbers of seeds per panicle,

and seed yield per panicle

[79]

Finger millet >36/22 ◦C day/night 10 d after emergence
through maturity

Decreased plant height, tillers,
seeds per fingers, and grain yield [73]

Chickpea Gradual 29/16 C to
40/25 ◦C Flowering

Lower pollen production, %
pollen germination, pod set, and

seed numbers
[103]

Black gram 40 ◦C Flowering and pod
setting Reduced yield [82]

Green gram 40 ◦C 60 days Reproductive Reduced yield [83]

Common bean

32/25 ◦C V4 until physiological
maturity

Increased photosynthesis,
conductance, and leaf area [104]

>28/18 ◦C Emergence to maturity

Decreased seed-set, seed number
per plant, seed number per pod,
seed yield, and total dry weight

per plant

[84]

Soybean 38/28◦C (day/night),
14 days

Lower photosynthesis, stomatal
conductance (gs), damaged

membranes (chloroplast,
thylakoids, mitochondria), and

increased leaf senescence

[85,105,106]

Peanut

>32/22 ◦C Flowering
Decreased fruit-set, pollen

production, pollen viability, and
pod numbers per plant

[86–88]

>32/22 ◦C Emergence through
maturity

Decreased pollen viability,
seed-set, seed number pod, seed

size, and harvest index
[89]

High temperatures affect photosynthesis and its components in rice [107], wheat [108],
maize [109], beans [110], and the chickpea [111]. On the other hand, an increase in res-
piration, rather than photosynthesis, was conspicuous in bean genotypes in response to
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elevated temperatures [112]. Heat stress differentially affects the stability of various pro-
teins, membranes, RNA species, and cytoskeleton structures, and it alters the efficiency of
enzymatic reactions in the cell [58,113]. Every plant’s growth stage is susceptible to heat
stress, but the reproductive stages are the most vulnerable. A slight increase in temperature
during flowering may lead to a loss of grain yield. The failure of grain formation and
development can be attributed to impaired pollen germination, pollen tube growth, and
reduced ovule viability, as well as anomalies in stigmatic and style positions, a reduced
number of pollen grains retained by the stigma, impaired fertilization processes, obstacles
in the growth of the endosperm, and unfertilized embryos or embryo abortions as reported
in rice [114], wheat [115], the chickpea [80] and other grain crops [59]. High temperatures
can change nutrient uptake patterns as seen in pearl millet, which can accumulate more N,
P, and K relative to unstressed plants, but the uptake of Ca2+, Mg2+, Na+, and S remains
unaffected [116].

2.3. Salinity

Salinity is a significant abiotic stress that restricts crop growth and productivity and is
characterized by an excessive concentration of soluble salts in the soil that suppresses plant
growth in many irrigated, arid, and semi-arid regions of the world [117]. The extent of the
salt injury depends on the crop species, cultivar, growth stage, any ecological factors, and
the nature of the salts in the soil. The physiological and biochemical responses of plants
under salinity stress are shown in Table 4.

An increase in the EC above 0.88 dS m−1 led to a decrease in rice grain yield [118].
The grain yield loss of wheat genotypes in response to salt stress was as high as 82% in
controlled environmental studies [119]. Salinity can adversely affect seed germination
in rice [120], wheat [121], maize [122], the faba beans [123], the chickpea [124], and the
mung bean [125,126]. This is due to the high osmotic potential outside the seed, inhibiting
the absorption of water, or due to the toxic effects of Na+ and Cl−. High Na+ concen-
trations prevent the absorption of K+ ions, which are highly essential for growth and
development [127].

The interference of salts with the nutritional homeostasis of plants increases ionic ratios
such as Na+/K+, Na+/Mg2+, Na+/Ca2+, Cl/H2PO4, and Cl−/NO−3, which adversely
affects plant cellular processes [128,129]. Crop species and cultivars widely vary in their
tolerance to salinity. For example, durum wheat is more sensitive to salt than bread wheat
at critical growth stages such as at germination and early growth [130]. These differential
responses of durum and bread wheat are due to differences in their ability to eliminate Na+

from the leaf and to discriminate between K+ and Na+. It is well-known that salinity affects
plant growth through low soil solution osmotic abilities and nutritional imbalances [131].
In cereals, it alters plant growth through ionic imbalances, oxidative alterations, metabolic
regulations, nutritional disorders, membrane disorganization, and low cell differentiation
rates in crops like rice [132], wheat [133], maize [116], and the chickpea [134].

2.4. Waterlogging

Waterlogging and submergence causes substantial yield losses in food grain crops.
Climate change scenarios predict increases in future incidences and intensities of floods,
especially in the tropics and subtropics [144]. Most dryland cereals such as maize, wheat,
and barley are sensitive to waterlogging, causing up to 20% yield losses in irrigated areas
and even more significant losses in rainfed ecosystems exceeding 40% [145]. Damage
estimated up to 100% may be caused by waterlogging stress, depending upon the crop,
the length of the waterlogging, and the stage of plant growth. Based on the height of the
water, the flood can be categorized as waterlogging when it is superficial and covers only
the root, or it can be categorized as submergence when the water completely covers the
aerial tissues of the plant [146].
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Table 4. Physiological and biochemical responses of plants under salinity stress.

Crop Salinity Level Effect Reference

Rice EC 10 dS/m Decreased root and shoot length [135]

Wheat 100 to 175 mM NaCl Reduction in spikelets per spike, delayed spike
emergence and reduced fertility [136]

Maize 1, 50, 100 mM NaCl
Stunted growth, reduced chlorophyll fluorescence,
and enhanced levels of reactive oxygen species and

1,4-benzoxazin-3-one aglycones (aBX)
[137]

Millet 100, 200, and 300 mM NaCl
Depression in germination percentage, shoot and

root growth rate, leaf relative water content,
chlorophyll content, leaf K+ concentration

[138]

Chickpea 0, 4, 6, and 8 dS m−1 Reduced dry matter accumulation in root and shoot [139]

Pigeon pea 0.5 to 4.3 dS m−1 Height, biomass, SSL, and RGR linearly decreased [140]

Black gram 150 and 225 mM of NaCl Reduction of leaf, shoot, and root biomass [141]

Green gram 50 mM and 75 mM NaCl
Reduction in plant height, total chlorophyll,

carotenoid contents, plant length, leaf area, rate of
photosynthesis, yield characteristics

[142]

Common bean 100 mM NaCl

More lipid peroxidation, electrolyte leakage, abscisic
acid (ABA); lower seed germination percentage,

seedling growth, cell membrane stability index, and
relative water content

[143]

Underwater plant cells that carry out photosynthesis do not readily exchange oxygen
and CO2. Therefore, flood-damaged plants have a lower rate of aerobic cellular respiration
than normal plants. Low CO2 concentrations in flooded leaves subsequently limit photo-
synthesis. Flooding leads to an energy crisis within the cells of plants [147]. Waterlogging
leads to hypoxic or anoxic conditions in the soil, in which the soil becomes devoid of
oxygen. The lack of oxygen for root respiration reduces the rate of root growth. Soil toxicity
prevents root development and encourages root decay.

The waterlogging reduces photosynthesis due to stomatal closure, as well as abscisic
acid (ABA), ethylene, and active oxygen species production. In addition, stomata closure
often restricts CO2 in plant cells and induces the accumulation of oxygen free radicals.
Plants under waterlogged conditions experience increased cellular damage from reactive
oxygen species [148].

3. Combined/Multiple Stresses

Plants are constantly exposed to various environmental stresses such as salinity,
drought, cold, and high temperatures. The impact of abiotic stresses on the grain yield
of cereals and legumes is shown in Table 5. These multiple and combined stresses can
vary in duration and intensity and can act simultaneously or sequentially. Earlier stress
interactions have a significantly higher negative impact on crop productivity than each of
the different stress components applied individually [149]. Drought and heat stress are
excellent examples of two distinct abiotic stress conditions in the field simultaneously. This
combination has a significantly greater detrimental effect on the growth and productivity
in crop plants as compared to stresses applied individually [150]. Negative interactions
have also been demonstrated in plants subjected to high intensity light and drought [151],
high intensity light and cold stress [152], and drought and high temperatures [153,154].

In comparison, relative to each of the stresses applied separately, certain stress combi-
nations may benefit plants. Examples include elevated CO2 levels, which are advantageous
when combined with other stresses such as salt or high light [155]. Salinity in combination
with heat stress in tomatoes enhances the protection against the damaging effects of salinity,
suggesting that the accumulation of osmoprotectants such as glycine betaine and trehalose
could play an important role in protecting plants against stress combinations. Combi-
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nations of drought and ozone could decrease the ozone intake in stomata by reducing
stomatal conductance because of drought stress [156].

Table 5. Impact of abiotic stresses on grain yield of cereals and legumes.

Stress Growth Stage Crop Details of Abiotic Stress Decrease in Yield (%) Reference

High
temperature

After heading Wheat >31 ◦C 16–25 [157]

Delayed sowing in the field
Minimum temp. 15–21 ◦C

Maximum temp.−31–36 ◦C
22 [158]

Heading Rice
Diurnal temp 24–32 ◦C
(control) 26–39 ◦C (high

temp.)
21–55 [159]

Tasseling stage Maize 28/20 ◦C (control) 38/30 ◦C
(high temp.) for 15 days 7–17 [36]

Emergence to maturity Sorghum 32/22 ◦C to 36/26 ◦C
32/22 ◦C to 40/30 ◦C

10
99 [160]

Booting to start of seed
filling Pearl millet 28/18 ◦C to 36/26 ◦C

28/18 ◦C to 40/30 ◦C
50
98 [79]

Emergence to Maturity Finger Millet 32/22 ◦C to 36/22 ◦C
32/22 ◦C to 38/28 ◦C

75
84 [73]

Emergency to
Maturity Chickpea

<32 ◦C/20 ◦C (control,
normal sown)

>32 ◦C/20 ◦C (high temp,
late sown)

19−56 [81]

Reproductive stage Lentil 38/23 ◦C 85–88 [161]

Reproductive stage Mung bean >40/25 ◦C 35–40 [83]

Emergence to Maturity Kidney Bean >28/18 ◦C to 40/30 ◦C 6.5% per 1 ◦C [84]

Flowering Peanut 36−44/26−34 ◦C 14−90 [89]

Salinity

Vegetative Mung bean 50 mM and 75 mM NaCl 41−75 [142]

Throughout crop
duration Wheat 0−200 mM NaCl 25−70 [162]

Throughout crop
duration Faba bean 0.7, 3.0, and 5.0 dS m−1 27−47 [163]

Throughout crop
duration Chickpea 0.7, 3.0, and 5.0 dS m 40−56 [163]

Rice 3.8 to 6.4 dS m−1 ~50 [164]

Seedling and
reproductive Rice 4 dS/m2 28.8 [165]

Waterlogging

Vegetative or
reproductive Wheat Early or late waterlogging

for 14 days 14−29 [166]

Vegetative or
reproductive Barley Early or late waterlogging

for 14 days 15−21 [166]

Vegetative Oats 0−35 days 79−83 [167]

Vegetative/heading Wheat Flooding 30.4−39.4 [168]

Vegetative or
reproductive Field pea Early or late waterlogging

for 14 days 94 [166]

Seedling (V3), jointing
(V6), and tasseling

(VT) stages
Maize

Waterlogging (3, 6, and 9
days) and subsurface

waterlogging (5, 10, and 15
days)

61.5−80.5 [169]
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4. Mechanisms Associated with Stress Tolerance

Plants are constantly under pressure from environmental stresses, and they tolerate
or resist stress by various adaption and acclimation mechanisms. Plants have evolved
complex physio-biochemical and molecular strategies to neutralize the effects of abiotic
stress [170,171]. The responses of plants to stress include changes in physiological pro-
cesses such as photosynthesis, changes in ion levels, changes in membrane fluidity, the
accumulation of osmolytes, the synthesis of secondary plant metabolites, phyto-chelation,
the activation of ROS scavenging machines, and more. Broadly, there are two groups of
stress-responsive genes which protect crop plants from abiotic stresses. One group includes
regulatory genes, and the other group includes biosynthetic and structural genes.

4.1. Adaptations to Drought Stress

Plants adapt to droughts by adjusting their phenology, morphology, and physiology at
the cellular and molecular levels. The drought-induced inhibition of growth as well as yield
reductions can be attributed to adverse effects on plant functions and processes, particularly
plant water uptake, water use efficiency, and the partitioning of biomass to grains.

4.1.1. Escape Mechanisms

Plants, including cereals and legumes, tend to escape droughts by curtailing the
crop growth duration or accelerating phenological phases, referred to as a flexibility in
phenology [172]. This feature has been utilized to develop short-duration drought-tolerant
crop cultivars (e.g., rice, wheat, sorghum, the pigeon pea, the peanut, the chickpea, and
the lentil). However, severe and prolonged droughts can reduce the grain yields of these
crops drastically. In plants that utilize escape mechanisms, seed or pollen germination
usually occurs before acute water shortage. However, plants with growth plasticity seem
to grow slower in the dry season with few flowers but have more fruits and seeds in the
normal season.

4.1.2. Dehydration Avoidance

The plant adjusts to droughts by lowering water loss and getting more water through
root uptake. Adaptive traits are used to set the background of a “low transpiration rate
in water-saving plants” and an “osmatic adjustment in water-spender plants” to prevent
dehydration [173,174].

Plants mostly rely on leaf relative water content, osmotic adjustments, and root
architecture to enhance the yield under drought stress [175]. Reducing the size of the
leaves can be regarded as a mechanism to minimize water loss by transpiration. It has been
documented that leaf shedding occurs from the oldest leaves to the youngest leaves during
sequential water shortages, and drought-tolerant genotypes have higher leaf-shedding
rates [176]. Closed stomata also suggest drought tolerance because in response to drought
stress, stomata are closed, and transpiration is decreased [177]. Water loss is significantly
influenced by the stomatal movement, stomatal density, and the resistance of plants to
transpiration. Remarkable variations in the stomatal functions of various plants during
droughts have been identified [178,179]. Adaptations to droughts can reduce the stomata
size or the number of stomata. These unique anatomical features were created to protect
the plant from harsh environmental conditions. Plants from arid and semi-arid habitats
show sunken stomata, protected by resinous layers, waxes, and detritus on the laminae
that sticks to stomata [180].

Drought-tolerant plants exhibit adaptive root properties, including long roots, high
densities of roots, and intense rooting systems [177,181,182]. Plants selectively produce and
extend their roots towards the wet part of the rhizosphere due to specific genes associated
with this process [183,184]. Denser roots can absorb greater amounts of water because
of the more extensive root system [185]. The gene responsible for root hair elongation
is associated with drought tolerance in maize [186], rice [187], wheat [188], and grain
legumes [5]. Drought tolerance is the plants’ ability to tolerate low tissue water content
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by adaptive traits, including preserving cell turgor by osmotic adjustment, preserving cell
elasticity, and improving protoplasmic resistance. The antioxidative system that operates
in response to abiotic stress can also contribute to dehydration tolerance.

4.1.3. Osmoregulation

The cellular dehydration of tissues occurs when plants are exposed to extreme temper-
atures, droughts, and salinity. The plant cell produces osmolytes such as sugars, proteins,
nucleic acids, and amino acids to protect from dehydration, as reported in wheat [189].
An osmotic adjustment is the process of solute accumulation mechanisms in plant cells
when the water potential is limited, which helps maintain the turgor. The accumulation
of osmotic substances is controlled by the intricate cellular processes involved in water
flux and osmotic adjustment during abiotic stress conditions [190]. Sugars are critical
biomolecules involved in various crucial physio-chemical mechanisms, from seed germi-
nation to senescence in cereals and grain legumes [191]. Sugars play diverse roles such
as osmolyte biosynthesis, as well as maintaining membrane integrity, growth, and dif-
ferentiation [192]. Proline is a compatible osmolyte that protects the cellular machinery
from oxidative damage and maintains the homeostasis of photosynthesis [193]. Amino
acid-derived compounds such as glycine betaine and polyamines also contribute to abiotic
stress tolerance in various plants, including rice [194,195]. The accumulation of these
osmolytes in the cytosol is an essential stress response to adjust the osmotic equilibrium in
the plants under abiotic stress [194].

4.1.4. Antioxidant System

Reactive oxygen species (ROS) such as singlet oxygen, hydrogen peroxide, superoxide,
and hydroxyl radicals are involved in various cellular functions [196,197]. ROS, which exist
at a low level under normal conditions, tend to increase when plants are exposed to stress.
At high levels, ROS are toxic to cells, while the same molecule at low concentrations can
function as a signal transducer that activates a local and systemic plant defense response
against stress [198]. Chloroplasts, peroxisomes, endoplasmic reticulum (ER), mitochondria,
and apoplasts after exposure to any stress may rapidly produce ROS, which are dangerous
to the plant if not mitigated or scavenged. Plant peroxisomes are considered as a factory
of ROS and a regulator of NO and H2O2 metabolism [199]. Rezayian et al. [200] reported
that NO stimulates the antioxidant system and osmotic adjustment in the soybean under
drought stress. Biswas [201] reported that ROS and reactive carbonyl species constituted a
feed-forward loop in auxin signaling and play an important role in lateral root formation.
Vanillic acid [202,203], selenium [102,204] and cerium [101] also play roles in antioxidative
defense mechanisms in plants.

The plant possesses antioxidant machinery with the enzymatic and non-enzymatic
components to mediate redox signaling and ROS homeostasis linked to acclimation re-
sponses to abiotic stressors. In response to stress, several antioxidative enzymes are pro-
duced by the plant. Superoxide dismutase (SOD), catalase (CAT), and peroxidases (POX)
are among the enzymatic components of antioxidant systems that regulate the homeostasis
of ROS within organisms, as reported in wheat [95,205], rice [206], sorghum [77,100,101],
pearl millet [79] and the chickpea [6]. The non-enzymatic antioxidants include compo-
nents such as ascorbic acids, α-tocopherol, flavonoid, glutathione, and carotenoids, which
efficiently alleviate oxidative damage by reducing ROS activity or by working together
with the enzymatic players to achieve efficient antioxidant activity via the utilization of
H2O2 [207–209]. The ascorbate–glutathione pathway comprises of AsA, GSH, and four
enzymes, viz. ascorbate peroxidase, monodehydroascorbate reductase, dehydroascor-
bate reductase, and glutathione reductase, which play vital roles in detoxifying ROS and
ultimately mitigate oxidative damage in plants under abiotic stress [210].

At the cellular level, singlet oxygen, superoxide, hydroxyl ion, and hydrogen peroxide
(H2O2) generation are typical heat stress incidents [211]. To defend against the damaging
effects of the over-production of ROS under heat stress, plants have evolved complex
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antioxidant enzymes and non-enzymatic antioxidants, as reported in many crops such as
wheat [61], the chickpea [212], and the pigeon pea [213]. The involvement of nitric oxide in
ROS generation has been associated with abiotic stress tolerance [214].

4.1.5. Phytohormones

Plant hormones play pivotal roles in controlling responses to several internal and
external stimuli. Abscisic acid (ABA) is the key hormone considered to regulate the
response of plants to abiotic stresses. Increased levels of endogenous ABA under drought
stress conditions have been reported in many plant species, which include grain crops like
sorghum [215], rice [216], barley [217], the soybean [218], and wheat [219]. The level of ABA
is also influenced by cold stress in wheat [220], heat stress in wheat [115,221,222], and salt
stress in maize [223]. ABA accumulates in stressed plants, interrupts their photosynthesis,
and stimulates stomata closure to reduce water loss through transpiration. The roles of
ABA in abiotic stress tolerance have been reported in a variety of plant species through its
exogenous application either as foliar spray or as a seed primer in different crops, including
cereals and legumes [224–226].

The exogenous application of ABA may also increase responses to droughts in
wheat [227,228]. ABA is considered to have a beneficial impact on stress resistance af-
ter exogenous applications or by overexpressing genes due to its increased endogenous
content in plants. ABA induces the expression of several genes whose products are essen-
tial for stress and tolerance reactions, such as osmo-protective synthesis enzymes [229].
Under drought conditions, ABA is synthesized in the roots and exported to shoots, as
well as causing stomatal closure. The exogenous applications of auxin [230] and ethy-
lene [231] are also effective in increasing abiotic stress tolerance; however, doses and
stages are species-specific. Seed priming with auxin [232] and GA [233] was found to
reduce the adverse effects of drought stress on yields, and was associated with improved
physiological functions.

Cytokinin (CK) postpones the premature senescence of leaves and death during
drought stress and promotes adaptive traits that help enhance grain yields. The increase in
endogenous levels of CK through the expression of the CK biosynthesis gene isopentenyl
transferase (IPT) delays cell senescence caused by droughts and improves crop yields [234].
In addition to controlling root growth and branching, CK inhibits the primary root growth
and branching under drought stress [235]. Jasmonic acid also plays a vital role in abiotic
stress tolerance, mainly in drought stress in plants [236].

4.2. Adaptations to High Temperature Stress

Plants adapt to high temperature stress through morphological and physiological
adjustments. Mechanisms may vary across the crop growth stages. Critical growth stages
such as anthesis and grain filling are highly sensitive to above optimum temperatures.
Some adaptation mechanisms to cope with high temperature stress includes canopy cooling
through transpiration, the involvement of heat shock proteins, various endogenous protec-
tants, the antioxidant system, and the regulation of the biological clock, as reported recently.

4.2.1. Transpirational Cooling

To cope with elevated ambient temperatures, plants transpire more water to maintain
the requisite optimum and cooler canopies for physiological function. The mechanisms of
transpirational cooling in response to high temperatures and its implications have been
comprehensively illustrated [212,237–246]. This is an avoidance mechanism that allows
the plant to function and maintain cooler canopies. However, this requires the availability
or access to soil water resources and irrigation.

4.2.2. Heat Shock Proteins

High temperature stress leads to the production of a group of proteins called heat
shock proteins (HSPs), or stress-induced proteins. Plants under stress tend to produce less
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normal proteins and up-regulate genes associated with HSPs [206]. About 20 HSPs have
been found in plants, and the diversification of these proteins reflects the adaptation or
tolerance to heat stress. The general function of HSPs is to serve as molecular chaperones
that control the folding and aggregation of proteins and the localization and degradation
of all plants. As chaperones, these proteins avoid the irreversible aggregation of other
proteins and engage in protein refolding under heat stress conditions [247]. The HSPs
protect cells from damage and make them easier to recover after returning to normal
growth conditions. Under high temperature stress, some high molecular weight HSPs,
such as HSP101, were recognized as the important proteins for high temperature responses
in crop plants like maize [248]. Low molecular weight HSPs, i.e., −18.1 and −17.9, were
reported to accumulate in the pea while it was treated for four hours at 42 ◦C. The changing
responses and expressions of the HSPs vary in different phases of development [206].
HSP90 also showed an increased expression under heat stress in rice and the soybean [249].
The involvement of HSPs have been reported in legume crops like the mung bean [250],
common bean [251], and in the pigeon pea [252]. The crops where HSPs were involved in a
high temperature response that was reported recently included rice [253], wheat [254], and
the chickpea [255].

4.2.3. The Role of Protectants

Exogenous applications of osmoprotectants, phytohormones, signalling molecules,
and trace elements have shown positive impacts on plants grown under heat stress, as
they have growth-promoting and antioxidant abilities. The heat tolerance in plants may
be increased by the exogenous application of osmoprotectants [256]. Several different
endogenous compounds have been found to be effective in moderating the intensity of
heat stress in plants. Tocopherol, a key lipid-soluble redox buffer, acts as a scavenger of
singlet oxygen species and other ROS and helps in mitigating heat stress in plants [257],
as reported in rice seedlings [258] and wheat [259]. Ascorbate also has the potential to
improve heat stress tolerance in maize [111,260]. The primary function of ascorbic acid
is to prevent ROS activity and the photoinactivation of PSII and thus prevent the entire
photosynthetic apparatus from damage [261]. Compounds like jasmonic acid can alleviate
high temperature-induced spikelet-opening impairment during anthesis by enhancing
antioxidant abilities and osmotic regulation as reported in wheat [262] and maize [263].

4.2.4. The Role of ROS and Antioxidants

At the cellular level, singlet oxygen, superoxide, OH, and hydrogen peroxide (H2O2)
generation and reactions are typical heat stress incidents [211]. The production of ROS
damages the membranes of several organelles and structures of cells, making them dysfunc-
tional. To defend against the damaging effects of the over-production of ROS under heat
stress, plants have evolved complex antioxidant enzymes and non-enzymatic antioxidants
as reported in wheat [61], sorghum [77,101,102], the soybean [85,105], the chickpea [212],
the pigeon pea [213], and the moth bean [264]. The involvement of nitric oxide in ROS
generation has been associated with abiotic stress tolerance [214]. Generally, there is a
balance of ROS production and antioxidants under normal conditions. However, under
stress conditions, the production of ROS is greater than the antioxidants, leading to the
accumulation of ROS, which damages various membranes and limits the functionality of
the cell.

4.2.5. The Biological Clock

The temporal effects of thermal stress during the plant’s life cycle and the diurnal
cycle are critical, and plants have mechanisms to sense peak periods of stress and exhibit
appropriate adaptive strategies. Recently, it has been reported that high temperature stress
can influence plants’ biological clocks, which affects genes associated with the plant’s time
sensing mechanisms [265]. Wu et al. [266] reported the association of PePIF3a, a positive
regulator in plants’ drought and salt stress responses, with circadian rhythms. The time of
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day of flowering or early morning flowering is a mechanism adopted by some crop species
or genotypes to escape heat stress. These crops and genotypes flower early and complete
the process of pollination and fertilization early in the morning or during the cooler times
of the day before the daytime higher temperatures are reached [59,68,96,114].

4.3. Adaptations to Salinity Stress

Unlike high temperatures and droughts, stresses caused by salinity are not periodic.
Plants must cope with the high level of salts in soil throughout their life cycle, though events
of precipitation may change the adverse impact of salts depending on soil characteristics.
Hence, plants have adaptive mechanisms for both osmotic stresses and the toxic effects of
excess ions.

4.3.1. Ion Transport and Homeostasis

Salinity contributes to two types of stress in plants. Osmotic stress occurs at the initial
stage due to less water in the soil and the increased cytosolic Na+ and chloride in the
matured leaves at later stages [267,268]. The maintenance of ion homeostasis by ion uptake
and compartmentalization is essential for growth during salt stress, and ion transporters
play a crucial role in this process in many crops [269], including rice [270], maize [271],
wheat [272] and the chickpea [273]. Excess salt in the plant is partitioned into the cell
vacuole or deposited in old tissues and is soon excreted from the plant to protect it from
salt-related stress. The superiority of bread wheat over durum wheat has been attributed
to the differential ability to sequester sodium in vacuoles in roots [274,275]. Under stressed
conditions, the survivability of the plant depends upon the activity of V-ATPase [276], as
shown in wheat [277] and barley [278].

The salt-sensitive species in crop plants, such as rice [279], cannot regulate Na+ trans-
port at high salinity levels, where ionic effects dominate the osmotic effects. Plant cells
need to maintain high K and low Na+ levels [280]. Thus, salinity stress tolerance requires
maintaining osmotic homeostasis and ionic homeostasis. In general, to survive under
high salinity conditions, the plant either adopts avoidance or tolerance mechanisms for
osmotic homeostasis and ionic homeostasis. The main adaptive tolerance mechanisms for
salinity stress involve successfully eliminating excess Na+ ions from the cytoplasm, and its
accumulation within the vacuoles [131]. A central mechanism controlling the tolerance of
plants to salt stress is the ion compartmentalization of different tissues and cells. Sequester-
ing more Na+ in the root and flag leaf sheath in tolerant wheat genotypes can maintain
lower Na+ concentrations with higher K+/Na+ ratios in photosynthetically active flag
leaves [281]. Excess salt triggers the cytosolic Ca2+ concentration, which activates the Ca2+

binding proteins and upregulates the Na+/H+ antiporter to remove Na+ [282]. Intracellular
Na+/H+ antiporters mediate the compartmentalisation of Na+ in cell vacuoles. The NHX is
an antiporter that regulates the cell pH and preserves the homeostasis of Na+/K+ in plants.
It also plays an important role in cell volume control which is needed for sequestering.

4.3.2. Compatible Solutes

Under salinity stress, plants can synthesize compatible solutes to ensure their survival.
These compounds include glycine betaines, amino acids, polyols, non-reducing sugars,
and polyamines [283]. Some amino acids such as cysteine, arginine, and methionine de-
crease in a salty environment while proline levels increase. The accumulation of proline
is a well-known process to relieve salinity stress. Intracellular proline not only provides
resilience to stress but also plays a crucial role in stress recovery. The modulation of the
proline metabolism for tolerance to salt and droughts has been reported [284]. It has been
documented that reduced forms of sugar, such as glucose and fructose, serve as osmo-
protectants under salinity stress. Glycine betaine allows for variations in promoting the
alteration of osmoticum by discriminating against Na+/K+, thereby preserving induction
and retaining membrane stability, which significantly reduces sensitivity to salinity [285].
Munns et al. [286] have comprehensively reviewed osmotic adjustment mechanisms and
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energy requirements for driving this process. Small molecules such as melatonin have been
reported to play a critical role in salt stress tolerance in plants [287,288].

4.4. Adaptations to Excess Submergence and Waterlogging

Plant partial/complete submergence and waterlogging restricts oxygen diffusion to
submerged tissues and inhibits aerobic respiration [289]. The decreased oxygen triggers
the cessation of the tricarboxylic acid cycle and oxidative phosphorylation. Consequently,
the primary source of ATP production shifts from the mitochondrial electron transport
chain (ETC) to ethanol fermentation. However, the efficiency of ATP production from
ethanol fermentation is lower than that of the ETC. Upon reaeration after a period of
oxygen deprivation, ethanol trapped in tissues will be converted to acetaldehyde, causing
post-anoxic cell injuries. Furthermore, the concentrations of potentially toxic compounds
increase in anoxic soils, and these can enter through roots, damaging both root and shoot
tissues. The ROS also accumulate excessively upon oxygen deprivation or re-oxygenation
under light conditions [290,291]. Antioxidant enzymes, including superoxide dismutase,
catalase, and various peroxidases can effectively reduce ROS activity. Other non-enzymatic
components of antioxidants such as ascorbate, glutathione, and β-carotene also play an
important role in removing toxic oxygen compounds [290]. Despite these complex sets of
detrimental effects posing challenges to the plant in flooded soils, some progress is being
made in developing flood-tolerant varieties of cereals, particularly in rice.

Plants have many defensive mechanisms to defend themselves against waterlogging
stress, such as forming airspaces (aerenchyma) in the root cortex, expanding the stem (hy-
pertrophy), forming adventitious roots near the soil surface, and root tip death [292]. Rice
has developed specialized anatomical and morphological traits such as aerenchyma, radial
oxygen loss barriers, adventitious roots, and the ability to form a leaf gas film to adapt
to excess water conditions. However, these strategies are insufficient for survival under
continuous and complete submergence, which leads to death due to oxygen starvation.
Some Asian rice varieties have further developed additional traits such as aerobic germina-
tion, the quiescence of leaf elongation in response to flash floods, and internode elongation
under periodic flooding to overcome prolonged submergence [293]. Plants can get their
leaves out of the water by growing the shoot above water. This ‘escape technique’ can be
accomplished by high growth in stems, as observed in rice [294]. The possibilities of the
modulation of the fermentative and sucrose metabolizing pathways under waterlogging
conditions and the genetic variations in these mechanisms have been reported [295].

5. Explored Mechanisms of Abiotic Stress Tolerance for Crop Improvement

In plants, abiotic stress tolerance is a complex trait involving many different metabolic
pathways and cellular and molecular components. Abiotic stresses commonly induce
various responses at the morphological, physiological, biochemical, and genomic levels.
For several decades, the plant research community has amassed a highly comprehensive
understanding of the physiological and biochemical mechanisms that facilitate productivity
maintenance in response to several abiotic stresses like droughts, flooding, heat stress, cold,
salinity, and heavy metals. Understanding the abiotic stress tolerance mechanisms laid the
foundation for the development of climate-resilient crop varieties [296]. The conventional
breeding approaches have randomly exploited these plant tolerance mechanisms with
limited success. Conventional breeding approaches are limited by the complexity of
stress tolerance traits and the lowered genetic variation exhibited by most crops due to
domestication bottlenecks. Furthermore, abiotic tolerance mechanisms in crop plants are
limited and have largely failed to bridge the gap between theoretical research and crop
breeding. Therefore, unraveling the genetic, epigenetic, transcriptomic, and metabolomic
bases of stress tolerance mechanisms/traits is crucial for breeding climate-resilient or
abiotic stress-tolerant crop varieties [297]. However, some success has been achieved in
understanding the crop tolerance mechanisms to abiotic stresses, and a few of them have
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been explored for crop improvement. Some of the explored mechanisms involved in
different methods of abiotic stress tolerance were compiled and presented in Table 6.

Table 6. Explored mechanisms involved in tolerance to different abiotic stresses.

Mechanism/Traits Genes/Proteins/Enzymes and Other
Molecules Involved Target Crop Abiotic

Stress Reference

Early flowering

Vernalization (Vrn), photoperiod (Ppd), and
earliness per se (Eps) genes; VRN1 and

Ppd-D1
Wheat Drought [298]

Mutant BW507 line (mutant allele Mat-c) Barley Drought [299]

Osmoprotection and osmotic adjustment

Sugars (glucose, fructose, fructans, and
trehalose) Rice Salinity [300]

Raffinose family oligosaccharides (RFO) Rice Cold and
Drought [301]

γ-aminobutyric acid (GABA) Wheat Salinity [302]

Lignin production (cell wall integrity) GmRD22 (regulates cell wall peroxidases and
hence strengthens cell wall integrity under

stress conditions)

Soybean and
rice

Salt and
osmotic
stresses

[303]

Scavenging of ROS: Antioxidant Regulation
Enzymatic antioxidants: Catalase and

pyrroline-carboxylate synthetase (P5CS), and
sustained activities of superoxide dismutase

(SOD) and ascorbate peroxidase (APX)

Chickpea Salinity [292]

Non-enzymatic antioxidant compounds:
Helicase proteins (e.g., DESD-box helicase

and OsSUV3 dual helicase), Ascorbate,
Glutathione

Rice
Pea Salinity [304–306]

Flash flood tolerance SUB1A-1 encoding AP2/ERF (ethylene
response factors), family transcription factor Rice Flood [307,308]

Anaerobic germination OsTPP7 encoding Trehalose-6-phosphate
Phosphatase Rice Flood [309]

Internode elongation under submergence
SK1 (SNORKEL1), SK2 encoding, AP2/ERF

family
transcription factor

Rice Flood [294]

Internode elongation under submergence SD1 (OsGA20ox2) encoding, Gibberellin
20-oxidase Rice Flood [310]

Leaf hydrophobicity and gas films are
conferred by a wax synthesis gene (LGF1);

formation of gas films necessary for gas
exchange and underwater photosynthesis

Leaf Gas Film 1
(LGF1) Rice Flood [311]

Traits: Dormancy/quiescence during
submergence; reduced elongation growth

and carbohydrate consumption during
submergence

SUB1 Rice Flood [308]

Underwater photosynthesis: Leaf gas films to
facilitate gas exchange; supply of

carbohydrates to roots for survival,
regeneration, and growth

LGF1/OsHSD1 Rice Flood [311,312]

Chlorophyll retention under submergence:
Blocking ethylene responsiveness;

scavenging reactive oxygen species (ROS) to
protect chlorophyll and other cellular

membranes

SUB1 Rice Flood [313]

Chlorophyll retention under submergence:
Scavenging reactive oxygen species (ROS) to

protect chlorophyll and other cellular
membranes

Several scavengers induced during
submergence Rice Flood [313,314]
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Table 6. Cont.

Mechanism/Traits Genes/Proteins/Enzymes and Other
Molecules Involved Target Crop Abiotic

Stress Reference

A barrier to radial oxygen loss (ROL):
Minimize oxygen losses in the basal portion
of the roots and maximize its delivery to the

root apex;
minimize uptake of toxins generated in

anoxic soils

Rice Flood [315,316]

Ion Homeostasis: The excess salt is either
transported to the vacuole or sequestered in
older tissues which eventually are sacrificed,

thereby protecting the plant from salinity
stress

SOS1, SOS2, and SOS3 proteins involved in
Salt Overly Sensitive (SOS) signaling

pathway; SOS1-regulating Na+ efflux at the
cellular level. It also facilitates long-distance

transport of Na+ from root to shoot.
SOS2 encodes a serine/threonine kinase, and
is activated by salt stress elicited Ca+ signals.
SOS3 is a myristoylated Ca+ binding protein

Wheat Salinity [317]

HKT (histidine kinase transporter) located on
the plasma membrane and

intracellular/tonoplast-localized NHX-
encoding K+ transporters

Rice Salinity [318,319]

Polyamines (PA)*: Protect cells from
stress-induced damages, membrane integrity,

regulation of gene expression for the
synthesis of osmotically active solutes,

reduction in ROS production, and controlling
the accumulation of Na+ and Cl− ions in

different organs.
* PA is a small, low molecular weight,

ubiquitous, polycationic aliphatic molecule
that is widely distributed throughout the

plant kingdom.

Diamine putrescine (PUT), triamine
spermidine (SPD), and tetra-amine spermine

(SPM)

Wheat, barley
rice Salinity [320,321]

Nitric Oxide: Triggers expression of many
redox-regulated genes, preventing lipid

oxidation, scavenging superoxide radicals,
and formation of peroxynitrite that can be

neutralized by other cellular processes;
activation of antioxidant enzymes

Sodium nitroprusside
(SNP), a NO donor Maize Salinity [322]

Hormone Regulation

ABA: The accumulation of ABA can mitigate
the inhibitory effect of salinity on

photosynthesis, growth, and translocation of
assimilates; ABA is involved in the
expression of several salt and water

deficit-responsive genes including HVP1 and
HVP10 genes, TIP 1 and GLP 1 genes, NCP1

and ZmPIF3 proteins

Rice
Wheat
Barley
Maize

Salinity and
drought [205,323–326]

Compounds that have hormonal properties
such as salicylic acid (SA), jasmonates, and

brassinosteroids (BR)

Rice
Wheat

Legumes

Salinity and
drought [327–329]

5.1. Early Flowering

Early flowering or maturity (EF/EM) is the most critical phenological trait/mechanism
exploited by breeders for the development of short-duration varieties which can escape
abiotic stresses, particularly droughts and heat stress. Early flowering and seed set before
an upcoming drought event are important in legumes [330] and cereals [298]. This trait is
controlled by three groups of genes, vernalization (Vrn), photoperiod (Ppd), and earliness
per se (Eps), and the genetics of these traits have been studied extensively, particularly in ce-
reals [331–334]. Shavrukov et al. [298] gave an insight into the early flowering mechanisms
and discussed drought escape, with wheat as a target crop. Several studies reported that
the crops with EF/EM traits could produce higher and more stable yields under drought
conditions [331,335,336]. Furthermore, this is also supported by reports of more seeds
under water limitations of EF/EM in pearl millet and sorghum [336,337]. Four cultivars of
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the chickpea and seven mutant mung bean lines flowered 2–4 weeks earlier than traditional
cultivars and parental forms, respectively, displaying an enhanced seed yield [336].

Matyszczak et al. [299] identified two near-isogenic lines, BW507 and BW508, in barley
which were reported to carry two independent early-flowering mutant loci, mat-b.7, and
mat-c.19, respectively. They mapped the mutation in BW507 to a 31 Mbp interval on
chromosome 2HL and concluded that BW507 has a deletion of Mat-c, which is an ortholog
of Antirrhinum majus CENTRORADIALIS (AmCEN) and Arabidopsis thaliana TERMINAL
FLOWER1 (AtTFL1) and is a key gene in regulating early flowering. There is evidence that
evolution can favor EF/EM traits in native populations of plants even without the pressure
of oncoming drought stress [298]. Zonneveld et al. [338] concluded that during evolution,
Vigna taxa more easily acquired phenological traits for a short life cycle to escape droughts
and heat stresses compared with acquiring physiological traits.

5.2. Root System Architecture

Variations in root system architecture can be explored for the development of climate-
resilient and abiotic stress-tolerant crops by improving water and nutrient use efficiency [339].
The primary root elongation rate and ABA accumulation under different water conditions
have been studied in 12 maize inbred lines to assess the relationship between root growth
and hormonal conditions [340]. Histograms of primary root elongation responses to the
varying water deficits suggest multiple mechanisms may be responsible for the response
to water stress observed in different maize lines [340]. A recent study on wheat revealed
wide variability in root system architecture and shoot traits at the seedling stage in an
association panel [341]. The root diameter and the distribution of the metaxylem vessels
contribute to drought tolerance in legumes [342].

Phule et al. [343] observed that the formation of fewer aerenchyma, thickened roots,
and larger xylem areas were critical anatomical traits associated with aerobic adaptation
compared to anaerobic conditions. The photosynthetic rate was significantly higher in
the rice cultivar CR Dhan 202 than BPT 5204 under aerobic conditions. The morpho-
physiological results showed that the root length, total dry weight, and the photosynthetic
rate are the key parameters for aerobic adaptation. These root anatomical and morpho-
physiological traits associated with the adaptation can be used as screening criteria for the
phenotyping and selection of genotypes suitable for the aerobic cultivation system. This
information on morpho-physiological traits is expected to expedite the development of
aerobic rice varieties in aerobic breeding programs.

Polania et al. [344] identified seven standard bean lines (SEA 15, NCB 280, SCR 16,
SMC 141, BFS 29, BFS 67, and SER 119) that showed greater root vigor under drought stress
in the greenhouse, and higher values of grain yields during drought stress under field
conditions. Such water use-efficient plant ideotypes (water-spender ideotypes represented
deeper root systems, while the-water saver ideotypes showed a relatively shallower root
system) could serve as parents for improving drought tolerance in the common bean.

5.3. The Role of Chloroplasts in Plant Abiotic Stress Responses

Photosynthesis in higher plants is sensitive to various abiotic stresses. The photosys-
tem II (PSII) is the most sensitive to desiccation. Its sensitivity could be strongly associ-
ated with the desiccation severity [345]. Chloroplasts are semiautonomous intracellular
organelles central to photosynthesis and are essential for plant growth and yields. The sig-
nificance of the function of chloroplast-related genes in response to climate change has not
been well studied in crops. The metabolites synthesized in chloroplasts protect plants from
abiotic and biotic stresses, including heat, cold, drought, salt, light, and pathogens [346,347].
Through meta-expression analyses under abiotic stress conditions, Yoo et al. [348] identified
264 cold or heat stress-responsive plastid-related genes in rice. Furthermore, the functional
characterization of plastid-related genes emphasized the significance of genes for crosstalk
between chloroplast development and heat stress. They concluded that chloroplast-related
genes affected the abiotic stress response mainly through the high temperature response,
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with little effect on responses to droughts and salinity stress. Furthermore, they predicted
a protein to protein interaction network analysis associated with high temperature stress
which is expected to provide the basis for studying molecular mechanisms by which chloro-
plasts will respond to different abiotic stresses under changing climatic scenarios. Khurana
et al. [349] characterized the chloroplast localized wheat membrane protein (TaRCI) and its
role in heat, drought, and salinity stress tolerance. This membrane protein (TaRCI) could be
a potential candidate for gene manipulation for improving stress tolerance in crop plants
in general, and wheat crops in particular.

5.4. Deficit and Excess Water Stress Tolerance

In recent years, the use of root system architecture for the improvement of stress
tolerance in crop cultivars has gained attention. The discovery of the deep root 1 (Dro1)
gene [187] has been utilized for improving drought tolerance [303]. Similar strategies with
homologs of deep root genes are being explored for other cereals such as wheat [350]. The
utility of Dro1 homologs in the improvement of salt tolerance in rice has been demon-
strated [351].

The physiological and molecular responses of rice to flooding have been extensively
studied [315], providing evidence for several traits associated with submergence tolerance.
The most progress was the discovery and deployment of the SUBMERGENCE 1 (SUB1)
locus in rice, conferring tolerance to complete inundation (submergence) [308,352]. SUB1A
was identified and cloned from a submergence-tolerant cultivar, i.e., FR13A, and it had
been developed through selection from farmers’ variety “Dhallaputia” grown in Odisha
(India). SUB1A is the dominant gene(s), and fine mapping of this gene on chromosome
9 has been completed. A marker-assisted backcross breeding approach is now being
successfully exploited for the development of high-yielding submergence-tolerant rice
cultivars. Under mild stress (5–6 days submergence), plant mortality in rice is generally
very low, yet extensive leaf damage occurs. However, the damage is almost nil in cultivars
with SUB1 QTL genes due to the maintenance of higher activities of antioxidant enzymes.
Prolonged water stagnation decreases the grain yield in cultivars with SUB1 (Swarna-Sub1)
compared to those without SUB1 (e.g., Swarna). Sarkar et al. [353] suggested that Swarna-
Sub1 is suitable for flash flood conditions. They also concluded that the maintenance
of chloroplast integrity could be a better option for predicting the plant survival under
submergence. Some researchers believe that the ideal combination for an adaptation to
complete flooding is submergence tolerance (survival underwater) together with some
elongating abilities [353].

The geographical distribution of these accessions harboring SUB1A-1 suggests that
SUB1A-1 from wild species might have introgressed around the Ganges Basin and sub-
sequently spread to other areas of South Asia [354]. By contrast, SUB1A-1 is absent in
submergence-tolerant accessions of wild rice with the CC genome (O. rhizomatic and O.
eichingeri) and the CCDD genome (O. grandiglumis) [355,356], suggesting the presence of a
SUB1A-independent mechanism in these rice species. Future elucidation of the SUB1A-
independent mechanism may contribute to the future breeding of cultivated rice with
strong flash flood tolerance.

A recent significant discovery of the cloning of the Leaf Gas Film 1 (LGF1), a wax
synthesis gene involved in the leaf hydrophobicity and formation of the gas films necessary
for gas exchange and underwater photosynthesis, is another important step towards
developing flood-tolerant varieties [311]. There is evidence that cuticular wax accumulation
is associated with drought tolerance in wheat [232], maize [357], and beans [358]. The
dynamics of wax accumulation in leaves of wheat have been recently elucidated [359]. The
discovery of LGF1 briefly gave insights into the potential shoot and root traits that can
improve submergence tolerance in rice. Kuroha and Ashikari [293] reviewed and discussed
the recent progress in understanding the various molecular mechanisms and genetic factors
regulating flooding tolerance in rice.
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6. Unexplored Mechanisms and Genes Modulating Abiotic Stress Tolerance

An in-depth understanding of stress sensing, signal transduction, and the generation
of the stress response are required to develop resilience to multiple abiotic stresses in
grain crops, including major cereals and legumes. Uncoupling the molecular processes
associated with stress tolerance is crucial for generating climate-resilient crops. It is crucial
to differentiate the plant responses observed under a particular environmental stress factor
and responses observed under a combination of stresses for developing climate-resilient
crops [360]. Hence, there is an urgent need to include stress combinations while studying
the plant responses to abiotic stress, employing molecular genetics, molecular breeding,
or molecular physiology. Another challenging task is to link the biological processes
at different scales [360]. The crops in silicon initiatives, wherein multi-scale models try
to generate new concepts, prioritize bioengineering efforts in plant research [361]. The
challenge is to build developmental models that fit well with the biological traits of the crop
species and explain the plant responses to changes in the environment [360]. Multi-level
models incorporating data from genetic, epigenetic, and transcriptional studies, along
with data regarding splicing and post-transcriptional regulation, are likely to provide new
insights into plant molecular responses under abiotic stresses [362]. The integration of
machine learning algorithms with transcriptomic data and high-throughput phenotypic
data is now essential to accelerate gene discovery processes, including genome annotation
and gene regulatory network predictions [363].

Several traits associated with multiple abiotic stress tolerances are encoded by genes
that were lost during cultivation. Large numbers of genetic resources of crops with diverse
genetic variations are available; hence, there is ample scope to recover traits associated with
resilience to abiotic stresses. Advances in genomics, molecular genetics, and phenomics,
coupled with new methods for capturing genomic regions associated with abiotic stress
tolerance, could be promising for attaining climate resilience in cereals and legume crops.
The pyramiding of genes into a single background is now a viable strategy. Assembling
appropriate gene combinations in elite varieties is a challenging task. Addressing the
yield loss due to abiotic stress requires innovative technologies like genome editing and
epigenetic modification. Combining genetic resources and transformative technologies
from genome editing to synthetic biology could be helpful strategies to identify traits
associated with tolerance to a multitude of abiotic stresses. Some novel opportunities are
discussed in this section.

6.1. ABA Receptors

ABA is a master controller of transpiration and regulates ion channels and the expres-
sion of genes associated with abiotic stress tolerance in plants. ABA interacts synergistically
or antagonistically with salicylic acid, jasmonic acid, and ethylene to regulate responses.
The plasma membrane-localized G protein-coupled receptor (GPCR) and type G proteins
(GTGs) [364] were considered ABA receptors. However, their targeted roles in signaling
pathways and conservation in grain crop species remain characterized. The genetic ma-
nipulation of ABA signaling can be useful. The ABA signaling components, comprising
of the ABAR–ABA–PP2C complex and SnRK2s, control ABA-mediated stomatal closure
via ion transportation in guard cells, and there are transcriptional regulations required
to develop stress responses. Further studies need to be carried out to illustrate the ABA
signaling pathway components and effector genes. The PYL-ABAR gene family members
differ in their tissue-specific responses, stress-responsive expressions, dimerization, and
binding capacities to ABA. Hence, the physiological relevance of different combinations of
ABAR–ABA–PP2C needs to be elucidated.

6.2. Engineering Orthogonal Receptors

An orthogonal receptor is an engineered receptor that can bind specifically to a
synthetic ligand, which cannot interact with the natural receptor. The orthogonal receptor
is not activated by the basal level of the endogenous ligand. The orthogonal receptor



Int. J. Mol. Sci. 2021, 22, 12970 20 of 36

is helpful since they get activated by synthetic ligands at low concentrations, while the
natural receptors require relatively higher doses of synthetic ligands for activation. The
orthogonal receptor can be used to design crops for resilience to multiple abiotic stresses,
where synthetic agonists or antagonists can be used to induce a specific physiological
process such as metabolite production and tolerance to abiotic stress [365]. These studies
may be crucial to engineer and use orthogonal receptors for enhancing stress tolerance.

6.3. Novel Transcription Factors

Plants have evolved sophisticated stress response strategies and harbor genes that
encode transcription factors (TFs) to regulate the expression of stress-responsive genes. TFs
could be candidates for enhancing resilience to multiple abiotic stresses. Recently, the TF
modulation and overexpression approaches have been employed in crop plants; however,
the diversity of TFs largely remains unexplored. TF families such as NAC, MYB, WRKY,
bZIP, and ERF/DREB have been successfully characterized for their roles in eliciting abiotic
stress responses. About 10% of genes encode TFs, which play an important role during
different stages of the plant life cycle for a specific function [366]. Therefore, elucidating
the mechanisms of the actions of TFs is crucial to explore the mechanism associated with
plants’ responses to various abiotic stresses. There is the potential to engineer crops with
TFs to enhance their tolerance to many stresses and characterize TFs for their role in stress
tolerance in plants [367].

Advanced technologies like chromatin immunoprecipitation with massively parallel
sequencing (CHIP-Seq) and next-generation sequencing (NGS) could be beneficial for
genomic region identification for deciphering the role of TFs. The CRISPR/Cas (Clustered
Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein) gene-editing
tool can be used to modulate TFs. In addition, the functional redundancy of TFs needs to be
addressed. Although previous analyses of TF overexpression in response to a specific stress
have been very informative, studies are required to investigate whether the overexpression
of stress-related TFs in transgenic plants enhances stress tolerance and growth without any
yield penalty. Further studies are required to understand the mechanisms of the action of
several TFs and their role in enhancing stress tolerance in food grain crops.

7. The Metabolic Control of Resilience to Abiotic Stress

The molecular breeding and molecular genetics for the genetic enhancement of plants
for yield stability under adverse environmental conditions could potentially capture the
effective resilience to abiotic stress. Plants generally reduce vegetative growth and ac-
celerate reproductive development under stress. The genetic variations and underlying
mechanisms that enable drought-resilient plants to conserve soil moisture and delay the
accumulation of biomass until grain filling largely remains unclear. Higher yields under
well-watered conditions and under a moderate drought at the time of flowering were
achieved in corn that expresses a metabolic enzyme that converts trehalose-6-phosphate
(T6P) to trehalose in the phloem companion cells at the base of the ear and in developing
florets [368]. The modulation of T6P facilitates the photosynthate’s mobilization to the
unfertilized floret and prolongs the photosynthetic activity of leaves during grain filling.
Thus, novel genetic variations and genetic enhancements can achieve the integration of
the metabolism and stress resilience to improve crops for yield stability under adverse
environmental conditions.

8. Engineering Plants for Biomass Production under Abiotic Stress Conditions

Recent advances in molecular genetics and genomics have enabled the identification of
a complex signaling network associated with plant growth and development. Many genes
have been identified and characterized for their role in abiotic stress tolerance, employing
genomics and molecular genetics. However, efforts should be made to unravel the crosstalk
between the transcriptional circuitries for biomass production and abiotic stress responses.
This knowledge could serve as a valuable resource to eventually custom design the crop
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plants for higher biomass production with less water use in a more sustainable manner
under adverse environmental conditions.

The adaptation of plants to various abiotic stresses is a coordinated response involving
many genes and their interactions with various environmental factors during the entire
life span of crop plants [369,370]. Accordingly, a thorough understanding of the molecular
responses in plants is crucial for improvements in plant biomass or yields. Advances in
molecular genetics, genomics, tissue-specific or developmental stage-specific gene expres-
sion, and gene pyramiding can be promising in enhancing the photosynthetic efficiency in
plants, contributing to a higher biomass.

Plant cell wall polymers form a significant component of plant biomass. The composi-
tion and amount of these polymers in the cell wall change with the developmental stage of
plants and in response to stress conditions [371]. There is a need to delineate the genes as-
sociated with the biosynthesis of different cell wall components. In addition, manipulating
endogenous plant hormones will further widen the scope of improving stress tolerance and
biomass production. Integrating the key regulatory genes and transcriptional regulations
of secondary cell wall biosynthesis through the cascade of activators and repressors could
be crucial for designing crop plants with enhanced an biomass under stress conditions.

9. Future Perspectives and Conclusions

The challenge of improving abiotic stress tolerance in crops must be addressed with
an understanding of the underlying complexities and with care taken to avoid grain yield
penalties resulting from the introgression of relevant traits. A feasible approach to ad-
dressing this challenge should include the grain yield and the traits specific to targeted
agro-ecologies. Although the possibility of improving stress tolerance has been success-
fully demonstrated through transgenic approaches, breeding varieties tolerant to abiotic
stress is difficult. This has been attributed to the underlying complex mechanisms that
influence the relevant traits and associated genes, which often act in coordination. There
is ample scope for integrating different omics strategies to increase plant stress tolerance
substantially, as marker-assisted selections by employing stress-related genes and QTLs
are becoming more routine activities in the crop breeding program. Advanced tools such
as CRISPR/Cas techniques for the modification of genes are becoming more relevant for
the genetic improvement of abiotic stress tolerance in plants.

Recent advances in omics approaches, including genomics, proteomics, and phe-
nomics have provided new opportunities for understanding abiotic stress responses in
plants at a different scale, from the cell level to the whole plant level. Designs for stress-
tolerant crops can be substantially improved with the additional insights into the mech-
anisms of stress tolerance in plants obtained through deep sequencing technologies and
other omics approaches, such as metabolomics (Figure S2). Information emerging from
epigenetics can be useful in understanding the mechanisms of the stress-memory of plants.
Advances in molecular breeding methods can accelerate the use of functional molecular
markers in marker-assisted selection. In addition, genomic tools can assist in understanding
the gene networks associated with plant stress.

The existing knowledge gaps that are hindering the application of omics for abiotic
stress tolerance in crop plants must be bridged through a system biology approach. Tools
and methods for high throughput phenotyping must be optimized for the identification of
relevant genes and their utilization in breeding different crops. This is likely to be aided by
the emerging tools for extensive data analyses, which employs machine learning algorithms.
Conventional approaches to crop production are now being complemented by remote
sensing tools that are integrated for crop stress monitoring. Advances in imaging and
sensor technologies, high throughput phenotyping, and remote sensing tools can enable
rapid field-scale estimations of plant health and plant stress susceptibility or tolerance,
guiding crop management decisions under an abiotic stress environment. The systematic
evaluation of extensive germplasm collections to identify tolerant genes and genotypes,
and the development of targeted breeding programs to enhance abiotic stress tolerance
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using traditional and novel methods, are both essential for increasing the yield and stress
tolerance of food grain crops.
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