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Abstract: In silico protein–ligand binding prediction is an ongoing area of research in computational
chemistry and machine learning based drug discovery, as an accurate predictive model could
greatly reduce the time and resources necessary for the detection and prioritization of possible
drug candidates. Proteochemometric modeling (PCM) attempts to create an accurate model of the
protein–ligand interaction space by combining explicit protein and ligand descriptors. This requires
the creation of information-rich, uniform and computer interpretable representations of proteins
and ligands. Previous studies in PCM modeling rely on pre-defined, handcrafted feature extraction
methods, and many methods use protein descriptors that require alignment or are otherwise specific
to a particular group of related proteins. However, recent advances in representation learning have
shown that unsupervised machine learning can be used to generate embeddings that outperform
complex, human-engineered representations. Several different embedding methods for proteins
and molecules have been developed based on various language-modeling methods. Here, we
demonstrate the utility of these unsupervised representations and compare three protein embeddings
and two compound embeddings in a fair manner. We evaluate performance on various splits of a
benchmark dataset, as well as on an internal dataset of protein–ligand binding activities and find
that unsupervised-learned representations significantly outperform handcrafted representations.

Keywords: unsupervised representation learning; computational biology; protein–ligand binding
prediction

1. Introduction

A main goal of cheminformatics in the area of drug discovery is to model the interac-
tion of small molecules with proteins in silico. The ability to accurately predict the binding
affinity of a ligand towards a biological target without the need to conduct costly and
time-consuming in vitro experiments has the potential to accelerate drug development
processes by enabling early prioritization of promising drug candidates [1]. A common
approach is to train a machine learning algorithm to predict the binding affinity of lig-
ands towards a certain biological target by using a training set of compounds that have
been experimentally measured on this target. This modality is commonly referred to as a
quantitative structure–activity–relationship (QSAR) model and uses the similarities and
differences between molecules, represented in various ways, in order to learn patterns
about their properties [2].

QSAR models can be broadly classified into two types: single-task QSAR models and
multi-task QSAR models (Figure 1). In single-task QSAR modeling, a model is trained
separately for each protein to predict a binary or continuous outcome (binding vs. not-
binding or the binding affinity) given a compound input. The machine learning model used
could be anything from simple linear models to tree-based and random forest methods to
deep neural networks [3,4]. In multi-task modeling, a single model is trained to predict
binding across multiple proteins simultaneously, allowing the model to take advantage
of the correlations in binding activity between compounds on different targets [5,6]. This
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is performed, for example, by using a neural network with multiple output nodes where
each output node corresponds to a different protein. Thus, multiple outputs are predicted
given a compound input [7,8].
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Figure 1. Comparison of single-task, multi-task and proteochemometric modeling strategies for protein–ligand binding
prediction.

While these methods have been employed on various protein targets and are par-
ticularly useful when total data are limited to only a few targets, there are two major
methodological limitations to their use [9,10]. Both single-task and multi-task models must
be retrained from scratch if one wishes to incorporate binding data for a new protein, and
they cannot be used to make predictions on new protein targets for which experimental
data are absent [2].

An attractive solution to this problem is to also include protein information to the
input in a so-called proteochemometric (PCM) model (Figure 1). The additional protein
information enables a PCM model to directly utilize similarities between proteins for
bioactivity modeling [1,2]. With an expressive protein descriptor, a model could leverage
similarities and differences between proteins directly to model their binding behaviors
rather than merely using correlations found among the compounds they bind to, as in multi-
task modeling, or ignoring protein relationships altogether as in single-task modeling [1,2].
Consequently, PCM models have found success in a variety of protein targets and using
many different machine learning methods, including random forests (RF) and support
vector machines (SVM) [11–15].

Recent advances in the field of deep learning have also resulted in its use in QSAR
single and multi-task modeling as well as PCM modeling [3,16–18]. Lenselink et al. [3]
compared deep learning methods against other machine learning methods for PCM, single-
task QSAR and multi-task QSAR models on a benchmark dataset, and the authors found
that PCM models using deep neural networks outperformed other machine learning
methods as well as single-task and multi-task QSAR models.

All of the aforementioned studies utilize features for both small molecules and proteins
based on hand-crafted feature extraction protocols. For small molecules, the most widely
used method of representation is chemical fingerprints based on substructure presence
or substructure counts [2,19,20]. As the number of potential substructures is vast, usually
generated procedurally to approximately ∼232 substructures, the resulting sparse set of
bits is usually hashed and folded to a much smaller size (∼103) at the expense of hash
and bit collisions [20]. These structure-based descriptors can also be augmented with
physicochemical descriptors [21,22].

Meanwhile, the most commonly used handcrafted protein descriptors are computed
by amino-acid based or sequence-based methods. For amino-acid based descriptors,
physicochemical structure [13,23,24] and (or) 3D-properties [25,26]—or the first principle
components of a set of these properties—are aggregated over the entire sequence. Sequence-
based descriptors usually involve one-hot encoding of mutated sequence positions found
by aligning sequences or by encoding the presence of motifs and sequence patterns [27,28].
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In many application domains of deep learning, recent research has shown that these
methods generally work better when the input data representation is of a lower level
and unabstracted, allowing the model to learn hierarchical features directly rather than
relying on features that are hand-crafted by humans [17,18]. For example, this is the case
in computer vision, where deep learning on pixel value features has been the state of the
art for several years [18]. In cases where the input space is too high-dimensional and
especially if there are not enough labeled data to train a model end-to-end, unsupervised
representation learning is used to generate lower-dimensional representations, known
as “embeddings,” because they “embed” a data point into a lower-dimensional space.
These embedding methods also rely on machine learning, rather than human engineering,
for feature extraction. These techniques are used in a variety of machine learning tasks,
including natural language processing, as well as video analysis [29–31].

In this study, we follow this reasoning and utilize unsupervised and self-supervised-
learned embeddings to represent both ligand and protein spaces for proteochemometric
modeling. We hypothesize that proteochemometric modeling might benefit from such
embeddings, since the number of labeled data points, i.e., measured ligand-target binding
affinities, are scarce, but the number of unlabeled data points, i.e., molecular structures and
protein sequences, are vast.

We compare the performances of two compound embeddings and three protein em-
beddings, described further in the following section, on a benchmark dataset. We also
compare performance to a No-Interaction-Terms model, which does not allow information
flow between protein and compound input representation, in order to analyze the proper-
ties of these embeddings in a PCM model. Finally, we train and test models using these
unsupervised descriptors on a large internal protein–ligand activity dataset.

2. Methods

In the following section, we will discuss the compound and protein embeddings
tested in our experiments, describe the datasets and types of train-valid-test splits utilized,
provide details on the deep learning models trained and explain the metrics used to
evaluate performance.

2.1. Embeddings

For compound embeddings, we use the Continuous and Data Driven Descriptors
(CDDD), developed by Winter et al. [32], and MolBert (Molecule-BERT), developed by
Fabian et al. [33]. CDDD and MolBert descriptors offer unique, compact and continuous vec-
tor representations for each compound, as opposed to fingerprints, which are non-unique,
discrete and must be hashed to be made compact. Molecules with the same substructures
but that are differently arranged will correspond to different vectors. CDDD uses a recur-
rent autoencoder trained on the reconstruction task, while MolBERT uses a Transformer
architecture trained on three self-supervised tasks. These unsupervised-learned descriptors
have demonstrated competitive or superior results compared to molecular fingerprints on a
variety of other tasks, indicating their ability to effectively represent compound properties
and behaviors [32,33].

For protein embeddings, we use embeddings generated by UniRep [34], SeqVec [35]
and the Evolutionary Scale Model (ESM) [36], which are language models trained on protein
sequences in an unsupervised manner. Similarly to compound embeddings, these protein
embeddings offer unique, compact and continuous vector representations of proteins.
These methods all train language models on UniRef 50, a very large and non-redundant
corpus of protein sequences, but differ in key implementation details. UniRep learns 256-
length embeddings by averaging over the hidden states of a multiplicative LSTM model (a
variant of the LSTM, abbreviated mLSTM) [37] that are produced as the model predicts the
next amino acid of a sequence [34]. SeqVec takes a similar approach but uses a larger and
deeper model—an adapted version of the ELMo language model—which contains stacked
convolutional and recurrent layers [35]. The 1024-length embedding is generated after
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summing across the layers and averaging across sequences. The ESM, on the other hand,
uses a very large Transformer model [38] and trains on the masked language model task,
thus using self-attention to learn dependencies between masked sequence positions and the
rest of the (unmasked) sequence. ESM is by far the largest model of the three, containing
650 M parameters and 33 attention layers [36]. A summary of both the compound and
protein descriptors, including the number of parameters used and the size of the vector
representations, can be found in Table 1.

Table 1. Marginal performance (average of all models containing this descriptor on this task) and additional information for
different descriptors.

Marginal Performance Model Info

Random MCC LCCO MCC LPO MCC Repr Size # Params Type

CDDD 0.610 0.483 0.309 512 26 M GRU-Autoencoder
MolBert 0.630 0.497 0.306 768 85 M Transformer

UniRep 0.649 0.498 0.306 256 1.8 M m-LSTM
SeqVec 0.591 0.481 0.317 1024 93 M Stacked LSTM
ESM 0.629 0.492 0.296 1280 650 M Transformer

Abbreviations: See Table 2. Random MCC: MCC on Random Split; LCCO MCC: MCC on LCCO Split; LPO MCC: MCC on LPO Split; Repr
Size: Representation Size; Params: Number of model parameters; GRU: Gated-Recurrent-Unit Model [39]; LSTM: Long-and-Short-Term
Memory Network [40]. Bold indicates statistically significant performance improvement by wilcoxon signed-rank test over data splits.

Table 2. Results on test set for model with different descriptor combinations on benchmark ChEMBL dataset. Best results
are denoted in bold. Standard deviations of metrics are shown in parentheses. Raw results for each split can be found in
Supplementary Tables S1–S3.

Random LCCO LPO

MCC BedROC MCC BedROC MCC BedROC

CDDD + UniRep 0.645 (0.004) 0.979 (0.002) 0.490 (0.061) 0.941 (0.017) 0.307 (0.031) 0.847 (0.038)
CDDD + SeqVec 0.575 (0.079) 0.967 (0.012) 0.475 (0.060) 0.930 (0.021) 0.322(0.028) 0.851 (0.041)
CDDD + ESM 0.609 (0.014) 0.974 (0.003) 0.484 (0.054) 0.930 (0.023) 0.297 (0.093) 0.834 (0.093)
MolBert + UniRep 0.654 (0.005) 0.980 (0.002) 0.505 (0.053) 0.943 (0.018) 0.312 (0.024) 0.847 (0.040)
MolBert + SeqVec 0.607 (0.030) 0.973 (0.007) 0.487 (0.062) 0.938 (0.017) 0.311 (0.035) 0.842 (0.049)
MolBert + ESM 0.630 (0.009) 0.977 (0.002) 0.499 (0.053) 0.937 (0.022) 0.294 (0.118) 0.832 (0.090)
Handcrafted 0.337 (0.003) 0.819 (0.007) 0.276 (0.024) 0.753 (0.058) 0.132 (0.051) 0.655 (0.061)

Abbreviations: CDDD: Continuous and Data Driven Descriptors; UniRep: [34]; SeqVec: [35]; ESM: [36]; MolBert: [33]; MCC: Matthews
Correlation Coefficient; BedROC: Boltmann-Enhanced ROC; Random: Random Split; LCCO: Leave-Compound-Cluster-Out; LPO: Leave-
Protein-Out. Bold indicates statistically significant performance improvement by wilcoxon signed-rank test over data splits.

All the descriptors discussed have been shown to be useful for many different protein-
related prediction tasks, including secondary structure and contact prediction, as well
as remote homology detection. However, to the best of our knowledge, this is the first
study that utilizes these unsupervised-learned protein and compound embeddings for the
purpose of training a protein–ligand binding prediction model.

2.2. Dataset and Evaluation

We evaluate the performance of different descriptors on a large-scale benchmark
PCM dataset created in Lenselink et al. [3], which contains 310 k compound–protein
bioactivity measurements exclusively taken from the highest-confidence bioactivity assay
data in ChEMBL, a database of drug-like bioactive molecules maintained by the European
Molecular Biology Laboratory (EMBL). The dataset comprises 1226 unique human proteins
from a range of protein families and 190 k unique compounds. In the following, we shall
refer to this dataset as “ChEMBL.” Additionally, we report results on a large internal
dataset of protein–ligand binding activities, containing 500 k unique compounds and 1 k
unique proteins. This dataset shall be referred to as “Internal” in the following sections.
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In order to evaluate performance of the representations, we use three different types
of hold-out-sets. On the ChEMBL dataset, we use random leave-compound-cluster-out
and leave-protein-out splits, while on Internal, we used only leave-compound-cluster-out
splits. Below, we will describe the difference between these splits generally. Details on how
these splits were implemented can be found in Appendix A.

Random splits randomly divide bioactivity measurements into train, valid and test
sets. A drawback of the random split is that it can assign bioactivity measurements from
the same experimental assay into the training and test sets. Since a single assay can involve
similar, congeneric compounds, it is likely that there will be compounds in the training
set that are highly similar to compounds in the test set and measured on the same protein.
This split can, thus, report over-optimistic results [3].

Leave-compound-cluster-out (LCCO) splits directly address the issue of compound
similarity between training and test sets. For these splits, compounds are divided into
several clusters based on a pairwise distance metric. Then, one cluster is held out as a test
set, while the remaining clusters are used for training and validation; this process can be
repeated for each cluster to perform multi-fold cross-validation over the entire dataset.
Since the test set explicitly contains chemical matter that is, according to the distance metric,
distinct from the training set, a model’s performance on this split is a better proxy for its
ability to generalize to unseen regions of the compound space compared to random splits.

Leave-protein-out (LPO) splits instead test the ability of the model to generalize to
new proteins. This is very challenging, as while the model can show hundreds of thousands
of unique compounds, it can only be shown thousands of unique proteins with currently
available datasets. Nevertheless, this is a problem mode that single-task and multi-task
models cannot operate on by construction; therefore, it is interesting to test if the PCM
models can learn to generalize to new proteins in this manner.

2.3. Development of Models

In order to make a fair comparison between the different descriptor combinations,
we aimed to use a “neutral” model and hyperparameter settings. Based on previous
work [3,41], we knew that a simple feedforward neural network would be well suited for
this task. For model architecture, we used a modified version of our DeepPCM network [41],
which is a feedforward neural network containing 6 M parameters in total across 3 layers.
For implementation details, refer to Appendix B.

For all of our experiments, we also used a standard hyperparameter setup that is
similar to the setup used in [3]. We use an Adam optimizer with default learning rate
and parameters [42], learning rate halving upon validation performance plateau and early
stopping after ten epochs without improvement.

We did not tune the model architecture or hyperparameters on any dataset because
we are more interested in the relative performance of these descriptors rather than absolute
maximal performance.

In addition, we use a No-Interaction-Terms model as a baseline to compare against
the “full” PCM model. The No-Interaction-Terms model keeps compound and protein
channels separate throughout the network and makes the final model prediction by taking
the average of the separate predictions made from compound and protein information—
otherwise, it has an identical architecture as the “full” PCM model. We can investigate
the difference between this model, which can at best only recover compound and protein
bias in the dataset, and the full model, which is potentially able to model the specific
bio-chemical interaction between the protein and the ligand. A diagram is available in
Appendix B.

2.4. Model Quality Evaluation Metrics

The descriptors are compared by using the Matthews Correlation Coefficient (MCC)
and Boltzmann-Enhanced ROC (BEDROC) [3]. The MCC score represents overall model
quality and is especially useful for measuring performance on unbalanced datasets. The
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BEDROC score is a metric that represents the effectiveness of the model for compound
prioritization; since only a small subset of in silico screened compounds often can be tested
experimentally, a useful model will rank active compounds very highly [43]. The BEDROC
score represents this by weighting the ROC results such that 80% of the BEDROC score
comes from the top 8% of predicted actives. Thus, it is analogous to an ROC-50 score.

3. Results and Discussion

On random and leave-compound-cluster-out splits on ChEMBL, the models that use
unsupervised-learned descriptors perform well, particularly attaining MCCs of around
0.5 and BedROCs of around 0.94 on the leave-compound-cluster-out split. In concrete
terms, by examining the MolBert and UniRep-based model, for example, on the leave-
compound-cluster-out split, we observed on average a 25% overlap between the top 10%
highest activity compounds and top 10% highest predicted activity compounds for each
protein (ignoring proteins with fewer than 100 total tested compounds, for which such
metrics would not be meaningful).

Our results are consistent with our hypothesis that the descriptors generated via
unsupervised representation learning are more powerful than handcrafted protein and
compound descriptors. Across all splits and models, unsupervised descriptors outper-
form handcrafted ones to a statistically significant degree. Additionally, on the random
and leave-compound-cluster-out splits on ChEMBL, we observed that models that use
MolBert to represent molecules significantly outperformed models that use the CDDD,
highlighting the power of Transformer models for extracting meaningful representations
of compounds. Similarly, on those splits, models using UniRep significantly outperformed
models using ESM or SeqVec protein descriptors (Table 2). For full results on these splits,
see Supplementary Tables S1–S3.

Performance on Internal, on which the leave-compound-cluster-out split was applied,
improves relative to the performance on ChEMBL, which is expected as the model now
has more data to learn from. Additionally, the finding that MolBert + UniRep is a good
descriptor combination to use for the protein–ligand binding prediction task is replicated,
as we find that this combination significantly outperforms all other combinations, except
for MolBert + ESM (Table 3).

Table 3. Results on a test set for model with different descriptor combinations on LCCO split of large
Internal bioactivity dataset. Best results are denoted in bold. Standard deviation of metrics are shown
in parentheses.

MCC BedROC

CDDD + UniRep 0.633 (0.021) 0.931 (0.023)
CDDD + SeqVec 0.626 (0.016) 0.922 (0.022)
CDDD + ESM 0.634 (0.023) 0.927 (0.022)
MolBert + UniRep 0.645 (0.013) 0.936 (0.018)
MolBert + SeqVec 0.639 (0.012) 0.928 (0.021)
MolBert + ESM 0.646 (0.021) 0.932 (0.021)

Abbreviations: see Table 2

The small but significant improvement of using UniRep relative to SeqVec and ESM
is surprising, especially because SeqVec and UniRep are both trained on the same next-
character-prediction task and on the same protein corpus (Table 1). We hypothesize that
UniRep performs better on this task because it encodes a much more compact features
space (256-length vs. 1024 or 768-length) and/or because the mLSTM architecture used by
UniRep requires less pooling operations to arrive at the final protein-level representation.
SeqVec must pool both over LSTM hidden layers and the sequence dimension of the protein,
and ESM must pool over many attention outputs and the sequence dimension, but UniRep
only has a mLSTM layer to pool over.
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On the leave-protein-out split, although the unsupervised-learned descriptors perform
significantly better than the handcrafted descriptors, the overall performance is much worse
compared to the random or leave-compound-cluster-out splits. There are many reasons
why this may be the case—our dataset may simply contain insufficient proteins for protein-
space generalization to be possible, or the protein descriptors might struggle in capturing
some of the relevant information for binding, since they are trained on sequences and
not on 3D-structure or binding site information. Additionally, the leave-protein-out split
is more difficult because it requires the model to generalize both unseen proteins and
new compound clusters. Compounds tested on a given protein are often specific to that
protein, and so splitting by holding out all compound–protein activities for a given protein
inadvertently can also hold out compound clusters. We can detect this by observing the
average distance of each test-set compound to the nearest compound in the training set, as
measured by cosine distance between MolBert representations. On the random split, the
average distance from each test set compound to its nearest compound in the training set
is 0.026; on the leave-compound-cluster-out split, it is 0.14; and for the leave-protein-out
split, it is 0.085. Thus, the leave-protein-out split is made even more difficult because it is
also indirectly testing compound-cluster generalization.

Furthermore, we compare the performance of the model on all splits with the perfor-
mance of the No-Interaction-Terms model (Table 4). For full results, see Supplementary
Tables S4–S6. The No-Interaction-Terms model performs significantly worse than the
full model on all splits. This is consistent with our expectation that the full model is
able to make predictions based on specific protein–ligand interaction information and
is not merely collapsing to predict the protein or compound’s independent propensity
for binding on the dataset, which is what the No-Interaction-Terms model is restricted
to learning. By comparing performance improvement when using the full model versus
the No-Interaction-Terms model between splits, we find that the full model improves
performance over the No-Interaction-Terms model by, on average, 10% on the random split
(p = 3.1 ∗ 10−10), 15% on the compound-cluster-out split (p = 1.7 ∗ 10−11) and 7% on the
protein-out-split (p = 1.8 ∗ 10−8). This suggests that on the compound-cluster-out split,
the ability of the model to learn protein–ligand interaction terms assists with generalizing
unseen compound clusters. Additionally, this generalization power is not as useful on
the random split; thus, the improvement of the full model over the No-Interaction-Terms
model is lower on this split. Meanwhile, the comparatively minor improvement of the
entire model over the No-Interaction-Terms model on the leave-protein-out split indicates
that it is more difficult to learn interaction terms that can generalize well with respect to
new proteins.

Table 4. Table comparing test set performance of full model to No-Interaction-Terms model various splits of the ChEMBL
dataset. Raw results for each split can be found in Supplementary Tables S1–S3.

Random LCCO LPO

No-Int Full % Imp No-Int Full % Imp No-Int Full % Imp

CDDD + UniRep 0.565 0.645 14.3 0.424 0.490 15.6 0.281 0.307 9.3
CDDD + SeqVec 0.548 0.575 4.9 0.411 0.475 15.6 0.287 0.322 12.2
CDDD + ESM 0.557 0.609 9.4 0.416 0.484 16.3 0.287 0.297 3.5
MolBert + UniRep 0.574 0.654 13.8 0.439 0.505 15.0 0.283 0.312 10.2
MolBert + SeqVec 0.558 0.607 8.7 0.430 0.487 13.3 0.290 0.311 7.2
MolBert + ESM 0.567 0.630 11.2 0.434 0.499 15.0 0.292 0.294 0.7

Abbreviations: see Table 2; No-Int: No-Interaction-Terms Model; Full: Full Model; % Imp: Percentage improvement of Full Model over
No-Interaction-Terms Model.

4. Conclusions

In summary, the results show that unsupervised-learned descriptors offer significant
improvements over handcrafted descriptors in Proteochemometric modeling (PCM). Ad-
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ditionally, we observed that the Transformer-based MolBert descriptors performed the
best with respect to representing compounds, while for protein descriptors, the choice
of which of the three unsupervised-learned descriptor generators to use appears to be
less significant. By comparing performance of the full model to a No-Interaction-Terms
model, we were able to confirm that PCM formulation allows the model to learn relevant
interaction terms between ligand and target and is not merely reflecting the bias in the
dataset. We believe that comparing to such a baseline should be standard practice when
evaluating the performance of PCM models. While the model is effective at generalizing
unseen compound clusters, generalizing unseen proteins remains a challenge—this may
be improved by generating more data with more unique proteins and by developing more
powerful protein descriptors that contain binding site information, which we believe are
the most relevant directions for future research in this area.
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Model, Table S6: Performance on LPO Splits for No-Int Model.
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Appendix A. Data Splitting Implementation Details

For the random splits, we split protein–ligand bioactivities randomly into training,
validation and test sets. Ten percent of all bioactivities were added to the test set, and
then the remaining 90% of bioactivites were split 70–30 into the training and validation
sets, resulting in an overall data split of 63%–27%–10% train-valid-test. This process was
repeated 25 times to create 25 folds, each containing different train, valid and test sets. For
leave-compound-cluster-out splits, we took Morgan Fingerprint (256-bit) representations
of the compounds and applied k-means (k = 10) to divide the data into ten compound
clusters. Then, we created ten folds, and in each fold of the test set, all bioactivities
involving compounds in one of the ten compound clusters generated by k-means are
included, with the remaining bioactivites being split randomly at 90%–10% into training
and validation sets. For the leave-protein-out split, we randomly divided all proteins
into ten groups. Then, we created ten folds, where in each fold the test set comprised all
bioactivites involving proteins in one of the groups, with the training and validation set for
each fold being generated from a random 90%–10% split of the remaining bioactivites.

https://www.mdpi.com/article/10.3390/ijms222312882/s1
https://www.mdpi.com/article/10.3390/ijms222312882/s1
https://data.4tu.nl/articles/dataset/Beyond_the_Hype_Deep_Neural_Networks_Outperform_Established_Methods_Using_A_ChEMBL_Bioactivity_Benchmark_Set_version_1_/12694478
https://data.4tu.nl/articles/dataset/Beyond_the_Hype_Deep_Neural_Networks_Outperform_Established_Methods_Using_A_ChEMBL_Bioactivity_Benchmark_Set_version_1_/12694478
https://data.4tu.nl/articles/dataset/Beyond_the_Hype_Deep_Neural_Networks_Outperform_Established_Methods_Using_A_ChEMBL_Bioactivity_Benchmark_Set_version_1_/12694478
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Appendix B. Model Architecture and Training Details

Model adapted from Lenselink [3] and Kim [41]. Training was performed by using
the default Adam optimizer [42], a batch size of 512 and a default learning rate scheduler
which halves the learning rate upon validation performance plateau. A dropout with
p = 0.25 was used throughout.

Protein DescriptorCompound Descriptor

Concatenate

Dropout(ReLU(FC(2048)))

Dropout(ReLU(FC(1024)))

FC(1)

Dropout(ReLU(FC(512)))

Gauss Noise (0, 0.01)Gauss Noise (0, 0.01)

Dropout(ReLU(FC(512)))

Figure A1. PCM model diagram.

Protein DescriptorCompound Descriptor

Concatenate Concatenate

Dropout(ReLU(FC(1024))) Dropout(ReLU(FC(1024)))

Dropout(ReLU(FC(512))) Dropout(ReLU(FC(512)))

Dropout(ReLU(FC(1))) Dropout(ReLU(FC(1)))

Average Pool

Dropout(ReLU(FC(512)))

Gauss Noise (0, 0.01)Gauss Noise (0, 0.01)

Dropout(ReLU(FC(512)))

Figure A2. No-Interaction-Terms model diagram.
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