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Abstract: Bacteria must maintain the ability to modify and repair the peptidoglycan layer without
jeopardising its essential functions in cell shape, cellular integrity and intermolecular interactions.
A range of new experimental techniques is bringing an advanced understanding of how bacteria
regulate and achieve peptidoglycan synthesis, particularly in respect of the central role played by
complexes of Sporulation, Elongation or Division (SEDs) and class B penicillin-binding proteins
required for cell division, growth and shape. In this review we highlight relationships implicated by
a bioinformatic approach between the outer membrane, cytoskeletal components, periplasmic control
proteins, and cell elongation/division proteins to provide further perspective on the interactions
of these cell division, growth and shape complexes. We detail the network of protein interactions
that assist in the formation of peptidoglycan and highlight the increasingly dynamic and connected
set of protein machinery and macrostructures that assist in creating the cell envelope layers in
Gram-negative bacteria.

Keywords: peptidoglycan; interactions; Escherichia coli; outer membrane; envelope; network; protein-
protein; seds; complexes; dynamic; gram-negative; cell division; ytoskeleton

1. Peptidoglycan in Gram-Negatives

Peptidoglycan plays a vital role in the maintenance of cell envelope integrity in bacteria
generally, and in Gram-Negative bacteria it acts as a stabilising structure that is attached to
both the inner and outer membrane lipid bilayers [1]. The peptidoglycan layer is formed
of a repeating beta-1–4-linked N-acetylmuramic acid N-acetylglucosamine disaccharide
glycan polymer (MurNAc-GlcNAc) with crosslinked peptide side chains. The peptide side
chains of each of these polymers can extend from the MurNac sugar and crosslink to create
a macroscopic mesh-like structure (Figure 1) [2]. The cell constantly modifies this mesh-like
macromolecule with a set of hydrolases to break the bonds involved and transferases to
form new polymers allowing for cell expansion, shape changes, and septation. A recent
review covers these modifications and the proteins involved in detail [3].
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Figure 1. Generalised peptidoglycan synthesis and insertion pathway. Lipid II is the peptidoglycan 
building block precursor. This precursor is synthesised in the cytoplasm by sequential enzymatic 
steps then attached to undecaprenyl phosphate in the inner membrane [2,4]. The newly formed Li-
pid II is then flipped across the inner membrane and polymerised into glycan chains by the glyco-
syltransferase (GT) action of class A bifunctional penicillin-binding proteins (PBPs), Sporulation, 
Elongation or Division proteins (SEDS) in complex with class B monofunctional PBPs or monofunc-
tional glycosyltransferases [5]. 

2. Cell Wall Modifying Enzymes and Complexes Have Altered Localisation during 
Growth Which Is Essential for Specialised Peptidoglycan Biosynthesis 

The location of the enzymes required for the synthesis of peptidoglycan and its later 
modification (Figure 1) can vary, dependent upon cellular events and conditions [6,7]. The 
proteins and complexes involved are also dynamic, as many of their locations have been 
shown to change during the cell cycle. Studies using fluorescent gene fusions within the 
chromosome and peptidoglycan protein tracking approaches [8–10] now provide indica-
tions of coordinated peptidoglycan protein complex movement during the cell cycle 
[11,12] (Figure 2A–C). Localisation of these complexes presumably ensures that pepti-
doglycan is synthesized at particular regions for either overall growth or highly special-
ised growth situations such as cell division (Figure 2D); cell curvature; (Figure 2G) polar 
growth and maintenance (Figure 2E); as well as flagella associated regions (Figure 2F). 

Figure 1. Generalised peptidoglycan synthesis and insertion pathway. Lipid II is the peptidoglycan building block
precursor. This precursor is synthesised in the cytoplasm by sequential enzymatic steps then attached to undecaprenyl
phosphate in the inner membrane [2,4]. The newly formed Lipid II is then flipped across the inner membrane and
polymerised into glycan chains by the glycosyltransferase (GT) action of class A bifunctional penicillin-binding proteins
(PBPs), Sporulation, Elongation or Division proteins (SEDS) in complex with class B monofunctional PBPs or monofunctional
glycosyltransferases [5].

2. Cell Wall Modifying Enzymes and Complexes Have Altered Localisation during
Growth Which Is Essential for Specialised Peptidoglycan Biosynthesis

The location of the enzymes required for the synthesis of peptidoglycan and its later
modification (Figure 1) can vary, dependent upon cellular events and conditions [6,7].
The proteins and complexes involved are also dynamic, as many of their locations have
been shown to change during the cell cycle. Studies using fluorescent gene fusions within
the chromosome and peptidoglycan protein tracking approaches [8–10] now provide
indications of coordinated peptidoglycan protein complex movement during the cell
cycle [11,12] (Figure 2A–C). Localisation of these complexes presumably ensures that
peptidoglycan is synthesized at particular regions for either overall growth or highly
specialised growth situations such as cell division (Figure 2D); cell curvature; (Figure 2G)
polar growth and maintenance (Figure 2E); as well as flagella associated regions (Figure 2F).
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Figure 2. Generalised localisation of peptidoglycan modifying proteins. Localisation regions of 
known and potential peptidoglycan modifying enzymes in Gram-negative bacteria. Localisation 
sites are highlighted in red. (A) Helical and MreB associated Elongasome; (B) Free diffusion (unlo-
calised) [11]; (C) Pre-septal machinery; (D) Division machinery; (E) Post septal polar machinery and 
polar growth [13–15]; (F) Flagella peptidoglycan modification machinery [16], and (G) Shape deter-
mining pinpoint/seam[17,18]. 

3. Regulation of Peptidoglycan Modifying Enzymes by Their Interacting Partners 
To achieve such diversity in the form and location of peptidoglycan, its synthesis and 

subsequent modification must be highly coordinated. Peptidoglycan is a complex three-
dimensional molecule with architecture and chemistry which is dependent on host species 
and environmental localisation [19,20]. Cells also respond (via modified synthetic path-
ways) to antibiotic challenge and changing osmotic conditions by changes in their cell 
wall architecture and peptidoglycan biochemistry [21,22] (Figure 3). 

The specialisation of peptidoglycan has been postulated to be driven by pathways 
that are regulated by local enzyme concentrations and protein: protein interactions.  In-
tegral peptidoglycan synthesis complexes such as RodA-PBP2 and FtsW-PBP3 have been 
shown to have non-enzymatic regulatory partners such MreC/MreD [23] and FtsN/L/Q 
respectively[24]. In addition enzymatic regulatory pairs exist e.g., PBP1A-PBP2 and 
PBP1b-PBP3. These networks of peptidoglycan synthesizing enzymes and regulatory pro-
teins is still not understood either structurally or functionally. 

Figure 2. Generalised localisation of peptidoglycan modifying proteins. Localisation regions of
known and potential peptidoglycan modifying enzymes in Gram-negative bacteria. Localisation
sites are highlighted in red. (A) Helical and MreB associated Elongasome; (B) Free diffusion (un-
localised) [11]; (C) Pre-septal machinery; (D) Division machinery; (E) Post septal polar machinery
and polar growth [13–15]; (F) Flagella peptidoglycan modification machinery [16], and (G) Shape
determining pinpoint/seam [17,18].

3. Regulation of Peptidoglycan Modifying Enzymes by Their Interacting Partners

To achieve such diversity in the form and location of peptidoglycan, its synthesis
and subsequent modification must be highly coordinated. Peptidoglycan is a complex
three-dimensional molecule with architecture and chemistry which is dependent on host
species and environmental localisation [19,20]. Cells also respond (via modified synthetic
pathways) to antibiotic challenge and changing osmotic conditions by changes in their cell
wall architecture and peptidoglycan biochemistry [21,22] (Figure 3).
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action map of peptidoglycan-associated proteins sorted by enzymatic action. Network structure determined by STRING, 
with manual addition of interactions through literature associated with each protein. Reference matrix available in Ap-
pendix. 
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peptidoglycan relevant gene list [6,24,26]. We submitted this list of genes as a joint sub-
mission to the gene data trawling engine “STRING” (STRING) to create an interaction 
map centred around our listed proteins’ data. Genes that interacted with this initial list, 
or were not in our initial list and given a combined “STRING” score of ≥0.7 (determined 
by co-occurrence data among species, gene neighbourhood scores and/or experimental 
data) [26,27] were then added and this new list was inputted as a meta-submission. Those 
genes which after meta-submission were found to have compound interaction scores with 
other listed genes > 0.9 were used in our final literature analysis (Figures 3 and 4). This 
has created a comprehensive picture of the current literature representing peptidoglycan 
synthesis and modification in Gram-Negative bacteria (Figure 4). 

Figure 3. Interaction network of peptidoglycan modifying enzymes and their partners from Litera-
ture inspection. Interaction map of peptidoglycan-associated proteins sorted by enzymatic action.
Network structure determined by STRING, with manual addition of interactions through literature
associated with each protein. Reference matrix available in Appendix A.
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The specialisation of peptidoglycan has been postulated to be driven by pathways that
are regulated by local enzyme concentrations and protein: protein interactions. Integral
peptidoglycan synthesis complexes such as RodA-PBP2 and FtsW-PBP3 have been shown
to have non-enzymatic regulatory partners such MreC/MreD [23] and FtsN/L/Q respec-
tively [24]. In addition enzymatic regulatory pairs exist e.g., PBP1A-PBP2 and PBP1b-PBP3.
These networks of peptidoglycan synthesizing enzymes and regulatory proteins is still not
understood either structurally or functionally.

4. Method Used to Visualise PG Synthesis Networks for This Meta-Review

To visualise the interactions of the genes and proteins relevant to peptidoglycan
synthesis and allow a full informative meta-analysis, we have performed a network analysis
of relevant genes using contemporary bioinformatic approaches [25].

4.1. Genetic and Protein Interactions Confirmed by the Literature

Peptidoglycan modifying and related genes, as listed in cell division, peptidoglycan
biosynthesis, and peptidoglycan related papers centred on E. coli were collated to create
a peptidoglycan relevant gene list [6,24,26]. We submitted this list of genes as a joint
submission to the gene data trawling engine “STRING” (STRING) to create an interaction
map centred around our listed proteins’ data. Genes that interacted with this initial list,
or were not in our initial list and given a combined “STRING” score of ≥0.7 (determined
by co-occurrence data among species, gene neighbourhood scores and/or experimental
data) [26,27] were then added and this new list was inputted as a meta-submission. Those
genes which after meta-submission were found to have compound interaction scores with
other listed genes > 0.9 were used in our final literature analysis (Figures 3 and 4). This
has created a comprehensive picture of the current literature representing peptidoglycan
synthesis and modification in Gram-Negative bacteria (Figure 3).Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 25 
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teraction type is indicated by area colouring and arrows. Interactive network link: https://version-11-5.string-
db.org/cgi/network?taskId=bIzLkBRoqjLb&sessionId=bBi0rwtoih3p (Last accessed on 4 November 2021). 
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some” and the “elongasome”, as well as other potential environment dependent com-
plexes. 
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Our network analysis (Figures 3, 4 and A3) suggests that the overlapping protein 
complex localisations of Figure 3 such as those related to cell stress, the “divisome“ and 
“elongasome” involve some of the same proteins, which are shared among complexes. In 
particular our analysis of Figure 3, which focuses on known literature-verified interac-
tions, indicates that some proteins interact with multiple complexes that facilitate 

Figure 4. Predicted interaction network of peptidoglycan associated proteins using STRING. Inter-
action map of peptidoglycan associated proteins, sorted by enzymatic action. Network structure
determined by STRING. SEDs complex interaction type is indicated by area colouring and arrows.
Interactive network link: https://version-11-5.string-db.org/cgi/network?taskId=bIzLkBRoqjLb&
sessionId=bBi0rwtoih3p (Last accessed on 4 November 2021).
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4.2. Proposed Genetic Interactions

In addition to the confirmed interactions uncovered by the literature as shown in
Figure 3, we show the predicted network used to create it. In Figure 4 unconfirmed STRING
determined interactions of 0.7 or higher are shown. This more expansive and connected
network represented in Figure 4 was constructed using a database of known and pre-
dicted gene-gene/protein-protein interactions derived from direct (physical) and indirect
(functional) genetic associations, along with interactions aggregated from other (primary)
databases [26,28]. We have grouped proteins currently linked to specific peptidoglycan
assembly machinery and their cellular locations into their respective groups through the
layering of background colour. This creates a gene-gene interaction pattern network, con-
textualised by the large protein assemblies they associate, such as the “divisome” and the
“elongasome”, as well as other potential environment dependent complexes.

5. Most Peptidoglycan Synthases and Modifiers Are Members of Multiple Local
Complexes as Predicted by Genetic Interactions and Confirmed by Literature

Our network analysis (Figures 3, 4 and A3) suggests that the overlapping protein
complex localisations of Figure 2 such as those related to cell stress, the “divisome“ and
“elongasome” involve some of the same proteins, which are shared among complexes. In
particular our analysis of Figure 3, which focuses on known literature-verified interactions,
indicates that some proteins interact with multiple complexes that facilitate coordination
at the cytoplasmic membrane and outer membrane. These interactions can involve lytic,
regulator, anchoring, cytoskeletal, and anabolic enzymes, often acting as partners to the
same proteins.

The central message revealed by the networks suggests that regulation of proteins
occurs in complexes, but also through protein exchange and sharing occurs to enable a
range of possible additional ensembles. The roles of each protein, and an interaction table
for these proteins in the network above are discussed in Appendix A, Tables A1–A3 as
well as Figures A1–A3. A datafile of the literature in context of this interaction matrix is
available (Supplementary Materials).

The networks of literature and genetic interaction in Figure 3 created through the use
of an interaction matrix from the literature confirms already widely held theories, that the
differences in central peptidoglycan formation units beyond the elongasome and divisome,
in addition to other peptidoglycan formation nodes are often based upon changes in
accessory proteins and exchange of core proteins and there is rarely a fixed static complex.
Figure 4 is derived from a variety of different data sources and shows a complex web of
possible interactions. However, all these interactions are unlikely to happen simultaneously
in the cell and represent a large spectrum of possible connections. Some of these interaction
have been observed experimentally as shown in Figure 3, with proteins such as PBP1b
making interactions with a large array of other protein partners, actions highly unlikely
to all occur at the same time. This concept exemplifies the observation of several proteins
theoretically occurring in multiple protein complexes as indicated by Figure 4. These
figures show the overwhelming complexity of the peptidoglycan protein network, as a
collection of many complexes.

The pattern of protein re-use and interdependence however is not constant, for ex-
ample, the monofunctional glycosyltransferase activity of FtsW and RodA have already
been shown to be reliant on their partner class B PBP interactions [24,29,30]. These partner
dependent glycosyltransferase proteins form a complex with specific class B PBPs such as
mrdA/PBP2 for RodA and ftsI/PBP3 for FtsW (Figure 2) and in doing so produce codepen-
dent glycosyltransferase and transpeptidase peptidoglycan machines [10,31,32]; which are
regulated by additional cytoskeletal and regulatory proteins. In E. coli, simplistically this
includes the RodA-PBP2 (mrdB-mrdA) complex for elongation and the FtsW-PBP3 (ftsW-ftsI)
complex for cell division [10]. These complexes act as nodes, (displayed in Figures 3 and 4)
creating the basis of the dependent complexes of the elongasomes and divisomes, which
can also interact with each another which we will discuss later in this article.
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Existing alongside these functionally relevant codependent multimers, are bifunc-
tional transpeptidases and glycosylase class A PBPs such as PBP1B and PBP1a with the
codependent multimers can form interaction partnerships. These have also been shown to
form their own complexes and act independently of these peptidoglycan machine nodes to
modify and synthesis peptidoglycan, introducing further complexity [33].

All the complexes shown, including the Class A PBP centric ones, contain a host of
additional regulatory, structural and enzymatically essential proteins that are shared among
them, with interactions that span across the network, each interaction determining their
specific overall activity dependent on interacting protein concentration, local substrates
and their overall lipid environment [10,29–31] (Figure 4). Complexes of proteins such as
the web of potential interactions shown in Figures 3 and 4 drive cell envelope synthesis.
This review attempts to explain these interactions and their importance through stories
presented by the current literature and investigates the specific nodes to which they centre.

6. Cytoskeletal Proteins Create Nodes of Complex Formation

As shown in Figure 4, some of the peptidoglycan modifying enzymes can be di-
rectly linked to cytoskeletal proteins. These cytoskeletal proteins also act as molecular
treadmills [32,34,35] (Figure 4). Typically, two treadmills run around the circumference of
the Gram-negative cell, one for division and one for elongation made of FtsZ and MreB
filaments respectively [34,36]. FtsZ is a cytoskeletal component, that has been shown to
localise and move along the cell circumference during cell division in individual strands
that make up a macromolecular “Z ring” [37,38]. Soon after the discovery of FtsZ as a
division-essential component, it was shown to interact with the peptidoglycan synthe-
sis machinery of FtsW and FtsI/PBP3 and the regulatory proteins FtsQ, B and L [13,14].
Since then it has been associated with many other penicillin-binding proteins including
PBP1b [11,12] (Figure 3). It is thought that the polymerization of FtsZ is responsible for
the directional movement of the SEDs complexes during division, constriction and septa-
tion [36,39]. As a result, this is an important cell division protein. An antagonist of FtsZ
polymerisation, viriditoxin causes cell division defects [40]. In Archaea, its analogous
FtsZ and often multiple of its paralogues are integral as division orchestrating proteins
associated with pseudomurein laydown. These genes cause cell division defects if not
genetically present [41]. Similarly, MreB is another cytoskeletal component implicated in
cell shape [42] shown to co-localise with the elongasome associated proteins during cell
growth. It has been shown to bind the mur ligases which produce the lipid II precursor.
The MreB polymerization antagonist A22 too causes cell morphology defects, highlighting
the importance of both MreB and FtsZ as shape determining proteins [43].

Though FtsZ and MreB are important for correct cell growth and cell division, the
literature has shown some of the peptidoglycan modifying machinery may only transiently
attach to FtsZ and MreB treadmills, although it is not always necessary for their func-
tion [12,42]. Recent models of transient FtsI-FtsZ interactions by “Brownian-ratcheting”
would suggest the peptidoglycan production and modification complexes move in and
out of interaction with cytoskeletal components by a transient system of attachment to
a cytoskeletal component, followed by protein wandering, allowing the peptidoglycan
altering complex speeds to differ dependent on the degree of cytoskeletal attachment [44].
This “Brownian-ratcheting” model hypothesises a zone of active peptidoglycan produc-
ing, slower-moving complexes near the faster moving FtsZ rings or MreB filaments that
transport inactive complexes in a dynamic equilibrium of interaction with the cytoskeletal
nodes [10,36,37].

7. The “Elongasome” Is a Collection of Multiple Complexes

Figure 4 indicates all the known interactions of the complex machinery creating pepti-
doglycan. To understand the general mechanism for peptidoglycan synthesis and modifica-
tion across species in the context of all steps involved in peptidoglycan creation, a specific
example can be called upon. One of the core peptidoglycan biosynthesis and modifying
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complexes is the “elongasome”; a biosynthetic complex of peptidoglycan manufacturing
machinery spanning the periplasm and inner membrane, used during cell growth.

The elongasome complex (Figure 5) contains the components of generalised peptido-
glycan synthesis (Figure 1), but we postulate as have others, based on our bioinformatic
analysis and the literature (Figure 3), that the complex also contains class C PBP D, D-
carboxypeptidases and lytic transglycosylases to modify peptidoglycan structure and
prime it for attachment with new peptidoglycan [1,45]. This model contains the core mono-
functional class B transpeptidase PBP2 which inserts its single transmembrane helix into
the seven transmembrane helices of RodA, activating it as a glycosyltransferase [46]. This
central peptidoglycan biosynthetic capability of the core of RodA-PBP2 is then augmented
by the bifunctional Class A PBP, PBP1a also, which associates with the core complex [47].
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The elongasome is transiently linked to the cytoplasmic MreB cytoskeleton of Gram-
negative bacterial cells [14] (Figure 5). The “Brownian-ratcheting” mechanism of FtsZ (see 
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as cytoskeletal protein homologues. This would suggest that the elongasome complex 
may instead move in and out of interaction with MreB, rather than remaining always as-
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cell circumferentially alongside MreB bi-modally active and inactive, at different speeds 
and with alternative partners [11]. 

Figure 5. Proposed layout of the RodA orientated elongasome complex. A sketch of peptidoglycan
insertion by a proposed formation of the elongasome complex. MreB and C sequester enzymes to
the elongasome complex, including RodZ. MurG transforms Lipid I to Lipid II, MurJ/FtsW/RodA
flip this into the periplasm. The PBP1a/b/c and/or PBP2-RodA complexes transglycosylate the
lipid II into the nascent strand. DacB may remove the terminal D-Alanine from pentapeptide and a
transpeptidation reaction occurs through catalysis from transpeptidases PBP2 or PBP1a/b/C. Lytic
transglycosylases MltB or Slt70 open new nascent strands for modification as machinery moves
forward. LpoA/B along with other regulatory mechanisms listed in Table A3 control PBP activities.
This diagram disregards the dynamic nature of the SEDS complexes and MreB ratcheting. Figure
created in BioRender.

The scaffolding and regulatory proteins of this elongasome, RodZ and MreC respec-
tively, both interact with cytoplasmic MreB, as well as binding the transpeptidase PBP2 [48].
It has also been shown that MreC, anchored in the membrane with a single transmembrane
helix, regulates the crosslinking transpeptidase activity of PBP2, and transglycosylation
activity of RodA via interaction of its own periplasmic globular domain with the pedestal
domain of PBP2. MreC may also have a role in binding to PBP1a among other components,
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this is especially interesting as a recent paper shows that P. aeruginosa MreC forms large
self-storage filaments within the periplasm to likely regulate MreC concentration in the
membrane [48,49]. The integral membrane protein MreD has been shown to act as a co-
ordinating partner to MreC in its interaction with RodA and PBP2, with an antagonising
effect, however the interaction interface and the regulatory mechanism they perform itself
is not yet known. Ribosomal studies suggest MreD levels are half that of MreC, indicating
MreC’s storage filaments are likely integral to proper regulation of this system among other
possibilities [23].

The elongasome is transiently linked to the cytoplasmic MreB cytoskeleton of Gram-
negative bacterial cells [14] (Figure 5). The “Brownian-ratcheting” mechanism of FtsZ (see
above) could also apply to MreB interaction, considering the similarity of FtsZ and MreB
as cytoskeletal protein homologues. This would suggest that the elongasome complex
may instead move in and out of interaction with MreB, rather than remaining always
associated [44]. This model would agree with the RodA-PBP2 complex moving along the
cell circumferentially alongside MreB bi-modally active and inactive, at different speeds
and with alternative partners [11].

Beyond the cytoskeletal interactors, regulation of this elongation apparatus has
been shown to require the outer membrane regulatory lipoproteins LpoA and LpoB [25]
(Figure 3). LpoA and LpoB span the periplasm to make contact with PBP1a [50] and
PBP1b respectively and form synthetically lethal pairings upon genetic deletion, under-
lying their essential regulatory role [25]. LpoA stimulates the transpeptidase activity of
PBP1a specifically, this turn upregulates PBP1a’s glycosyltransferase activity and peptido-
glycan production [51] and by contrast, LpoB has been shown to stimulate both PBP1b
transglycosylase and transpeptidase activity [52]. Recent analysis of the kinetics of the
related PBP1b-LpoB pairing required for cell division, shows that LpoB is an effective
on/off kinetic switch for peptidoglycan transpeptidation by PBP1b [25,52]. Therefore,
the elongasome contains multiple overlapping and seeming duplicate activities and in-
teractions, but this almost certainly belies the complex network of interactions required
for optimal peptidoglycan biosynthesis. One interpretation of this complexity is that the
central RodA-PBP2 complex is required for the production of a peptidoglycan scaffold for
elongation which the PBP1a-LpoA pairing (connecting inner membrane based synthesis
with outer membrane control) then overlays with additional glycan stands and crosslinks,
required to produce a complete layered structure [53].

8. NlpI Acts as a Facilitator of PBP Nucleation and Complex Interaction

The literature has shown peptidoglycan associated enzymes interact with a great
deal of enzymatically inactive structural proteins (Figure 3). A recent paper, has shown
there to be an outer membrane protein with a large number of protein-protein interactions,
dominating our interaction networks called NlpI [54]. It is postulated to act as a scaffold
for peptidoglycan associated proteins and is required for their formation and control. Mi-
croscale thermophoresis, pull-down and bacterial two-hybrid studies have shown that NlpI
can form trimeric complexes with PBPs, for example, MepS-NlpI-DacA, MepS-NlpI-PBP7
and LpoA/PBP1a/NlpI among many others [54]. NlpI regulates a set of peptidoglycan
hydrolases, as well as being able to form a trimer with PBP1A and LpoA. Its absence leads
to increased vesicle creation [55] suggesting its importance to the cell envelope. Banzhaf
et al. concluded NlpI may facilitate the interaction and/or change the composition of
the peptidoglycan editing complexes, controlling the potentially harmful hydrolases and
facilitating regulation of other proteins [54].

NlpI’s dispersal around the cell indicates it is likely involved in many of the complexes
responsible for creating peptidoglycan, including the divisome and elongasome, and possible
intermediary complexes that likely exist between those in turn (Figure 6) [56]. As a result, its
abundance across the entirety of the cell and regulatory ability suggests it may be part of the
system of dynamic protein complex formation this review focuses upon (Figures 3, 4, 6 and 7)
and is thus worth noting, however, its role beyond this is not well known [56].
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9. The Divisome Is a Series of Complexes Controlled by Cytoplasmic Events

The reasoning behind the complex series of interactions in Figures 3 and 4 can be
more fully understood in the context of the cell cycle, as not all interactions must occur
simultaneously, but rather on a cell stage basis. The divisome is responsible for the
division of cells, it is a peptidoglycan modifying complex that has been studied for some
time and exists as a series of complex protein-protein interactions (Figure 3), but these
have been shown to occur at intermediate stages and be dynamic [3]. The divisome’s
function is similar to that of the elongasome’s with analogous flippase, transglycosylase and
transpeptidase partners, which are dependent upon a cascade of interactions [9,13,14,55,64].
The divisome proteins that modify peptidoglycan such as PBP3 and PBP1b are not always
present with the divisomes central transglycosylase FtsW, as they change their cellular
localisation dependent on the cell cycle and by their interactors (Figure 7) [9]. There is
a higher concentration of peptidoglycan synthesis and hydrolysis enzymes at the septa
during cell division, in a series of stages and cascades, suggesting a dynamic system much
like the elongasome system, where protein composition changes over time as need and
function changes [63].

Networks of interaction presented in Figures 3, 4 and 7 make clear the abundance of
protein interactions possible. Division must account for osmotic conditions, cytoplasmic
events, antibiotic challenge, and periplasmic protein complexes, whilst also maintaining
the stability of cell envelope layers to prevent cell lysis, and finally allow septation. Recent
reviews on the cascade of proteins and steps involved make the changes in the division
complex over time clear [12,29,39].

10. Proteins Interchange between Complexes, and Complexes Interact

Throughout this review, it is mentioned that proteins can exist in more than one
complex (Figure 4). Despite the notion that PBP2 and PBP1a are normally associated
with the elongasomes as discussed above, they have also been found at the division
site. A hypothesis involving a balance between the elongasome and the free-floating or
unbound elongasome was investigated in the Gram-Positive, Bacillus subtilis, which found
that PBP1a’s homologue can move independently of MreC homologue or RodZ in the
cell [64,65]. In the same study, the quantity of MreC and PBP1a also determined the cell
width, suggesting this balance of two systems: one elongasome free of cytoskeletal proteins
and RodZ, which can diffuse across the circumference of the cell to allow radial expansion,
and one which interacts transiently with the cytoskeleton dominates and dominates the
elongation process, in addition to morphology determination in B. subtilis, which could
also be indicative of Gram-Negative systems (Figures 4 and 6) [64,65].

PBP1b/mrcB is a bifunctional glycosyltransferase and transpeptidase enzyme that
interacts and plays part in the regulation of the divisome. It dominates Figures 3 and 4 as a
node with high levels of interaction, beyond which is reasonable to exist at any one time
simultaneously [9]. In contrast to PBP1a/mrcA, PBP1b/mrcB has been postulated to have
division complex roles as well as a wandering role [10]. PBP1b and its partner activator
LpoB are essential to peptidoglycan rebuilding in peptidoglycan-deficient spheroplasts of
E. coli [33]. Their essentiality outside of division processes to create new peptidoglycan
in spheroplasts suggests that PBP1b must play a major role in the creation of new pepti-
doglycan, which in wildtype cells (E. coli) is carried out 70–80% by the bifunctional PBPs
such as PBP1b and PBP1a which have roles in the elongasome and divisome [10]. This
dependence suggests either; the cytoskeleton-bound or free “elongasome” for cell growth
including PBP2 and RodA involves PBP1b more than just transiently, or that more than the
static model of the elongation machinery RodA-PBP2 exists and PBP1b has a separate role
(Figure 6).

A “free” diffused PBP1b, and PBP2 have been observed independent of MreB/FtsZ
systems by fluorescent localisation [10,11]. The interactions shown in Figures 3 and 4
suggest many possible complexes, that vary in their composition, position, and association
with the cytoskeleton by PBP1b, PBP1a and PBP2.



Int. J. Mol. Sci. 2021, 22, 12831 11 of 23

The complexes that contain these interactive proteins may also interact. The elongation
and division machinery share common protein components and interactors (Figures 3 and 4)
with the elongation machinery associated “PBP2” even transiently localising to the Z-
ring during cell division [63]. PBP2, a protein known to be integral to the elongation
machine, has also been shown to interact with PBP3s division related role (ftsI), with
PBP2 knockout studies revealing division defects. In addition to division and elongation
related localisation, the peptidoglycan synthase proteins PBP2, PBP1a, PBP1b and FtsW
have also been shown to localise diffusely around the cell, moving independently to the
cytoskeletal-associated elongation and division complexes [9,10,12].

During the midstage of division, MreB and FtsZ appear to co-localise at the Z-ring
whilst treadmilling [63]. It has been postulated that enzyme exchange of these proteins be-
tween the divisome and elongasome may occur through an interaction with the cytoskeletal
components MreB and FtsZ [13,63]. This would support the “Brownian ratchet” model
theory of cytoskeletal protein control, citing a transient interaction rather than permanent
interaction of the PG machinery with FtsZ and MreB, allowing for the exchange of proteins
between cytoskeletons more easily [44].

PBP1b and PBP2 localise to the septum adjacent to the Z-ring during division, and
become delocalised from the septum in an mreB knockout strain [13]. Mutation of the
FtsZ-interacting residue of MreB similarly delocalises PBP1b and PBP2 from the FtsZ rings,
despite successful MreB and Z-ring formation. The unused Z-rings remain as “locked”
stripes of unsuccessful division sites, and cells containing these Z-rings stripes become
filamentous cells. These “locked” Z-rings fail to incorporate fluorescent single D-amino
acid probes such as HADA denoting new peptidoglycan biosynthesis, and thus do not
actively synthesise peptidoglycan, while the elongation enzymes along the rest of the cell
remain functional and successfully incorporate HADA throughout the rest of the cell [13].
This may be due to the absence of the PBP1b-FtsN interaction which would normally
interact transiently with MreB’s PBP2, and transition to divisome interactions to relieve
the FtsQLB inhibition of PBP3 [24,29,66], without this MreB-FtsZ transient reaction this
inhibition remains in place. The cytoskeletal component amino acid knockouts described
above, in conjunction with a known lethal PBP2 knockout phenotype, show the necessity of
elongation enzymes such as PBP2 to also be required for division and highlights dynamic
interchange between complexes [67].

11. Alternate Protein Complexes Exist, Containing 3-3 Crosslinking L, D
Transpeptidases as an Alternative to 3-4 Crosslinking PBPs Important for Antibiotic
Resistance

Figures 3 and 4 and the literature they represent indicates enzymes not yet confirmed
to be integral machineries to be involved in interactions in multiple complexes. There is
good evidence that during extended growth, osmotic cell stress and some instances of
β-lactam challenge, 3-3 crosslinking increases in the peptidoglycan of many Gram-negative
bacteria [68]. This form of crosslinking is catalysed by L,D-transpeptidases (Figure A2).
The literature, and genetic predictions indicate these proteins interact with many other PBP
related proteins (Figures 3 and 4).

The L, D-transpeptidase LdtD, has recently been shown to interact with peptidoglycan
endopeptidase DacA and bifunctional synthase PBP1b by microscale thermophoresis [59].
Following PBP1b inhibition by β-lactams, LdtD compensates for the loss of 3-4 crosslinking
by 3-3 crosslinking, enabling cell survival in the presence of β-lactams [69]. In this situation
LdtD could compensate for part of PBP1b’s normal bifunctional role as a transpeptidase
(when in complex with the transglycosylase FtsW and PBP3) by replacing the PBP catalysed
3-4 transpeptidase activity with 3-3 crosslinking, using the PBP1b and FtsW transglyco-
sylase glycan chain products as substrates. In this scenario the D, D-carboxypeptidase of
DacA, shown to be essential for β-lactam resistance mediated by LdtD [69], modifies the
pentapeptide by removal of the terminal amino acid to provide a suitable tetra peptide
substrate to LdtD. This is necessary because LdtD requires a tetrapeptide as a substrate [69].
Depending upon the availability of suitable substrates and some environmental conditions,
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PBP1b will also generate tetrapeptide products which could become substrates for the
Ldt’s [52,69]. It is likely this isolated complex is only one of many complexes incorporating
the non-canonical peptidoglycan crosslinkers L, D-transpeptidases (Figure 8).
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MurG ligase has been shown to interact with FtsW [60,66].

12. A “Shapeosome” Complex Synthesises Peptidoglycan in Curved Gram-Negatives

Beyond the simple models presented as elongation or division mechanisms, many
species of Gram-negative bacteria are more morphologically complex than just rods or
spheres [70] and the complex of proteins presented for E. coli (Figure 4). These species
require the peptidoglycan machinery to be altered compared to these classical exemplar
species. Campylobacter jejuni and Helicobacter pylori have been shown to contain hydrolytic
L, D carboxypeptidase proteins essential to cell curvature [71] in addition to a new cy-
toskeletal component analogue to MreB, CcmA. The most well studied of these systems is
Helicobacter pylori’s “Shapeosome” and the conserved shape determinant (Csd) protein fam-
ily. Knockouts of Csd6, CcmA and Csd5 all lead to curvature loss, along with peptidoglycan
peptidases Csd1, 2, 3, 4 and 6 [18,72] (Figure 9).
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Figure 9. CcmA curvature promoting complex in Helicobacter pylori. The prospective anchored
“Shapeosome” of Helicobacter pylori. The Shapeosome is a non-canonical peptidoglycan synthesis
complex that facilitates cell shape of curved bacteria, associated with a cytoskeletal component like the
elongasome and divisome. The connection to a cytoskeletal component again suggests a convergent
and re-occurring model of shape-determining cell wall modification by complex formation. Csd5
binds peptidoglycan by its SH3 domains and interacts with synthesis related proteins MurG, MurA
and MurF, as well as hydrolases Csd1 and 2 [18,72].

13. Unrelated Cell Envelope Proteins must Affect Peptidoglycan-Membrane Linkage

Whilst peptidoglycan is generally regarded as being composed of intramolecular
crosslinks [2], in some organisms, L, D transpeptidase enzymes (LDTPs) can catalyse
the formation of intermolecular cross links used to attach it to other macromolecular
structures [73]. It was shown in the 1970s that at least one-third of Braun’s lipoprotein
(Lpp), an outer membrane protein, is bound to peptidoglycan [74] (Figure 1). In Figures 3
and 4, an abundance of outer membrane interactors and regulators, are shown to be part
of elongation, and division complexes. It is has been known for some time that in species
with and without Lpp, the outer membrane protein OmpA interacts non-covalently with
peptidoglycan, but more recently, the literature has shown multiple OMPs across species
to be connected covalently to the peptidoglycan by LDTPs [75]. Specifically for example
in C. burnetii the L, D-transpeptidase ldt2 is required for covalent attachment of OMPs
BbpA and BbpB to peptidoglycan [76]. This creates a static covalent link between the outer
membrane, peptidoglycan and inner membrane proteins such as Tol machinery across
species [62].

Further still, bacterial periplasmic complexes such as pili, transport systems and
flagella penetrate through the peptidoglycan layers (Figure 1) and are often able to transport
proteins from the inner to outer membrane despite this linkage. This activity requires
dynamic pores in the peptidoglycan layer [20,77]. Observed movement of large proteins
laterally across these fixed peptidoglycan layers, linked to outer and inner membranes
may involve cleaving of the peptidoglycan using lytic transglycosylases to facilitate this
movement [16,78,79], in addition to L, D carboxypeptidases, for Lpp release [80]. These
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protein-peptidoglycan interactions must all be regulated to avoid cell lysis, as shown by
multiple periplasmic proteins that ensure the cell envelope remains structurally stable
during the cross-periplasmic complex movement. These local changes in cell wall structure
due to large complex movements present the cell envelope and peptidoglycan as a more
multi-ordered structure than a simple mesh. It must require uncrosslinking and regulatory
mechanisms for growth facilitation, and cell envelope stabilisation.

14. Review Summary

The peptidoglycan polymer’s complex and essential role to Gram-Negative bacte-
rial cells requires an intricate set of proteins within the periplasm; to maintain its role in
response to growth, during division and to ensure a stabilising permeable barrier is main-
tained in tandem with the inner and outer membrane. The literature has shown this takes
place through a series of protein complexes, and this is reaffirmed in predictive genetic
and experimental interactions presented (Figures 3 and 4). However, the full picture of
experiments, when investigating the roles of each protein have shown that these complex
interactions are not static in composition, but are instead part of a web of interactions that
allow many variant complexes to be in dynamic equilibrium depending on cell growth
stage and need. This model is not yet complete.

Models have been postulated of wandering and cytoskeletal-associated complexes
such as the elongasomes and divisomes that create and modify peptidoglycan dependent
on growth needs (Figures 6 and 7). Alternative complexes have also been shown to exist
for the antibiotic insusceptible L, D-transpeptidase enzymes which can allow crosslinking
of peptidoglycan in the absence of the antibiotic susceptible PBPs (Figure 8). These must all
occur in the context of structures that cross the periplasm and connect the inner membrane
and outer membrane in partnership with other processes [80,81].

This model of large protein complexes evolved to allow for peptidoglycan modification
dynamically across a growth cycle and repeats convergently in other species, even among
Archaea. Peptidoglycan modification systems, such as the shape determining complex
oriented by the cytoskeletal protein CcmA in Caulobacter sp. (Figure 9) exist as convergent
versions of the E. coli MreB and FtsZ based models presented in this review. The cytoskeletal
component of some of these dynamic complexes across species, (FtsZ and MreB) treadmill
along the circumference of the cell and have been shown to exchange protein partners
during their interactions, and cytoskeletal or regulator absence/inhibition leads to growth
defects. This evidence among others, shows an exchange of proteins which facilitate a
change of complex composition over time by the associated machineries. Sometimes these
complex changes are driven by specific cytoplasmic events and cascades, such as those that
control the divisome.

However not all modification relies upon these cytoskeletons, as shown by PBP1b
wondering motion across the cell [56]. Indeed, a single protein could be required for multi-
ple functions and complexes that exist at once (Figure 3), therefore these multiple protein
localisations are in part controlled by affinity to the cytoskeletal proteins or outer mem-
brane proteins anchored such as NlpI. This allows for fine control of complex composition
in addition to regulation by protein affinity to local substrate [30].

The peptidoglycan research and anti-microbrial resistance field has come to place im-
portance on specific protein structure, and singular relationships with inhibitory/activator
proteins in future antibiotic design. Our meta-analysis has shown the full picture so far
likely extends beyond the crystallised complexes and static complexes, revealing a great
deal of flexibility, but also indicating the importance of specific nodal proteins in pep-
tidoglycan synthesis. Research into macro-regulation of the complicated cell envelope
complexes showcased will be an important step in the creation of new drugs that can
overcome known mechanism of antibiotic bypass by protein exchange, but also postulate
new methods for peptidoglycan and cell envelope disruption. Viewing these proteins in a
systems context will be an important step in combatting resistance to antibiotics in vivo.



Int. J. Mol. Sci. 2021, 22, 12831 15 of 23

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222312831/s1.

Author Contributions: C.L.B.G. was the concept originator and main writer throughout. Supervisor
D.I.R. and M.B. provided advice, reworded sections, and reviewed the piece to ensure quality
throughout. H.N., F.N.G., K.S. and N.B. confirmed and made additions in their specialisations in
addition to editorial support, with significance reflected in order of names. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the BBSRC through studentships of F.N.G., C.L.B.G. and
N.B. [BB/M01116X/1], ANTRUK[ANTRUK_SRG_05-2021] funding supported C.L.B.G, the MRC
supported a studentship to [MR/J003964/1] to K.S. and a Collaborative Postgraduate award between
the University of Warwick and Diamond Light Source [STU0212] for funding H.N, This work was
supported by a UKRI Future Leaders Fellowship [MR/V027204/1] for the support of M.B.

Data Availability Statement: The interaction network of proteins, with DOI citations at each interac-
tion pair can be found in the paper’s supplementary data file. The predicted gene network used for
Figure 4 is available at STRING’s website using the permalink: https://version-11-5.string-db.org/
cgi/network?taskId=bIzLkBRoqjLb&sessionId=bBi0rwtoih3p (Last accessed on 4 November 2021).

Acknowledgments: We thank Andrew Lovering, Tyler Baverstock and Alexander Egan for
editorial suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Mur Ligase Pathway

Fructose-6-phosphate is converted by four successive enzyme activities to uridine
5′-diphosphate-N-acetylglucosamine (UDP-GlcNAc). This is catalysed by GlmS, GlmM
and GlmU (bifunctional enzyme) UDP-MurNAc (5′-diphosphate N-acetylmuramic acid)
is formed from UDP-GlcNAc using Mur ligases MurA and MurB. This results in a sugar
moiety ready for pentapeptide addition [78].

A pentapeptide stem is then appended to the D-lactoyl carboxyl group of UDP-
MurNAc by sequential addition of peptides by MurC-F: L-Ala (MurC), D-glutamic acid
(MurD), meso-diaminopimelic acid (m-DAP) (MurE), dipeptide D-Ala-D-Ala (MurF), with
D-Glu and m-DAP being synthesised from their L- or L,L-stereoisomers by MurI and
DapF respectively, and D-ala-D-Ala being produced from L-Ala by alanine racemases and
D-Ala-D-Ala ligase [78].

The UDP-MurNAc 5P produced by these reactions is then transferred to an unde-
caprenol, a membrane-spanning lipid, yielding undecaprenyl diphospho MurNAc 5P
(Lipid I), in a reaction catalysed by MraY at the inner membrane. Thereafter, MurG
transfers a GlcNAc sugar moiety from UDP-GlcNAc to Lipid I, producing undecaprenyl
diphospho MurNAc GlcNAc 5P (Lipid II) [66,78].

Appendix A.2. After Initial Synthesis, Peptidoglycan Is Modified

The modification of peptidoglycan extends far beyond the model in Figure 1, and
continues after de novo peptidoglycan insertion, by a series of proteins and protein com-
plexes referred to as PBPs. During synthesis a lytic transglycosylase (Figure A1) separates
the existing strands of peptidoglycan to make space for new synthesis by cleaving the
links between sugars [79,82], the glycan strand does not continue indefinitely and are
typically between 7 and 32 sugars in length [83]. New peptidoglycan must also be attached
to the outer membrane by L, D transpeptidase action through linking peptidoglycan to
outer membrane proteins like Lpp (Figure A2), roughly once every 100 Å to maintain cell
envelope stability [69,80].

During division, the peptidoglycan crosslinks are continually broken and remade
to relieve overall cell wall stress and facilitate growth (Figure A1). 3-4 crosslinks being
predominant when the cell is not in stress and early in growth, whereas 3-3 crosslinking is

https://www.mdpi.com/article/10.3390/ijms222312831/s1
https://www.mdpi.com/article/10.3390/ijms222312831/s1
https://version-11-5.string-db.org/cgi/network?taskId=bIzLkBRoqjLb&sessionId=bBi0rwtoih3p
https://version-11-5.string-db.org/cgi/network?taskId=bIzLkBRoqjLb&sessionId=bBi0rwtoih3p
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found in cells increasingly during the stationary phase, or following antibiotic exposure
and osmotic shock [84] (Figure A2).

A shift from 3-4 to 3-3 crosslinking often also occurs during cell growth. Fluorescent D-
amino acids (FDAA) have been used to label transpeptidase activity through the ability of
PBPs to exchange amino acids, revealing that during stationary phase and growth, the entire
peptidoglycan is “lit up” by incorporation of new FDAA indicating new modifications are
being made throughout growth [85].

Bacterial cell elongation and division requires the peptidoglycan layer to be constantly
modified and cleaved to allow for growth. The attachment of protein partners to the
peptidoglycan layer and the peptidoglycan recycling process additionally requires peptido-
glycan cleavage. The cleavage and modifications of peptidoglycan varies across species and
can be broadly split into two classes of enzymatic action: hydrolase and transferase [12,82]
(Figures A1 and A2).

Hydrolases carry out a range of lytic modifications to peptidoglycan, including cleav-
age of the peptide stem at the glycosidic bond between glycan molecules, and the removal
of acetyl groups (a lysozyme resistance factor in pathogenic strains) [85] (Figure A1). The
hydrolases so far characterised are dispersed throughout the cell periplasm at the lateral
cell wall or the division plane [12].

Hydrolases are controlled by regulatory proteins and each hydrolase has their own
distinct role within the cell and the cell’s complexes [86,87] (Table A1).

Peptidoglycan is also polymerised and modified by a series of crosslinking enzymes
such as the penicillin-binding proteins (PBPs) or L, D transpeptidases at different points
in the bacterial cell cycle as well as after stress events. The modification sites shown in
Figure A2 are the points of peptidoglycan crosslinking and attachment known in Gram-
negative bacterial species [9,47,88].

Their individual activities are elaborated in Table A2.
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Table A1. Characterised Hydrolases in Gram-negative bacteria.

Peptidoglycan Degradation/Hydrolases

Function Enzymatic Action Known Genes/Protein References

D,D Carboxypeptidases D-Ala D-Ala Cleavage 4-5 dacA, yfeW, dacC, dacD, vanY,
ampH, Csd3 * [69,89–91]

MurNac de-Acetylase Deacetylation of N-acetyl
Muramic acid pgdA

[92]

GlutNac de-acetylase Deacetylation of N-acetyl
Glucosamine

Amidase Cleavage of peptide stem from
Glycan strand

amiA, amiB, amiC, amiD,
ampD, mpaA [88,90,93,94]

Lytic Transglycocylase

Breaking Glycan strand at
GlucNac-MurNac (endo)

Slt, MltA, MltB, MltC, MtD,
MltE, PilT, traB, virB1,
rlpA, MltG

[16,58,79,82,83,86,95,96]

Breaking Glycan strand at
GlucNac-MurNac(exo) NagZ [97]

L, D Carboxy/Endopeptidase

mDAP mDAP cleavage 3-3 mepA [98]

mDAP-Lpp Cleavage YafK/LdtF [80]

mDAP D-Ala cleavage 3-4 pgp2 *, csd6 * [71,91]

mDAP-D Glucosamine cleave 3-2 csd4 * [72]

D, D Endopeptidase Cleavage of D-Ala-mDAP
crosslink 3-4

dacB, pbpG, MepS, MepM,
PBP7, MepH [31,99]

* Not present in Escherichia coli MG1655 genome, but present in other species.

Table A2. Characterised peptidoglycan synthases in Gram-negative bacteria.

Function Enzymatic Action Known Genes/Protein (E. coli) References

D, D Transpeptidase and
Transglycocylase

Adds lipid II to nascent strand
and crosslinks into existing PG

mrcA/PBP1a [29,100]

mrcB/PBP1b [78]

D, D Transpeptidase Crosslinks nascent strand into
existing peptidoglycan mrdA/PBP2, FtsI/PBP3 [11,101]

Transglycosylase Adds lipid II to nascent strand mtgA, rodA, ftsW [23,102,103]

Flippase Flips Lipid II to periplasm murJ [104]

L, D Transpeptidases

Peptidoglycan Brauns lipoprotein
crosslinkers

LdtA/ErfK,

[105]
YbiS/LdtB

Ycfs/LdtC

Peptidoglycan 3mDAP-3mDAP
crosslinkers

YnhG/LdtE

YcbB/LdtD

O-acetylation O-acetylates nam

oatA *

[2,92]adr

pacA

* Not present in Escherichia coli MG1655 genome, but present in other species.
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Table A3. Peptidoglycan associated and PBP regulatory proteins.

Function Known Genes/Protein (E. coli) Reference

Moderate class A PBP activity LpoA, LpoB [9]

Alter interactor ability CpoB [9]

Bind OM with peptidoglycan OmpA [106]

Moderate OM linkage with peptidoglycan lpp [73]

Periskeletal elongasome component, moderates PBP2 activity MreC
[23]

Periskeletal elongasome component, moderate PBP2 activity MreD

Treadmilling Cytoskeletal elongasome component MreB [15]

Elongasome staple component RodZ [57]

SPOR domain containing proteins, protein interaction Rlpa, FtsN, DamX, SpoX [61,85,107]

Hydrolase binding activity

NlpI [55]

ActS [108]

NlpD [109]

EnvC [93]

Inner membrane peptidoglycan moderation TolA, TolR, TolQ, palA, palB [9,109]

Division moderation and EnvC control FtsX, FtsE [110]

Treadmilling cytoskeletal component for divisome FtsZ [44,56]

Division moderation FtsA [56]

Helicase and PBP interactor FtsK [58]

FtsN interactor and division start FtsB, FtsL, FtsQ [25]

FtsZ interactor and PIPs mediator ZipA [39]
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