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Abstract: Neuropathic pain arises from damage or dysfunction of the peripheral or central ner-
vous system and manifests itself in a wide variety of sensory symptoms and cognitive disorders.
Many studies demonstrate the role of neuropathic pain-induced neuroinflammation in behavioral
disorders. For effective neuropathic pain treatment, an integrative approach is required, which
simultaneously affects several links of pathogenesis. One promising candidate for this role is synap-
tamide (N-docosahexaenoylethanolamine), which is an endogenous metabolite of docosahexaenoic
acid. In this study, we investigated the activity of synaptamide on mice behavior and hippocampal
plasticity in neuropathic pain induced by spared nerve injury (SNI). We found a beneficial effect
of synaptamide on the thermal allodynia and mechanical hyperalgesia dynamics. Synaptamide
prevented working and long-term memory impairment. These results are probably based on the
supportive effect of synaptamide on SNI-impaired hippocampal plasticity. Nerve ligation caused
microglia activation predominantly in the contralateral hippocampus, while synaptamide inhibited
this effect. The treatment reversed dendritic tree degeneration, dendritic spines density reduction on
CA1-pyramidal neurons, neurogenesis deterioration, and hippocampal long-term potentiation (LTP)
impairment. In addition, synaptamide inhibits changes in the glutamatergic receptor expression.
Thus, synaptamide has a beneficial effect on hippocampal functioning, including synaptic plasticity
and hippocampus-dependent cognitive processes in neuropathic pain.

Keywords: synaptamide; N-docosahexaenoylethanolamine; neuropathic pain; spared nerve injury;
hippocampus; neuroinflammation

1. Introduction

Neuropathic pain is a condition resulting from damage or dysfunction of the pe-
ripheral or central somatosensory system, rather than stimulation of pain receptors [1].
Difficulties in the treatment of patients with neuropathic pain are due to the heterogeneity
of the etiology, symptoms, and underlying mechanisms of this condition. Difficulties often
arise in determining the origin and exact location of the lesion or in elucidating the relation-
ship between the deterioration of the patient’s condition and the neuropathic pain present.
Causes of neuropathic pain include traumas of the central and peripheral nervous system,
and various diseases, including multiple sclerosis, diabetes, herpesvirus infection, etc. [2].
As a rule, neuropathic pain is accompanied by sensory symptoms such as causalgia-intense,
persistent burning pain, often of a lancinating nature. Causalgia is often associated with
allodynia, a condition in which pain is caused by stimuli that usually do not cause pain,
and hyperalgesia, which is characterized by increased pain when exposed to a stimulus
that usually causes minor pain [3]. Among the mechanisms for neuropathic pain develop-
ment, peripheral and central ones are distinguished. Peripheral mechanisms include direct
stimulation of sensory nerves, peripheral sensitization of nociceptors by inflammatory
mediators and biologically active substances, abnormal ectopic spontaneous activity of
damaged nerves, increased activity of adrenergic receptors on axonal membranes, etc. [4].
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Central mechanisms imply the participation of both the spinal and supraspinal centers in
the generation, processing, and transmission of the pain signal [5].

Neuroplastic processes are considered to occur in the central nervous system in neu-
ropathic pain and cause an imbalance between excitatory and inhibitory processes [6,7].
These processes are usually described by the general term "central sensitization" [8]. The in-
volvement of supraspinal centers in the processing and transmission of pain signals makes
neuropathic pain an even more complex phenomenon, including sensory-discriminatory,
affective-motivational, and cognitive-evaluative components [9]. Moreover, the lateral
pain system, which passes through the lateral nuclei of the thalamus into the primary and
secondary somatosensory cortex, is involved in the sensory-discriminatory aspects of pain
processing, providing the ability to analyze the intensity, duration, and location of pain
stimulus [10]. The medial system, which passes through the medial nuclei of the thalamus
into the prefrontal and anterior cingulate cortex, is responsible for the affective-motivational
component, that is, it gives an idea of how unpleasant it is to feel pain [11]. The cognitive-
evaluative axis of pain is probably associated with higher brain centers responsible for
attention and memory [12]. It is well documented that neuropathic pain causes not only
sensory symptoms but also cognitive and affective dysfunctions [6]. This confirms the
involvement of higher supraspinal centers in neuropathic pain pathogenesis. Based on the
data presented in the review [9], we can conclude that the hippocampus may be involved in
various aspects of pain processing. Several studies demonstrate hippocampus-dependent
memory impairment in neuropathic pain [13–19]. With chronicity, neuropathic pain may
cause memory impairment, anxiety, depression, insomnia, etc. [20]. Many of the above
studies demonstrate the role of neuroinflammation, including microglial activation and
proinflammatory cytokine production, in the development of behavioral disorders. Thus,
for effective neuropathic pain treatment, an integrated approach that simultaneously affects
several links of pathogenesis is required. One of the promising candidates for this role
may be N-docosahexaenoylethanolamine (synaptamide), which is an endogenous metabo-
lite of docosahexaenoic acid. Synaptamide is synthesized in the body of mammals and
plays an important role in many processes, including nervous system functioning. In vitro
experiments have shown that synaptamide stimulates neuronal differentiation of neural
stem cells [21], promotes neurite growth [22,23], stimulates synapse formation in cultured
neurons [24,25], and suppresses neuroinflammation [26]. New evidence suggests nocicep-
tive effects of synaptamide in acute pain [27]. In the present study, we focused on changes
in glial, neuronal, and synaptic plasticity, which are the physiological and morphological
substrates of memory changes, in neuropathic pain and synaptamide treatment.

2. Results
2.1. Synaptamide Improves Behavioral Parameters in Neuropathic Pain

Allodynia is a condition in which pain is triggered by a stimulus that usually does
not cause pain. A similar condition is a hyperalgesia, characterized by increased pain
due to an irritant that usually causes pain. These symptoms are usually present in both
peripheral neuropathy and pain disorders of central origin [28]. In the present work, we
have studied thermal allodynia, as well as mechanical hyperalgesia in animals with spared
nerve injury (SNI), after treatment with synaptamide and vehicle. The hot plate test showed
a significantly longer period to the first paw withdrawal in synaptamide-treated animals
with SNI compared to the vehicle-treated group with SNI. This tendency became noticeable
from the 14th day (10.06± 2.12 vs. 24.48± 3.14, p < 0.001), and continued until the 28th day
of observation (11.97 ± 2.43 vs. 21.09 ± 2.16, p < 0.001) (Figure 1a). Differences between
the groups in the time of paw withdrawal from the cold plate became noticeable 21 days
after the surgery. On day 21, the mean latency was 7.99 ± 1.56—“SNI” vs. 16.99 ± 2.64—
“SNI + syn”, p < 0.001, on day 28 the latency was 8.31 ± 0.70—“SNI” vs. 14.85 ± 1.53—
“SNI + syn”, p < 0.001 (Figure 1b). In the study of mechanical hyperalgesia, significant
differences in the applied pressure causing the response of the animal were observed
already on the 14th day after the surgery (294.38 ± 39.02—“SNI” vs. 175.65 ± 37.06—
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“SNI + syn”, p < 0.001) and continued the 28th day of observations (280.08 ± 53.83—“SNI”
vs. 158.34 ± 35.95 “SNI + syn”, p < 0.001) (Figure 1c).
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The influence of trauma and treatment on cognitive function, namely on long-term and
working spatial memory indicators, was also studied. Long-term memory was examined
in a novel object recognition test. The negative effect of neuropathic pain on long-term
memory has been described in many works; therefore, the beneficial effect of drugs on
this type of memory can serve as an indicator of the treatment effectiveness [16,29,30].
According to our results, the administration of synaptamide to mice prevented a recognition
index decrease (40.86 ± 6.36 “SNI” vs. 65.04 ± 6.06—“SNI + syn”, p < 0.01) (Figure 1e). In
the “SNI + Syn” group, the average time spent exploring a familiar object was significantly
lower than that of a novel one (4.88 ± 1.03 familiar vs. 10.42 novel, p = 0.023), while
in the SNI group, animals spent approximately the same amount of time on the study
of the novel and familiar objects (12.71 ± 2.21—“SNI” vs. 15.11 ± 3.53—“SNI + Syn”)
(Figure 1d). At the same time, at the familiarization session, the objects’ exploration rate
by animals did not differ significantly. Since there are numerous data in the literature on
working memory impairment in neuropathic pain [31–33], we investigated the spontaneous
alternations rate in the Y-maze as an indicator of memory deficit in pain and treatment. In
untreated mice with SNI, the index of working spatial memory was significantly lower
than in synaptamide-treated animals (55.18 ± 2.95—“SNI” vs. 63.01 ± 2.81—“SNI + Syn”,
p = 0.038) (Figure 1f). The influence of trauma and treatment on cognitive function,
namely on long-term and working spatial memory indicators, was also studied. Long-
term memory was examined in a novel object recognition test. The negative effect of
neuropathic pain on long-term memory has been described in many works; therefore, the
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beneficial effect of drugs on this type of memory can serve as an indicator of the treatment
effectiveness [16,29,30]. According to our results, the administration of synaptamide to
mice prevented a recognition index decrease (40.86 ± 6.36—“SNI” vs. 65.04 ± 6.06—
“SNI + syn”, p < 0.01) (Figure 1e). In the “SNI + Syn” group, the average time spent
exploring a familiar object was significantly lower than that of a novel one (4.88 ± 1.03-
familiar vs. 10.42-novel, p = 0.023), while in the SNI group, animals spent approximately
the same amount of time on the study of the novel and familiar objects (12.71 ± 2.21 –
”SNI” vs. 15.11 ± 3.53—“SNI + Syn”) (Figure 1d). Since there are numerous data in the
literature on working memory impairment in neuropathic pain [13,31,32], we investigated
the spontaneous alternations rate in the Y-maze as an indicator of memory deficit in
pain and treatment. In untreated mice with SNI, the index of working spatial memory
was significantly lower than in synaptamide-treated animals (55.18 ± 2.95—“SNI” vs.
63.01 ± 2.81—“SNI + Syn”, p = 0.038) (Figure 1f). The number of entries into the Y-maze
arms was used as an indicator of locomotor activity. Sciatic nerve injury did not significantly
affect this indicator, while synaptamide administered to sham-operated mice increased the
number of inputs compared to injured groups (p < 0.05) (Figure 1g).

2.2. Synaptic Plasticity in the Hippocampus upon Synaptamide Administration in
Neuropathic Pain

The long-term potentiation in the CA1 area of acute hippocampal slices was measured
to investigate hippocampal synaptic plasticity. Prior to tetanic stimulation, a steady base-
line was recorded for 60 min. Long-term potentiation in the CA1 region was generated
by tetanization of the Schaffer collateral–commissural pathway. The slope of the popu-
lation excitatory postsynaptic potential (EPSP) is reported as a mean percentage change
(Figure 2a). The normalized field EPSPs slopes in “SNI”, “SNI + Syn” and “Syn” groups
amounted 132.94 ± 11.58% vs. 239.59 ± 25.72% (p < 0.05) and 230.03 ± 15.88 (p < 0.05)
of baseline value immediately after tetanic stimulation (Figure 2b). In 35–36 min after
tetanization EPSP slopes for “SNI”, “SNI + Syn”, and “Syn” were 119.77 ± 11.80% vs.
169.34 ± 7.97% (p < 0.05) and 204.20 ± 20.30 (p < 0.01) (Figure 2c).
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2.3. Neuronal Tree Morphology upon Synaptamide Administration in Neuropathic Pain

The reorganization of the dendritic tree in the hippocampus is characteristic of many
pathologies accompanied by chronic stress [33]. Atrophy of hippocampal neurons is also
recorded in neuropathic pain models [34]. Changes in density, shape, and size of dendritic
spines, are accompanied by changes in memory and learning and are observed in various
neurological, mental, and neurodegenerative diseases. A change in the dendritic spines’
configuration has also been shown in neuropathic pain, which underlies the observed
changes in synaptic plasticity [35,36].

Using Sholl analysis, we identified signs of neuronal degeneration in the CA1 region
of the hippocampus in neuropathic pain. At a distance of 60 to 200 µm from the soma in the
“SNI” group, there is a significant decrease in the intersections’ number of pyramidal neu-
ron dendrites compared to the “Sham” group (p < 0.05) (Figure 3a). In synaptamide-treated
animals (“SNI + Syn” and “Syn”), the degree of branching did not differ significantly
from the groups with sham-operated animals (Figure 3b). For a more detailed analysis of
changes in the structure of dendrites, we compared the groups in terms of the “average
number junctions” and “total length of dendrites”. Using the Kruskal–Wallis test, we found
a significant reduction in the mean number of junctions in neuropathic pain (p = 0.037). At
the same time, the indicators of the groups “SNI + Syn” and “Syn” did not differ signifi-
cantly from the indicators of the “Sham” group (Figure 3c). Significant differences were
shown between the “SNI” and “SNI + Syn” groups (20.04 ± 3.39 vs. 51.36 ± 5.57, p = 0.003,
respectively). In addition, the Kruskal–Wallis test followed by the Dunn’s test showed
that synaptamide also prevents an SNI-induced decrease in the total length of dendrites
(2434.26 ± 210.03—“SNI” vs. 3795.62 ± 348.14—“SNI + Syn”, p = 0.02) (Figure 3d).

The two-way ANOVA revealed a significant effect of synaptamide on the density of
mushroom spines in pyramidal neurons’ apical dendrites in the CA1 region (F(3, 40) = 21.215,
p < 0.0001). In the group of synaptamide-treated sham-operated animals, the mushroom
spines density was significantly higher than in vehicle-treated sham-operated animals
and then in synaptamide-treated animals with SNI (5.42 ± 0.52—“Sham” vs. 8.74 ± 0.73—
“Syn”, p < 0.001 and 6.35 ± 0.50—“SNI + Syn”, p < 0.08). Synaptamide prevented the
decrease in the thin spines’ density observed in SNI (2.50 ± 0.39—“SNI” vs. 6.17 ± 0.69—
“SNI + Syn”, p < 0.01). A 2-way ANOVA of stubby spines density revealed no effect
of trauma and a significant effect of the treatment on this parameter (F(3, 40) = 16.59,
p < 0.0001). In the synaptamide-treated groups “SNI + Syn” and “Syn” there was an
increase in the stubby spines density, compared to the vehicle-treated groups “Syn” and
“Sham” (3.77 ± 0.45 and 3.51 ± 0.45 vs. 6.05 ± 0.45—l number of spines revealed a
significant effect size for both injury and synaptamide treatment (F(3, 40) = 4.14, p = 0.048
for SNI; F (3, 40) = 33.88, p < 0.001 for treatment) (Figure 3e,f).

2.4. Microglial Activity within the Hippocampus in SNI and Synaptamide Treatment

Iba-1 (ionized calcium binding adapter molecule 1) is a marker expressed by all
microglial cells. Iba-1 expression is increased in microglia activated when exposed to
any damaging factors, for example, traumatic brain injury [37], inflammation [38], or
ischemia [39]. We investigated the activity of hippocampal microglia in synaptamide-
treated SNI mice.

We found that an immunopositive staining area increase in SNI within the CA1 region
is observed both in the ipsi- (6.39 ± 0.28—“Sham” vs. 7.27 ± 0.49—“SNI”, p < 0.05) and
in the contralateral hemisphere (5.87 ± 0.43—“Sham” vs. 8.76 ± 0.57—“SNI”, p < 0.001).
Synaptamide down-regulated SNI-induced Iba-1 expression both in the ipsi- (7.27 ± 0.49
—“SNI” vs. 5.50 ± 0.43—“SNI + Syn”, p < 0.01) and in the contralateral hippocampus
(8.76 ± 0.57—“SNI” vs. 4.48 ± 0.59—“SNI + Syn”, p < 0.001). Interestingly, synaptamide
administered to sham-operated animals was able to reduce Iba-1 immunoreactivity com-
pared to controls in both the ipsi- and the contralateral hippocampus. Two-way ANOVA
showed a significant effect in the ipsilateral hippocampus for both injury (F(3, 40) = 7.12,
p = 0.01) and treatment (F(3, 40) = 13.08, p = 0.001). A significant effect was also observed in
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the contralateral hippocampus: SNI (F(3, 40) = 32.04, p < 0.001), treatment: (F (3, 40) = 71.70,
p < 0.001) (Figure 4a,b).
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Figure 3. The results of dendrite Sholl analysis and spines density measurement. (a) The number of intersections along the
apical dendritic trees at all distances from the soma in CA1 pyramidal neurons, Mean ± SEM, n = 5 (number of animals).
(b) Representative images of CA1 pyramidal neurons in the contralateral dorsal hippocampus of mice with neuropathic
pain and synaptamide treatment. (c) The number of junctions along the apical dendritic trees at all distances from the soma
of CA1 pyramidal neurons, n = 5 (number of animals). (d) The total length of apical dendrites in CA1 pyramidal neurons,
n = 5 (number of animals). (e) The density of dendritic spines in the apical dendrites of the CA1 pyramidal neurons. (f) The
images of CA1 pyramidal neurons stained by the Golgi–Cox method, mean ± SEM, n = 10 (number of analyzed neurons per
group), * p < 0.05, ** p < 0.01, *** p < 0.001 (compared to “Sham”), + p < 0.05, ++ p < 0.01, +++ p < 0.001 (compared to “SNI”).

We observe a similar situation in the CA3 region (Ipsilateral: 4.76 ± 0.36—“Sham” vs.
6.39 ± 0.37—“SNI”, p < 0.05; Contralateral: 4.05 ± 0.36—“Sham” vs. 6.64 ± 0.33—“SNI”,
p < 0.001). Synaptamide was also effective in Iba-1 down-regulation in SNI both in the
ipsi- (6.39 ± 0.37—“SNI” vs. 4.26 ± 0.39—“SNI + Syn”, p < 0.001) and in the contralateral
hippocampus (6.64 ± 0.33-”SNI” vs. 2.61 ± 0.22—“SNI + Syn”, p < 0.001). Interestingly—
that in the “SNI + Syn” group the Iba-1 level was lower than in the “Sham” group (p < 0.01).
Two-way ANOVA showed a significant effect in the ipsilateral hippocampus for both injury
(F(3, 40) = 6.66, p = 0.013) and treatment (F(3, 40) = 16.45, p < 0.001). A significant effect was
also observed in the contralateral hippocampus: SNI (F(3, 40) = 7.60, p = 0.008), treatment:
(F (3, 40) = 60.81, p < 0.001) (Figure 4c,d).
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Figure 4. Iba-1 immunoreactivity in CA1, CA3 иDG hippocampal regions. (a) The percentage of
Iba-1 immunopositive staining area in CA1 hippocampal region. (b) Representative images of Iba-
1-positive immunostaining in CA1 hippocampal region. Scale bar — 100 µm. (c) The percentage
of Iba-1 immunopositive staining area in CA3 hippocampal region. (d) Representative images of
Iba-1-positive immunostaining in CA3 hippocampal region. Scale bar — 100 µm. (e) The percentage
of Iba-1 immunopositive staining area in DG hippocampal region. (f) Representative images of
Iba-1-positive immunostaining in DG hippocampal region. Scale bar — 100 µm. Two-way ANOVA
with post hoc Tukey test, * p < 0.05, ** p < 0.01, *** p < 0.001; + p < 0.05, ++ p < 0.01, +++ p < 0.001.
*-compared to “Sham”, +-compared to “SNI”.

In DG we do not observe pronounced changes in the ipsilateral hemisphere after
SNI, but in the contralateral hippocampus, the level of Iba1 immunoreactivity significantly
upregulates (3.06 ± 0.35—“Sham” vs. 6.35 ± 0.39—“SNI”, p < 0.001). In the contralateral
hippocampus, the Iba-1 level reversed to the “Sham” group in synaptamide treatment
after SNI (6.35 ± 0.39—“SNI” vs. 3.21 ± 0.31—“SNI + Syn”, p < 0.001). Two-way ANOVA
revealed a significant effect both for injury (F (3, 40) = 18.93, p < 0.001) and for treatment
(F(3, 40) = 15.38, p < 0.001). It is noteworthy that in the ipsilateral hippocampus, synap-
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tamide administered to sham-operated animals decreased the Iba-1 level below the “Sham”
group, p < 0.05 (Figure 4e,f).

As a second marker for microglial activity assessment in neuropathic pain and
treatment, we used CD86, which is expressed in the cells of classically activated pro-
inflammatory microglia [40]. We found no significant increase in CD86 immunoreactivity
after SNI in the CA1 region of the ipsilateral hippocampus. Nevertheless, synaptamide
reduces CD86 immunoreactivity compared to controls in both synaptamide-treated SNI
animals and sham-operated mice (5.35 ± 0.37—“Sham” vs. 3.69 ± 0.21—“SNI + Syn”,
p < 0.01 and 4.37 ± 0.27—“Syn”, p < 0.05). Two-way ANOVA showed a significant effect
in the contralateral hippocampus for both injury (F(3, 40) = 4.09, p = 0.046) and treatment
(F(3, 40) = 15.42, p < 0.001). In the contralateral hippocampus, we observe a significant
increase in CD86 immunoreactivity in SNI compared to control (5.57 ± 0.54—“Sham”
vs. 11.95 ± 1.20 —“SNI”, p < 0.001). Synaptamide down-regulated SNI-induced CD86
immunoreactivity (11.95 ± 1.20—“SNI” vs. 7.35 ± 0.78, p < 0.001). Two-way ANOVA
showed a significant effect in the contralateral hippocampus for both injury (F(3, 40) = 50.75,
p < 0.001) and treatment (F(3, 40) = 20.31, p < 0.001) (Figure 5a,b).

In the CA3 region of the ipsilateral hippocampus, synaptamide was able to reduce
the SNI-mediated increase in CD86 immunoreactivity (9.26 ± 0.59—“SNI” and 6.28 ± 0.46
—“SNI + Syn”, p < 0.001). Two-way ANOVA showed a significant effect in the contralateral
hippocampus for both injury (F(3, 40) = 65.08, p < 0.001) and treatment (F(3, 40) = 21.86,
p < 0.001). In the contralateral hippocampus, the level of CD86 immunoreactivity in SNI
was significantly increased compared to control (p < 0.001), but synaptamide reversed
this indicator (15.12 ± 0.80—“SNI” vs. 9.99 ± 0.16—“SNI + Syn”, p < 0.001). Two-way
ANOVA revealed a significant effect in the contralateral hippocampus for both injury
(F(3, 40) = 380.71, p < 0.001) and treatment (F(3, 40) = 71.83, p < 0.001) (Figure 5c,d).

In the dentate gyrus, an increase in the CD86 immunopositive microglia level is ob-
served both in the ipsilateral and in the contralateral hippocampus, compared to the control
(p < 0.001). Synaptamide downregulated CD86 level both in the ipsi- (9.93 ± 0.60 – ”SNI”
vs. 6.80 ± 0.54—“SNI + Syn”, p < 0.001) and contralateral hippocampus (14.23 ± 0.87—
“SNI” vs. 10.45 ± 0.99—“SNI + Syn”, p < 0.001). Two-way ANOVA showed a significant
effect in the contralateral hippocampus for both injury (F(3, 40) = 83.53, p < 0.001) and
treatment (F(3, 40) = 14.40, p < 0.001) (Figure 5e,f).

2.5. Hippocampal Neurogenesis in SNI and Synaptamide Treatment

The study of hippocampal neurogenesis in neuropathic pain and synaptamide treat-
ment was carried out using the immunohistochemical study of proliferating cell nuclear
antigen (PCNA), a marker of proliferation and reparation, and doublecortin (DCX), a
marker of newly formed neurons.

When studying the density of PCNA-positive neurons in the hippocampal dentate
gyrus subgranular zone (DG SGZ) (Figure 6a), we found that in neuropathic pain, the num-
ber of cells significantly decreases in the ipsi- (126.39 ± 10.48—“Sham” vs. 35.72 ± 13.62—
“SNI”, p < 0.001) and in the contralateral hippocampus (154.49 ± 17.40—“Sham” vs.
44.26 ± 13.16—“SNI”, p < 0.001). Synaptamide reversed SNI-mediated decrease in the
number of PCNA-positive cells in the ipsi- (35.72 ± 13.62—“SNI” vs. 158.72 ± 24.26—
“SNI + Syn”, p < 0.001) and the contralateral hippocampus (44.26 ± 13.16 – ”SNI” vs.
137.76 ± 14.64—“SNI + Syn”, p < 0.001). A 2-way ANOVA in the ipsilateral hippocampus
revealed a significant effect for both injury (F(3, 40) = 16.62, p < 0.001) and treatment
(F(3, 40) = 24.74, p < 0.001). A similar situation was observed in the contralateral hippocam-
pus: (F(3, 40) = 35.53, p < 0.001)-SNI, (F (3, 40) = 16.90, p < 0.001)-treatment (Figure 6b).
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Figure 5. CD86 immunoreactivity in CA1, CA3 and dentate gyrus (DG) hippocampal regions. (a) The
percentage of CD86 immunopositive staining area in CA1 hippocampal region. (b) Representative
images of CD86-positive immunostaining in CA1 hippocampal region. Scale bar—100 µm. (c) The
percentage of CD86 immunopositive staining area in CA3 hippocampal region. (d) Representative
images of CD86-positive immunostaining in CA3 hippocampal region. Scale bar—100 µm. (e) The
percentage of CD86 immunopositive staining area in DG hippocampal region. (f) Representative
images of CD86-positive immunostaining in DG hippocampal region. Scale bar—100 µm. Two-
way ANOVA with post hoc Tukey test, * p < 0.05, ** p < 0.01, *** p < 0.001; + p < 0.05, ++ p < 0.01,
+++ p < 0.001. *-compared to “Sham”, +-compared to “SNI”.

There were insignificant changes in the number of DCX-positive neurons in the dentate
gyrus subgranular zone of the ipsilateral hippocampus with SNI (1331.13 ± 72.23—“Sham”
vs. 1060.06 ± 61.00—“SNI”, p < 0.05). At the same time, in the contralateral hippocampus,
we observed a more pronounced increase in the number of DCX-positive cells compared
to control (1525.07 ± 89.14—“Sham” vs. 1012.24 ± 61.00—“SNI”, p < 0.001). Synap-
tamide prevented SNI-mediated decrease in newly formed neurons (1012.24 ± 61.00—
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”SNI "Vs. 1415.97 ± 64.96—“ SNI + Syn ", p < 0.001). Two-way ANOVA revealed a signif-
icant effect both for injury (F(3, 40) = 25.55, p < 0.001) and for treatment (F(3, 40) = 17.95,
p < 0.001) (Figure 6c,d).

2.6. Neuropathic Pain and Treatment Alter the Hippocampal Level of Glutamate Receptors
and PSD-95

We found that neuropathic pain alters the hippocampal levels of NMDA and AMPA
receptors. The contralateral hippocampus was the most affected. Thus, in animals with
SNI, the level of the NR1 subunit of NMDA receptors in the contralateral hippocampus
decreased (100 ± 4.29%—“Sham” vs. 72.26 ± 5.38%—“SNI”, p < 0.01). There were no
significant differences in the ipsilateral hippocampus (Figure 7a). However, upon syn-
tamide treatment, the NR1 level remained at the level of the control group and significantly
differed from the “SNI” group (72.26 ± 5.38%—“SNI” vs. 93.43 ± 2.73%—“SNI + Syn”,
p < 0.05) (Figure 7b). However, neither trauma nor treatment affected the level of the NR2A
subunit (data not shown). Moreover, there was no effect of SNI on the level of GluR1
and GluR2 AMPA subunits, although there was a downward trend (Figure 7c–f). When
examining the level of the postsynaptic density protein PSD-95, we found the decrease
in neuropathic pain in the contralateral hippocampus, but this effect was reversed by the
synaptamide treatment (84.86 ± 3.60%—“SNI” vs. 101.94 ± 4.94%—“SNI + Syn”, p < 0.05)
(Figure 7h). Interestingly, in the ipsilateral hippocampus, we observe an increase in the
level of PSD-95 in the “SNI + Syn” group compared to the control (100 ± 2.16%—“Sham”
vs. 121.87 ± 3.11%—“SNI + Syn”, p < 0.05) (Figure 7g).
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Figure 7. Neuropathic pain and treatment alter the hippocampal level of glutamate receptors
and PSD-95. (a) Production of NMDAR1 (NR1) in ipsilateral hippocampus, optical density units,
%. (b) Production of NMDAR1 (NR1) in contralateral hippocampus, optical density units, %.
(c) Production of GluA1 in ipsilateral hippocampus, optical density units, %. (d) Production of
GluA1 in contralateral hippocampus, optical density units, %. (e) Production of GluA2 in ipsilateral
hippocampus, optical density units, %. (f) Production of GluA2 in contralateral hippocampus, op-
tical density units, %. (g) Production of PSD-95 in ipsilateral hippocampus, optical density units,
%. (h) Production of PSD-95 in contralateral hippocampus, optical density units, %., * p < 0.05,
** p < 0.01; + p < 0.05, ++ p < 0.01. *-compared to Veh, +-compared to LPS.

3. Discussion

In this work, we studied the effect of docosahexaenoic acid derivative synaptamide, on
neuropathic pain indicators, as well as on pain-induced changes in hippocampal plasticity.
As expected, neuropathic pain manifested itself in a range of sensory symptoms, includ-
ing thermal allodynia and mechanical hyperalgesia. The use of synaptamide improved
sensory symptoms of neuropathic pain in mice. As in earlier studies [40], neuropathic
pain disrupted the performance of hippocampus-dependent memory types: working and
long-term. Behavioral studies showed that neuropathic pain interfered with the task of
new objects’ recognizing in SNI, and synaptamide reversed these impairments. In addi-
tion, synaptamide prevented working memory impairment caused by neuropathic pain.
These behavioral deteriorations are based on changes in the hippocampal neuronal and



Int. J. Mol. Sci. 2021, 22, 12779 12 of 22

synaptic plasticity that we see in neuropathic pain. As you know, peripheral neurotrauma
induces changes in the neurotransmitters’ release, as well as the expression of excitatory
and inhibitory receptors, which affects synaptic transmission [7]. The impaired activity
of glutamatergic transmission is considered as one of the neuropathic pain pathogenetic
mechanisms [41]. In a study by Ultenius et al. (2006) [42], on sciatic nerve injury, increased
phosphorylation of NR1 in the spinal cord ipsilateral dorsal horn in the rat was observed,
which indicates a significant role of NR1 in the neuropathic pain pathogenesis. According
to our experiment, SNI causes a reduction of NMDA NR1 subunits in the hippocampus.
The NR1 subunit is important for the functioning of NMDA receptors, and NR1 phosphory-
lation is the main mechanism for regulating channel activity and its transfer to the neuronal
surface [43]. Activation of protein kinase C enhances NMDAR activity and increases long-
term potentiation (LTP). Considering the ability of synaptamide to enhance cAMP/PKC
signaling, it is possible to explain the recovery of NR1 expression, impaired due to SNI,
upon synaptamide administration. AMPA receptors are co-expressed with NMDAR at ma-
ture synapses, provide an initial response to glutamate at the synapse, and are involved in
the neuropathic pain pathogenesis [44]. However, in most studies, the expression of this re-
ceptor subtype in the hippocampus remains unchanged. For example, in the work of Wang
et al. (2015) there was no alteration of GluA1 or GluA2 expression within the hippocampus
in partial sciatic nerve ligation (PSNL) model [45]. In the study by Goffer et al. (2013), there
was no significant change in AMPA expression in SNI [46]. In our study, the subunits of
the AMPA receptors GluR1 and GluR2 tend to decrease in the contralateral hippocampus
during neuropathic pain; however, we did not find significant changes in the expression of
AMPAR by ELISA. The absence of changes in the total level of AMPA receptors both in the
previous ones [44,45] and in our study may be since only the surface density of receptors
changes due to endocytosis, while the total number remains unchanged or changes slightly.
However, studies show that pain stimuli in the spinal cord facilitate the trafficking of AMPA
receptors to the cell surface [47,48]. In the anterior cingulate cortex, the level of receptors
evenly increases on the cell surface and decreases in the cell cytoplasm [49]. In addition to
the SNI-induced decrease in the level of NMDA receptors, a decrease in postsynaptic den-
sity 95 protein (PSD-95) was observed in the contralateral hippocampus. PSD-95 is usually
co-expressed with NMDA receptors and it regulates NMDARs activity [50]. PSD-95 is one
of the most abundant postsynaptic density proteins and regulates the synaptic localization
of receptors, channels, and signaling molecules [51]. PSD-95 is considered an important
regulator in the signaling complexes organization in NMDA receptors [52]. A decrease in
PSD-95 at glutamate synapses in the DG molecular layer may negatively affect the flow
of information to other hippocampal regions through granular cells and mossy fibers [53].
Synaptamide can recover the decreased level of NMDA receptors thereby contributing to
the normalization of the PSD-95 level. Studies of PSD-95 indicate its possible role in the
regulation of the dendritic spines’ structure. Overexpression of PSD-95 leads to an increase
in the dendritic spines’ density, their stabilization, and the formation of synapses [54]. In
our study, we observed an SNI-induced decrease in the density of thin spines on the apical
dendrites of the CA1 pyramidal neurons. Thin spines, unlike mushroom ones, are more
dynamic, since they are responsible for the formation of short-term memory. As the spine
stabilizes, its head increases, which determines the transfer of information into long-term
memory [55]. In this case, long-term potentiation (LTP) is directly related to the size and
density of dendritic spines. LTP induction causes instant polymerization of actin filaments
in the spine neck, contributing to a change in spine structure, and associated synaptic
efficiency [56]. Interestingly, synaptamide administration not only reversed the decrease in
the thin spines’ density, but also increased the number of mushroom and stubby spines
compared to the control. The role of stubby dendritic spines is still poorly understood,
and they are considered formed, mainly due to the disappearance of mushroom spines.
Recent studies have shown that stubby and mushroom spines have similar mean protein
copy numbers and topology [57], which also suggests that stubby spine density is related
to changes in mushroom density.
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The injury of peripheral nerves provoked not only a dendritic spines density decrease
but also degradation of the apical dendrites in CA1-pyramidal neurons. Previous studies
show that maladaptive changes in the dendritic tree within the hippocampus lead to dys-
regulation of synaptic plasticity [58], which likely provokes the development of cognitive
and emotional symptoms of neuropathic pain. For synaptic integration, voltage-gated
channels in pyramidal dendrites are of great importance [59]. Morphological changes
and degeneration of pyramidal neurons are associated with the microglia activation and
the production of pro-inflammatory factors [35,60,61]. The present study demonstrates
the activation of microglia predominantly in the contralateral hippocampus due to SNI.
The administration of synaptamide effectively suppressed SNI-induced microglial acti-
vation. At the same time, synaptamide treatment caused the recovery of the length and
branching in the CA1 pyramidal neurons’ dendrites and improvement of hippocampal
neurogenesis, impaired due to SNI. It can be assumed that such a beneficial effect on
dendrite morphology and neurogenesis is due to the anti-inflammatory activity of synap-
tamide. The anti-inflammatory activity of synaptamide has been demonstrated previously
in in vitro [26,62] and in vivo [63] models, and is considered to be associated with binding
to the GPR110 receptor, leading to activation of the cAMP/PKA signaling pathway and
NF-κB inhibition. Activation of the cAMP/PKA signaling pathway is realized through
the cyclic adenosine monophosphate (cAMP) accumulation in cells, followed by cAMP-
dependent phosphorylation of the protein kinase A (PKA) enzyme and suppression of
NF-kB activity. Since NF-κB induces the expression of various pro-inflammatory genes,
its suppression leads to a decrease in the inflammatory response, which is manifested by
a decrease in the production of the pro-inflammatory cytokines and an increase in the
anti-inflammatory factors production by microglial cells [63]. Proinflammatory cytokines
derived from microglia induce impaired neurogenesis, thereby provoking memory and
learning failure [64]. The involvement of the lateral entorhinal cortex (lEC) neurons in the
sensory information transmission into the hippocampus, the axons of which terminate
on the DG dendrites [9], may explain the significant activation of microglia in this region,
as well as neurogenesis impairment, and the disturbances of nonspatial processing. The
connection between the medial entorhinal cortex (mEC) and the hippocampus is known
to play an important role in working memory. In mEC lesions, there is an extensive
deficit in the spatial coding of CA1 pyramidal neurons, accompanied by less informative
spatial firing patterns [65]. The studies show the involvement of the CA1 region in the
long-term recognition memory implementation [66]. Thus, increased neuronal activity in
the CA1 region can provoke microglial activation [67,68] with subsequent degeneration
of the neuronal tree due to hyperactivation and excitotoxicity [69–71]. The projections
from layer II of the entorhinal cortex onto the neurons of the CA3 region, along with
projections in the CA1 region, take part in the so-called temporoammonic pathway of
sensory information entering the hippocampus. An increase in the microglial activity
within the CA3 region seems to be a consequence of neuronal activation [68]. According to
our data, an increase in the CD86-immunoreactivity (a marker of proinflammatory M1-type
of microglia), is observed in CA1, CA3, and DG. Factors produced by M1 microglia are
involved in neuropathic pain pathogenesis [72,73]. For example, an increase in the proin-
flammatory cytokine IL-1β level in the hippocampus controls the mechanical allodynia
development [74]. Another proinflammatory brain cytokine, TNF-α, is also associated with
a pain hyper response in sciatic nerve ligation in rats [75]. We assume that synaptamide
inhibits the hippocampal neurons’ hyperactivation and prevents the dendritic tree structure
disruption, by suppressing the microglial activity and the production of the proinflamma-
tory cytokines. Suppression of neuroinflammation processes leads to the stabilization of
the neurotransmitters release, expression of excitatory and inhibitory receptors [76], as well
as the dendritic spines’ density and configuration [77]. Together, these properties have a
beneficial effect on the hippocampal functional state, including synaptic transmission and
hippocampus-dependent cognitive processes.
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4. Materials and Methods
4.1. Animals

We used 3-month-old male mice in the study. Mice were raised in the National
Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences,
Vladivostok, Russia. The cage contained 3–4 mice with ad lib access to food and water.
Animals were housed on a 12-h light/dark cycle at 23 ± 2 ◦C and 55 ± 15% humidity. The
experimental procedures were approved by the Animal Ethics Committee at the National
Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
(No. 3/2021), according to the Laboratory Animal Welfare guidelines and the European
Communities Council Directive 2010/63/EU.

4.2. Surgery and Treatment

The spared nerve injury model (SNI) [78] was used to induce neuropathic pain. A
rodent anesthetic vaporizer (VetFloTM, Kent Scientific Corporation, Torrington, CT, USA)
was applied to anesthetize the mice using isoflurane. The right sciatic nerve was exposed
after the animal had been anesthetized, and two of the three sciatic nerve terminal branches
(the tibial and common peroneal nerves) were tightly ligated (4–0 silk suture; Ethicon,
Irvine, CA, USA). The ligatures were tightened until the limb began to twitch slightly.
Distal to the ligature, the ligated branches were transected, and 2 mm of each distal nerve
stump was excised. The sciatic nerve and its branches were exposed in the "Sham" group,
but they were neither ligated nor transected. The muscles and skin of each animal were
sutured individually with a 4–0 silk suture (Ethicon, Irvine, CA, USA).

Synaptamide was injected subcutaneously (s.q.) in a dose of 10 mg/kg. The mice
(n = 80) were divided into the following groups: “Sham” (n = 20)-water-injected sham-
operated mice; “SNI” (n = 20)-water-injected mice with SNI; "SNI + Syn" (n = 20)-synaptamide-
injected mice with SNI; “Syn” (n = 20)-synaptamide-injected sham-operated mice. The
synaptamide injections were administered for 28 consecutive days. The first injection was
carried out in a day of surgery. As a control, animals were treated with water in the same
volume (100 µL). The synaptamide emulsion was prepared by shaking synaptamide with
water to give a final concentration of 25 mg/mL, using a multi-vortex shaker (V-32, Biosan,
Riga, Latvia). To increase the stability of the emulsion when gradually dissolving, ethanol
was added in a low concentration. The amount of ethanol was 1.5% of the volume injected.
A similar amount of ethanol was added to the water administered to the control animals.
A brief design of the experiment is shown in Figure 8.
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Figure 8. Experimental design. The thermal allodynia and mechanical hyperalgesia were measured weekly for two
consecutive days. Memory tests were performed at days 27 and 28 after the surgery. Extraction of the brain for subsequent
histological, immunohistochemical, biochemical, and electrophysiological studies was carried out on the 29th day after
the surgery.

4.3. Synaptamide Preparation

Synaptamide was derived from the by-products of Bering Sea salmon. The PUFA
concentrate was made using the technique reported before [79]. Ethanolamines were first
made by converting a polyunsaturated fatty acid (PUFA) concentrate into ethyl esters
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and then treating them with ethanolamine. At least 48 h were spent incubating with
ethanolamine at 70 ◦C. Then, using a Shimadzu LC-8A chromatograph (Shimadzu, Japan)
with UV/VIS SPD-20A, HPLC of PUFA ethanolamides was performed (205 nm). Supelco
Discovery HS C-18 preparative reverse phase column was used to separate ethanolamides
(Bellefonte, PA, USA). The following parameters were used: particle size of 10 µm, inner
diameter of 250 mm, and length of 50 mm. We used ethanol/water (70:30, v/v) for
isocratic elution. The elution rate was 50 m per min. Fractions containing the resultant
N-acylethanolamines were collected, evaporated in vacuo, and GC and GC–MS analyses
were performed. At room temperature, the resultant synaptamide was a light-yellow oily
liquid with a slight odor. Synaptamide has a purity of 99.4 percent.

The conversion to trimethylsilyl derivatives (TMS-NAE) was used to identify the
composition of the ethanolamides [80]. 50 L of N, O-bis (trimethylsilyl) trifluoroacetamide
(BSTFA) was mixed with 1 mg of fatty acid ethanolamides and heated to 60 ◦C under argon
for 1 h. Then 1 mL of hexane was added, and 1 µL of each silylated fraction was injected
into the GC apparatus to measure the ethanolamides composition. The chromatograph was
a Shimadzu GC-2010 plus with a Supelco SLB TM–5 ms capillary column 30 m 0.25 mm
inner (Sigma-Aldrich, Bellefonte, PA, USA) and a flame ionization detector (Shimadzu,
Kyoto, Japan). To separate the components of the mixture, the following conditions were
used: (1) a starting temperature of 180 ◦C; (2) a heating rate of 2 ◦C/min to 260 ◦C; and (3)
the temperature was maintained for 35 min. The temperatures of the injector and detector
were the same, at 260 ◦C. GC–MS was employed to identify the TMS–NAE structures.
At 70 eV, a Shimadzu TQ-8040 instrument (Shimadzu, Kyoto, Japan) with a Supelco SLB
TM−5 ms column (Sigma-Aldrich, Bellefonte, PA, USA) was used to record electronic
impact spectra. The same temperature settings as in gas chromatography were applied.

4.4. Behavioral Tests

All behavioral tests were carried out throughout the day/night cycle’s light phase,
from 7:00 to 19:00. To reduce olfactory signals, the test apparatus was carefully cleaned
with 10% ethanol after each animal. Mice were placed in the test apparatus for 10 min daily
for 3 days before the day of testing to prevent stress associated with the new environment.
The mice were left in their home cages in the test room for two hours on the day of the test.
Thermal allodynia was assessed on a weekly basis. In the 28 days following the procedure,
memory tests were carried out.

4.5. Thermal Allodynia

A cold/hot plate analgesiometer was used to measure thermal allodynia (Columbus
Instruments, Columbus, OH, USA). The experiments were performed on a 30 × 30 cm
metal plate in a chamber with 30 cm high acrylic walls. The cold plate had a temperature
of +4 ◦C, while the hot plate had a temperature of +48 ◦C, and the testing time was 60 s.
Mice were placed on the plate, and the time when the injured hind paw was removed off
the plate for the first time was recorded. This test was carried out twice a week for two
consecutive days.

4.6. Mechanical Hyperalgesia

A mouse pincher analgesia meter (Bioseb, Pinellas Park, FL, USA) was used to measure
mechanical hyperalgesia. The mice were gently held and increasing pressure was applied
on the dorsal surface of the injured hind paw until the toes flexed. To avoid tissue injury,
a 400-g threshold has been determined. This test was carried out twice a week for two
consecutive days.

4.7. Y-Maze Testing

The Y-maze spontaneous alternation test was used to assess mice working memory. A
Y-shaped acrylic glass labyrinth with three identical arms was used in the experiment
(30 × 10 × 20 cm). The mouse was placed in the maze’s middle and given 5 min to
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explore freely. To determine the spontaneous alternation rate, the sequence of the en-
tries was recorded. When the animal’s four paws were inside the arm, it was thought
that the entrance had been made. Before the animals were sacrificed, this test was per-
formed once every four weeks. The spontaneous alternation rate was calculated using the
following formula:

Ks = R/A (1)

where Ks—the spontaneous alternation rate, R—the number of consecutive entries into the
3 nonrepeating arms, A—the total number of possible alternations.

4.8. Novel Object Recognition Test

The novel object recognition test was performed as described earlier in [81], Bevins and
Besheer (2006). The habituation phase was carried out the day before the familiarization
session. Each animal was placed in a chamber without objects and allowed to explore the
space for 10 min. Each mouse was placed in a chamber containing two identical plastic
objects on the left and right sides of the arena for 10 min during the familiarization phase.
The animal was then returned to its original cage for a retention period of 24 h (for long-
term memory testing). Each mouse was placed in a test arena where one of the objects
was swapped with a novel one for testing purposes. Both items were positioned at the
same distance from the animal. A recording device was put over the testing setup and was
used to continually capture mouse activity. The placement of the animal’s nose at not more
than 2 cm from the object was used to determine the animal’s interest in the object. The
time spent investigating a new object was divided by the total time spent examining both
objects to get the discrimination index. The objects and the arena were carefully cleaned
with 10% ethanol in between experiments. This test was performed four weeks following
the surgery before the animals were sacrificed.

4.9. Golgi–Cox Staining

A rodent anesthetic vaporizer (VetFloTM, Kent Scientific Corporation, Torrington, CT,
USA) was used to anesthetize the mice using isoflurane. Brains were promptly taken from
the skulls of anesthetized mice, washed with 0.1 M PBS (+4 ◦C), and sliced into two hemi-
spheres. According to the manufacturer’s instructions, the material was stained with the FD
Rapid GolgiStainTM kit (FD NeuroTechnologies, Ellicott City, MD, USA). A cryomicrotome
was used to make 100-m thick slices (HM 550; Thermo Scientific, Waltham, MA, USA).
Slices were mounted on gelatin-coated slides, stained, dehydrated, and coverslipped with
VectaMountTM mounting medium (H-5000; Vector Laboratories, Burlingame, CA, USA).

4.10. Sholl Analysis

We used sagittal slices from the contralateral dorsal hippocampus to assess den-
dritic tree morphology. The impact of neuropathic pain and synaptamide therapy on the
dendritic tree morphology of hippocampal CA1 pyramidal neurons was studied using
a Sholl analysis [82]. For image processing and morphometrical studies, ImageJ soft-
ware (NIH, USA) was utilized. Pictures for each individual neuron were transformed
to 8-bit color images for dendritic tracing. As previously stated, [83], dendrites were
traced using the NeuronJ plugin (NeuronJ: An ImageJ Plugin for Neurite Tracing and
Analysis. Available online: http://www.imagescience.org/meijering/software/neuronj/
(accessed on 1 August 2021)). The Sholl analysis plugin (Sholl Analysis. Available online:
https://imagej.net/plugins/sholl-analysis (accessed on 1 August 2021)) was used to do
the analysis in ImageJ. The single animals were chosen as the analytical unit (5 animals per
group). Moreover, 3–4 well-stained neurons were chosen from each animal for evaluation.

4.11. Immunohistochemical Studies

On the 28th day following surgery, the brains were taken from the skull for immuno-
histochemistry tests. A rodent anesthetic vaporizer (VetFloTM, Kent Scientific Corporation,
Torrington, CT, USA) was used to anesthetize the mice using isoflurane. The animals

http://www.imagescience.org/meijering/software/neuronj/
https://imagej.net/plugins/sholl-analysis
https://imagej.net/plugins/sholl-analysis
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were transcardially perfused with 5 mL of pH 7.2 PBS (at 4 ◦C). The brain was then
rapidly removed from the skull and immersed in 4% paraformaldehyde for 12 h. The
tissue samples were then embedded in paraffin blocks after being rinsed in PBS (pH 7.2).
A Leica rotary microtome was used to cut 10-m thick coronal slices (RM 2245). The
following stages were included in the immunohistochemistry approach utilized in the
research: (1) antigen retrieval in 10 mM citrate buffer, pH 6, at 80 ◦C for 20 min (only
for Iba-1 and CD86 immunostaining). (2) Endogenous peroxidase activity blocking in
0.3 percent H2O2 solution for 5 min. (3) Nonspecific antibody binding blocking in 5 percent
BSA in PBS for 1 h. (4) Primary antibody treatment (4 ◦C, 24 h). (5) Secondary antibod-
ies labeled with horseradish peroxidase: PI1000 (anti-rabbit), 1:100 (Vector Laboratories,
Burlingame, CA, USA). (6) ImmPACTTM DAB peroxidase substrate chromogen (SK-4105;
Vector Laboratories); and (7) washing with 0.1 M PBS (pH 7.2), dehydrating, and mounting
in VectaMount permanent mounting medium (Vector Laboratories, Burlingame, CA, USA)
(H-5000; Vector Laboratories). Anti-Iba-1 rabbit polyclonal antibodies (1:500; ab108539),
anti-CD86 rabbit monoclonal antibodies (1:1000; ab53004), anti-PCNA rabbit monoclonal
antibodies (1:1000; ab92552), and anti-doublecortin rabbit polyclonal antibodies (1:1000;
ab18723) were used for immunostaining (all from Abcam, Cambridge, MA, USA). Every
method was used to quantify Iba-1, CD86, PCNA, and doublecortin-immunopositive
cells. A Zeiss Axio Imager microscope with an AxioCam 503 camera and AxioVision
(Zeiss, Germany) software was used to evaluate the images. ImageJ was used to process
and analyze the images (NIH, Bethesda, MD, USA). The following methods were used
to process each micrograph: conversion to black and white (8-bit picture); background
subtraction (rolling ball radius = 50); contrast enhancement (+30 units); and binarization.
The appropriate area was picked, and the percent-colored area was computed to quantify
the extent of marker staining. The quantitative data of all photos of the same marker
collected from one animal were averaged for statistical analysis.

4.12. ELISA

The concentration of NR1, GluA1, GluA2, and PSD-95 in the hippocampus was mea-
sured using an ELISA (enzyme-linked immunosorbent assay). A unique cohort of mice
was used in this study (5 per group). The animals were sedated with isoflurane using a
rodent anesthetic vaporizer (VetFloTM, Kent Scientific Corporation, Torrington, CT, USA).
The hippocampi were rapidly removed, frozen in liquid nitrogen, and preserved at a
temperature of −70 ◦C. The hippocampi were homogenized in a homogenization solution
containing 100 mM Tris, pH 7.4, 150 mM NaCl, 1 mM EGTA, and 1 mM EDTA, 1% Triton
X-100, 0.5% sodium deoxycholate, and a protease inhibitors cocktail (cOmplete™, Sigma-
Aldrich, Bellefonte, PA., USA), kept on ice for 15 min, centrifuged (16,000× g, 30 min,
+4 ◦C) and the supernatants were collected. The materials (supernatants of cells or tissue
lysates) were diluted with bicarbonate-carbonate coating buffer (100 mM, 3.03 g Na2CO3,
6.0 g NaHCO3, 1000 mL distilled water, pH 9.6) to reach a concentration of 20 g/mL to iden-
tify NMDAR1, GluA1, GluA2, and PSD-95 antigens. The samples were then placed in each
well of a PVC microtiter plate (M4561-40EA, Greiner, Austria) and incubated overnight
at 4 ◦C. The coating solution was then withdrawn, and the plate was rinsed three times
with 200 µL PBS in the wells. Moreover, 5% non-fat dry milk (M7409-1BTL, Sigma-Aldrich,
St. Louis, MO, USA) was used to block the remaining protein-binding sites in the coated
wells (2 h at room temperature). After washing 100 µL of diluted primary antibody was
added to each well. Rabbit polyclonal anti-NMDAR1 (1:1000, ab52177, Abcam, Cam-
bridge, UK), rabbit polyclonal anti-GlyA1 (1:1000, MA5-32344, Thermo Fisher Scientific,
Waltham, MA, USA), rabbit polyclonal anti-GlyA2 (1:1000, 32-0300, Thermo Fisher Scien-
tific, Waltham, MA, USA), rabbit polyclonal anti-PSD-95 (1:1000 (1:1000, 700902, Thermo
Fisher Scientific, Waltham, MA, USA) primary antibody were used. The plate was cov-
ered with adhesive plastic and left to incubate at room temperature for 2 h. After wash-
ing, 100 µL of peroxidase secondary antibody (1:500, PI-1000-1, Vector laboratories, San
Francisco, CA, USA) was added to each well, and incubated for 2 h at room temper-
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ature. After washing, 50 µL of TMB (3,3′,5,5′-tetramethylbenzidine, SK-4400, Vector
laboratories, San Francisco, CA, USA) was added to each well, and incubated at room
temperature for 30 min until color appeared. After the color had grown sufficiently, the
wells were filled with 50 µL of stop solution (1N hydrochloric acid). At a wavelength
of 450 nm, the absorbance was measured in an iMark plate spectrophotometer (Bio-Rad,
Hercules, CA, USA). The measurements of each sample were averaged after they were
tested twice. The protein concentration was measured using a BCA Protein Assay Kit
(Pierce, Rockford, IL, USA).

4.13. Electrophysiological Recordings

Mice were profoundly sedated with isoflurane (Laboratorios Karizoo, S.A., Barcelona,
Spain), decapitated, and the brains were promptly removed and placed to an ice-cold
aCSF containing 119 mM NaCl, 2.5 mM KCl, 2 mM MgCl2, 0,25 mM CaCl2, 26 mM
NaHCO3, 1 mM NaH2PO4, 10 mM D-glucose, pH 7.4, oxygenated with carbogen 95% O2,
5% CO2. Using a vibratome, parasagittal slices with a thickness of 350 µm were produced
from the hippocampus. Within 1 h, at 33 ◦C, the slices were allowed to recover. The
recordings were made in a submersion-recording chamber that was perfused with aCSF
at a temperature of 30 ± 0.5 ◦C and a flow rate of 2 mL/min. We used a nylon mesh
fastened on a U-shaped platinum wire during aCSF perfusing to secure the segment in
the recording chamber. An upright microscope was used to examine acute hippocampus
slices (Olympus BX50, Olympus Corporation, Shinjuku City, Tokyo, Japan). The following
recording extracellular electrode characteristics were used: an outer diameter of 1.5 mm, a
length of 10 cm, and borosilicate glass (World Precision Instruments, Sarasota, FL, USA)
(World Precision Instruments, Sarasota, FL, USA). Pt-Ir wire insulated by Teflon (75 m
diameter, including Teflon covering) served as the monopolar stimulating electrode. The
stimuli were triggered with an isolating stimulator and National Instruments LabVIEW
2019 software (10 s duration, Master8) (Constant Current Stimulus Isolator WPI). With a
sampling rate of 15 Hz, an intracellular amplifier in bridge circuit mode (Axoclamp 2B,
Axon Instruments, Berkeley, CA, USA) was applied. The signal was digitized (National
Instruments, PCI 6154), analyzed, and filtered with LabVIEW 2019 software (National
Instruments, Austin, TX, USA).

Between the CA2 and CA1 areas, the stimulating electrode was inserted into the
Schaffer collateral fiber tract. To record an extracellular population excitatory postsynaptic
potential (EPSP), an electrode was placed in the stratum radiatum subfield of the CA1 area
at a distance of no more than 1500 µm, but no less than 300 µm from the stimulating elec-
trode to avoid direct stimulation of cells near the recording sites. An extrasynaptic potential
was noticed during 0.5 mA stimulation to see if the slice was acceptable for recording, and
the typical graph of input/output stimulation currents (IO) was recorded. To stabilize the
responses, we used a stimulation with a frequency of 1 Hz and a current of 0.4 mA for
30 min. The magnitude of the testing stimulus for long-term post-tetanic potentiation was
70% of the maximal extrasynaptic potential amplitude. Long-term potentiation (LTP) was
achieved by stimulating the brain at 100 Hz for 1 s.

4.14. Statistical Analysis

All results are provided as means with standard error of the mean (means ± SEM).
The Shapiro–Wilk test was used to determine if the data were normally distributed. We
utilized one-way ANOVA followed by a post hoc Tukey multiple comparison test or
Kruskal–Wallis test followed by Dunn’s multiple comparison testing in behavioral and
electrophysiological recording. Histology, immunohistochemistry, and ELISA data were
analyzed statistically using a two-way ANOVA followed by a post hoc Tukey multiple
comparison test. The significance level was set at p < 0.05. Microsoft Excel software
(Microsoft, Redmond, WA, USA) and GraphPad Prism 4 were used to conduct all statistical
tests (GraphPad Software, San Diego, CA, USA).
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