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Abstract: Patients with inflammatory bowel disease (IBD) have increased incidence of colorectal
cancer (CRC). IBD-associated cancer follows a well-characterized sequence of intestinal epithelial
changes, in which genetic mutations and molecular aberrations play a key role. IBD-associated cancer
develops against a background of chronic inflammation and pro-inflammatory immune cells, and
their products contribute to cancer development and progression. In recent years, the effect of the
immunosuppressive microenvironment in cancer development and progression has gained more
attention, mainly because of the unprecedented anti-tumor effects of immune checkpoint inhibitors in
selected groups of patients. Even though IBD-associated cancer develops in the background of chronic
inflammation which is associated with activation of endogenous anti-inflammatory or suppressive
mechanisms, the potential role of an immunosuppressive microenvironment in these cancers is
largely unknown. In this review, we outline the role of the immune system in promoting cancer devel-
opment in chronic inflammatory diseases such as IBD, with a specific focus on the anti-inflammatory
mechanisms and suppressive immune cells that may play a role in IBD-associated tumorigenesis.

Keywords: IBD; IBD-associated cancer; inflammation; immune system; immune cells; immunosurveillance;
immunosuppression; colitis-associated cancer; colorectal cancer

1. Introduction

Ulcerative Colitis (UC) and Crohn’s Disease (CD) are the two forms of inflammatory
bowel disease (IBD), characterized by chronic inflammation of the digestive tract leading to
diarrhea, rectal bleeding and abdominal pain. One of the most severe complications of IBD
is the development of colorectal cancer (CRC). It is generally accepted that the continuous
exposure of intestinal epithelial cells (IECs) to proinflammatory stimuli and excessive cell
damage with increased IECs turnover results in both genetic and immunological alter-
ations, making IBD patients prone to developing CRC [1–3]. Population-based evaluations
estimate that UC increases the risk of developing CRC two to three-fold compared to the
non-IBD population [4,5] and patients with CD have also been reported to have increased
CRC risk when compared to the general population [6,7]. The risk of developing CRC
increases significantly after 10 years of IBD diagnosis and is higher in patients with contin-
uous chronic intestinal inflammation, highlighting the crucial role of a prolonged inflamed
environment in the pathogenesis of IBD-associated cancer [8–10]. Compared to sporadic
CRC, IBD-associated cancer has worse overall survival rates. The reported differences in
clinical features, disease pathogenesis and epidemiologic characteristics, which may be
explained by differences in tumor biology, have recently been excellently reviewed [11].

IBD-associated tumorigenesis follows a multistep sequence of genetic and morpholog-
ical alterations in the intestinal epithelium, from inflamed intestinal mucosa to dysplasia
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and finally carcinoma [12,13]. The genetic mutations that drive the progression from dys-
plasia to carcinoma in IBD-associated cancer have been extensively studied and include
mutations in tumor suppressor genes (TP53 mutations) and in genes that regulate the cell
cycle and cell proliferation such as KRAS and APC mutations (Figure 1). Surprisingly,
there is very little difference in the genetic mutations that drive carcinogenesis among
IBD-associated cancer and sporadic CRC [14,15].
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Figure 1. Schematic representation of the contribution of the immune system in the dysplasia to carcinoma sequence in
IBD-associated cancer. Chronic inflammation promotes the recruitment of immune cells into the intestinal mucosa of
inflammatory bowel disease (IBD) patients. These cells will secrete pro-inflammatory cytokines such as tumor necrosis
factor alpha (TNF-α), interleukin (IL) -6 and IL-1β. In addition, these tissue-infiltrating cells produce oxidative compounds
including reactive oxygen species and reactive nitrogen species, generating tissue injury and DNA damage, promoting
excessive epithelial cell proliferation and favoring genomic aberrations and genetic mutations. TP53 mutations result in
low-grade dysplastic mucosa, after which mutations in KRAS are considered to be involved in progression from low-grade
dysplasia to high-grade dysplasia. Finally, mutations in the APC gene result in cancer. Chronic inflammation also induces
immunosuppressive mechanisms that may be involved in cancer progression, such as recruitment of M2 macrophages, T
regulatory cells (Tregs) or T lymphocytes expressing inhibitory markers; programmed cell death protein 1 (PD-1), cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4). In addition, there is an increase in angiogenic factors and anti-inflammatory
cytokines; IL-10 and transforming growth factor beta (TGF-β) which favor carcinoma development. (Tol-Dendritic cells:
Tolerogenic dendritic cells, ROS: reactive oxygen species, RNS: reactive nitrogen species).

As IBD-associated dysplasia develops in the background of chronic inflammation,
studies have highlighted the role of pro-inflammatory cytokines on tumorigenesis. Most
observations were made in mouse models [16–20]. Little is known about the potential
role of endogenous anti-inflammatory or immunosuppressive mechanisms that evolve
as a consequence of chronic inflammation in the gastrointestinal tract, although such
immunosuppressive mechanisms may contribute to tumorigenesis by impairing anti-
tumor immunity.

This review will delineate the role of the immune system in IBD-associated cancer with
a particular focus on the role of immunosuppressive mechanisms that may be involved in
the development of CRC in IBD patients.

2. IBD-Associated Cancer: From Inflamed Tissue to Carcinoma

IBD patients are at higher risk of developing CRC, with disease extent and duration
being two of the most prominent risk factors. For example, the risk of CRC in UC patients
is 1, 2 and 18% after 10, 20 and 30 years of diagnosis, respectively [9,21,22]. However,
recent evidence suggests that this risk is decreasing. In fact, an Australian cohort study
performed in 2014 showed a cumulative risk of 1% at 10 years, 2% at 20 years and 3%
at 30 years post diagnosis [23]. Patients with CD also appear to have an increased risk
of CRC, similar to UC patients, yet this is only the case in those CD patients having
colonic inflammation, and not in CD patients in which inflammation is confined to the
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small intestine [24]. This again emphasizes the critical role of chronic inflammation in the
pathogenesis of IBD-associated cancer. Another very important risk factor for CRC in IBD
patients is concomitant primary sclerosing cholangitis (PSC), which increases the CRC risk
by at least 4-fold when compared to UC patients without PSC [25]. The elevated risk of
cancer in patients with IBD is also the consequence of the so-called field cancerization effect.
In this phenomenon, clonally derived, neoplastic mutant cells form an indistinguishable
“field” within the inflamed intestinal segment, meaning that the whole intestinal area is at
risk of developing cancer [26].

IBD-associated cancer develops from dysplastic lesions within the colonic mucosa.
Colorectal dysplasia can be defined as a neoplastic alteration of the intestinal epithelium
that remains confined within the basal membrane [27]. Dysplastic lesions show specific
morphological features, such as nuclear alterations, cytoplasmic abnormalities and an ab-
normal architectural pattern due to uncontrolled cell proliferation [28,29]. In IBD-associated
cancer, there is a multi-step sequence of histological and morphological changes, namely
from inflamed mucosa to low-grade dysplasia (LGD), high-grade dysplasia (HGD) and
eventually carcinoma (Figure 1) [30]. This sequence is different from that in sporadic
CRC, where an early adenoma-like lesion emerges from the normal mucosa, after which it
evolves to late adenoma and finally adenocarcinoma [31].

Regarding the clinical aspects, CRC associated with IBD is often diagnosed at a
more advanced stage compared to sporadic CRC. This is probably due to the difficulty
in identifying dysplastic lesions in IBD-associated cancer, as they are usually flat and
endoscopically unresectable [1,9,26,32]. The predominance of flat and unresectable lesions
is one of the contributing factors to the increased mortality that this cancer presents, with
a 1.7-fold increase in mortality among IBD-associated cancer patients in contrast with
patients with non IBD and CRC [33]. After detection of LGD in IBD patients, guidelines
recommend an intensified surveillance program or even a total colectomy due to high risk
of developing cancer [30,33]. As an example, a recent study in a large IBD cohort with a
history of LGD found a cumulative incidence of advanced neoplasia of 22% up to 15 years
after LGD detection [34]. Moreover, around 25% of all HGD and carcinoma lesions were
detected within the first year after LGD detection [34], further emphasizing the risk of
cancer progression in patients with IBD-associated dysplasia.

Given the unquestionable role of intestinal inflammation in IBD-associated cancer
development, an optimal control of inflammation in IBD patients should prevent cancer
development. The use of anti-inflammatory drugs that induce mucosal healing, together
with appropriate endoscopic surveillance is considered the optimal strategy to prevent
cancer development [35–37].

Although there is limited evidence of the direct protective effect of most of the biologi-
cal therapies on the development of inflammation-induced cancer, a recent meta-analysis
demonstrated that the use of 5-aminosalisylate (5-ASA) and thiopurines are protective
factors for IBD-associated advanced neoplasia [33].

5-ASA is the most extensively used drug as maintenance therapy in UC [38,39]. Inter-
estingly, mouse studies demonstrated that this drug reduced tumor growth in CAC mouse
models, but not in sporadic CRC mouse models [40]. 5-ASA reduces tumor growth by
affecting multiple molecular pathways. For instance, it reduces beta-catenin accumulation
in APC-mutated cells and improves replication fidelity by reducing the occurrence of
DNA mutations [41,42]. Meta-analyses regarding the protective effect of 5-ASA on CRC
development showed conflicting results, probably due to heterogeneity in the populations
studied. Moreover, it remains unclear whether it has an intrinsic protective effect, or
whether protection is related to improved mucosal healing [43,44].

Thiopurines have also been suggested as chemo-preventive agents in IBD-associated
cancer [45,46], although studies have shown conflicting results, likely again due to high
heterogeneity in the studied cohorts and potential confounding factors. For example, no
protection against CAC was observed with the use of thiopurines in the French CESAME
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cohort [47]. In contrast, a recent meta-analysis demonstrated a protective role of thiopurines
in CAC prevention among UC patients with HGD [48].

Taken together, IBD-associated cancer represents a relevant clinical problem, which
is reflected in its high mortality rate and the difficulty of early detection, diagnosis and
treatment. In order to improve clinical management and to better predict which patients are
more likely to develop carcinomas from dysplastic lesions, it is critical that we understand
the pathophysiology of IBD-associated dysplasia and cancer.

3. The Role of the Immune System in Cancers Developing on the Background of
Chronic Inflammation

Chronic inflammation results in continuous tissue damage, accumulation of immune
cells and fibrosis. This dysregulated and chronically inflamed environment can be ob-
served in the setting of many autoimmune disorders with recurrent episodes of acute
inflammation, and in patients with long-standing chronic infections [49]. It is well estab-
lished that such a chronically inflamed environment is associated with the development
of cancer, as approximately 25% of cancers develop in the background of such chronic
inflammation and/or chronic infection [50–52]. For example, Helicobacter pylori gastritis
is associated with gastric cancer [53–55], human papillomavirus infection with cervical
cancers [56,57], and chronic hepatitis B and C infection is associated with hepatocellular
carcinoma [58,59]. In addition to microbial-induced inflammation, inflammatory auto-
immune conditions, including IBD and PSC, are associated with the development of CRC
and cholangiocarcinoma, respectively [9,11,13,21,60,61].

The current consensus is that chronic inflammatory conditions lead to genetic muta-
tions, genomic instability and DNA damage, as well as to immune cell dysregulation, which
collectively promotes cancer development [1,3,62–64]. Indeed, many pro-inflammatory
mediators that are present in a chronically inflamed environment can drive neoplastic
transformation, such as cytokines interleukin (IL) -1β, IL-6, Tumor Necrosis Factor alpha
(TNF-α) [65–68], other molecules and transcription factors (prostaglandin E2, S100A8/9
proteins, STAT3-mediated signaling) [69–77], as well as chemokines: C-C motif ligand
(CCL) -2, CCL5, CCL22, C-X-C motif ligand (CXCL) -5, CXCL12 [78–80]. In particular,
CXCL12 secreted by stromal fibroblasts can bind to its receptor in tumor cells and stimulate
motility and chemotaxis [81]. In addition, it has been demonstrated that neutralizing
antibodies against CCL2 and CXCL8 prevent the formation of lung metastases and in-
hibit tumor growth in breast carcinoma and prostatic cancer mouse models, respectively,
demonstrating their pro-tumorigenic role [82,83].

However, apart from pro-inflammatory mediators, endogenous anti-inflammatory
mechanisms that evolve during chronic inflammation may also shape an environment
in which cancer cells thrive (Figure 2). Unbalanced immune and non-immune secreted
compounds may result in a shift to an immunosuppressive microenvironment, affecting
the immune system’s ability to eliminate neoplastic cells. Thus, a chronic pro-inflammatory
environment may not only be associated with cancer formation through continuous tissue
damage and presence of pro-inflammatory tumor-driving mediators, but also through a
chronic inflammation-induced immunosuppressive state, which interferes with the genera-
tion of effective anti-tumor immune responses.

First, tissue-infiltrating monocytes and tissue-resident macrophages display a shift to-
wards an anti-inflammatory M2 phenotype under chronic inflammatory conditions [84,85].
These cells elicit several suppressive functions, including impairment of effector activ-
ity of T cells and dendritic cells (DCs) by anti-inflammatory cytokine production [86–88].
In addition, M2-like macrophages stimulate cell proliferation via epidermal growth fac-
tor production and angiogenesis, which facilitates tumor invasion [89–91]. In addition,
chronic inflammation leads to the recruitment of myeloid-derived suppressor cells (MDSCs)
(Figure 2), immature immune cells specialized in suppressing T cell effector functions and
proliferation [92]. MDSCs also produce anti-inflammatory cytokines and reduce expression
of activation markers on natural killer (NK) cells [93], all of which lead to a defect in
immunosurveillance and promote cancer development.
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Figure 2. Schematic representation of chronic inflammation-associated carcinogenesis. Tissue injury, microbial infections or
autoimmune diseases trigger acute inflammatory responses, characterized by an abundance of neutrophils, eosinophils
and monocytes, which are recruited into the tissue by a variety of chemokines. Together with M1 macrophages these
immune cells produce pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-12) leading to tissue damage. When inflammation
becomes chronic, adaptation occurs with a shift towards increased numbers of macrophages and lymphocytes among tissue-
infiltrating cells, and alteration of the inflammatory milieu with other inflammatory compounds such as prostaglandin
E2 and S100A8/9 proteins. In addition, immune-regulatory and anti-inflammatory mechanisms emerge, which may
promote carcinoma development, such as increased M2 macrophage differentiation from monocytes, and recruitment
of immunosuppressive cells; myeloid-derived suppressor cells (MDSCs) and Tregs. M2 macrophages produce anti-
inflammatory cytokines (TGF-β, EGF, IL-13, IL-10) which can, for example, promote angiogenesis and fibrosis, favoring
tumor growth. Consequently, the tumor itself creates an immunosuppressive milieu, characterized by elevated levels of M2
macrophages, MDSCs and Tregs. (EGF: epidermal growth factor).

Second, mounting proper immune responses against dysplastic/tumor cells requires
recognition of tumoral antigens by DCs, which then prime naive T cells in secondary
lymphoid organs. In chronically inflamed tissues, however, this crucial DC function may be
impaired as a consequence of an increase in tolerogenic DCs with a low capacity of antigen
presentation and decreased class-II major histocompatibility complex expression [94],
which is associated with defective antigen presentation to naive T cells and thus impaired
T cell anti-tumor immunity. This is critical, as T cells are the most important orchestrators
of the anti-cancer immune response, both through direct tumoral cell killing by cytotoxic
T CD8+ cells, and through activation of anti-tumor immune responses with the help of T
CD4+ helper cells type 1 (Th1) [95].

Next to this impaired function of T cells, chronic inflammation leads to regulatory
T cells (Tregs) recruitment [96] (Figure 2). Tregs are immunosuppressive in that they
impair the function of T, NK and DC cells by producing anti-inflammatory cytokines (IL-10,
transforming growth factor beta (TGF-β)). In addition, they express inhibitory surface
markers that facilitate immune-cell suppression, such as programmed cell death protein 1
(PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), among other suppressor
mechanisms [97–99]. These inhibitory markers can also be induced by pro-inflammatory
cytokines and mediators that can be found in a chronic inflamed milieu. For example,
interferon-gamma (IFN-γ) can stimulate expression of programmed death-ligand 1 (PD-L1)
in lung and colon cancer cell lines [100,101]. Moreover, chronic inflammatory conditions
induce PD-1 and the inhibitory marker CTLA-4 in CD4+, CD8+ T cells and Treg cells in
chronic infections due to continuous antigen stimulation [102,103], and negatively regulate
T cell activation [104]. Although expression of these inhibitory cell surface proteins is
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likely involved in controlling excessive inflammation, their possible role in promoting
carcinogenesis in a chronically inflamed tissue is unclear.

In summary, chronic inflammatory diseases predispose individuals to an increased
risk of cancer by chronic tissue damage, DNA damage and several pro-inflammatory
cytokines, but likely also by generating a tumor-promoting anti-inflammatory and sup-
pressive microenvironment.

4. The Role of the Immune System in IBD-Associated Cancer
4.1. Immune Signaling Pathways in IBD: Contribution to Cancer Onset
4.1.1. NF-κB/TNF-α

NF-κB is a family of transcription factors which play a role in inflammation, cell
proliferation and malignant transformation [105]. In both canonical and non-canonical
pathways, NF-κB forms a complex with its inhibitor IκB in the cytoplasm. In response to
diverse stimuli such as inflammatory cytokines, growth factors or microbial components,
IκB is degraded by IκB kinase (IKK complex) and NF-κB is translocated into the cell nucleus
as part of the canonical pathway [106]. Once in the nucleus, it regulates the transcription
of pro-inflammatory cytokines, chemokines and other inflammatory mediators that will
promote and sustain the inflammatory reaction. As a pivotal regulator of the inflammatory
responses, NF-κB has been implicated in the pathogenesis of IBD [107]. Furthermore, it has
been shown that NF-κB contributes to IBD-associated tumorigenesis, mainly by activating
the transcription of pro-inflammatory cytokines and by promoting tumor growth and
metastasis via promotion of angiogenesis-related genes and anti-apoptotic genes [108,109]
(Figure 3). The crucial role of NF-κB in IBD-associated cancer development has been
demonstrated in vivo in a mouse colitis-associated cancer (CAC) model; Azoxymethane
(AOM)/dextran sulfate sodium (DSS) model, in which inactivation of the canonical NF-
kB signaling pathway through specific ablation of NF-κB kinase B (IKKβ) in intestinal
epithelial cells reduced tumor incidence. Interestingly, deletion of the gene encoding IKKβ

in myeloid cells decreased both tumor number and size, demonstrating the importance
of NF-κB signaling in immune cells in CAC development [110]. In another study in
AOM/DSS-treated mice, deletion of NLRP12, a member of the Nod-like receptor family
which negatively regulates NF-κB, resulted in severe colitis and increased susceptibility
to CAC as compared to wild-type mice [111]. This further demonstrates the important
pro-tumorigenic role of NF-κB in IBD and IBD-associated cancer by limiting apoptosis and
by promoting the production of pro-inflammatory cytokines.

Moreover, NF-κB is a transcription factor for many pro-inflammatory cytokines, such
as TNF-α, a pleiotropic cytokine that promotes IECs apoptosis and acts on innate im-
mune cells via activation of the NF-κB transcription pathway, among other important
functions [112,113]. TNF-α seems to play a controversial role in cancer progression in IBD.
It can induce epigenetic changes and can promote oncogene expression levels [114]. The
pro-tumorigenic role of TNF-α in the progression to cancer under chronic inflammatory
conditions was demonstrated in CAC mouse models, in which treatment with anti-TNF-α
antibodies decreased both inflammation and the number of intestinal carcinomas [16].
Furthermore, administration of a transmembrane TNF-α antibody in an AOM/DSS mouse
model dampened the inflammatory response and tumor formation. Anti-tumorigenic
effects were observed both during the inflammation induction cycles with DSS and after
CAC development, highlighting transmembrane TNF-α as a candidate target for treat-
ment [115]. Unfortunately, there are currently no human data available that demonstrate a
clear effect of anti-TNF antibodies in protection from IBD-associated cancer [116]. However,
two cohort studies with long-term follow-up of IBD patients treated with the anti-TNF-α
antibody infliximab, did not show increased CRC incidence [117,118].
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STAT3 regulates the transcription of genes related to cell proliferation and survival and stimulates activation of NF-κB,
creating a positive feedback loop. It also stimulates production of IL-22 by CD4+ T cells, which is important in intestinal
homeostasis but potentially also facilitates carcinogenesis. Microbial recognition by antigen presenting cells also stimulates
production of IL-23 via STAT3 signaling, leading to Th17 polarization with the subsequent production if IL-17A, IL-17F and
IL-22, cytokines associated with carcinogenesis. (TLRs: toll-like receptor, VEGF: vascular endothelial growth factor).

4.1.2. IL-6/STAT3 and IL-22/STAT3

IL-6 is produced by innate immune cells residing in the intestinal mucosa and regulates
survival and proliferation of IECs [119]. Importantly, IL-6 has been demonstrated to have a
strong impact on the early progression to carcinoma in IBD via STAT3 signaling (Figure 3).
Increased expression of IL-6 and STAT3 was demonstrated in biopsies from UC patients
with active disease and in IBD-associated carcinomas, as compared to patients with inactive
disease or controls [120]. In CAC mouse models, IL-6 ablation reduced tumor formation
and mice injected with recombinant IL-6 had increased tumor load. This was STAT3-
dependent, as deletion of STAT3 specifically in IECs resulted in lower tumor numbers and
size, as well as a reduced percentage of proliferating cells in colonic crypts [121]. Further
research into the possible mechanism of IL-6-mediated tumor promotion showed that
macrophage-derived IL-6 attached to a soluble IL-6R is crucial in IL-6 trans-signaling in
intestinal epithelial cells and thus in the development of CAC [20]. Thus, several studies
have shown that IL-6, and downstream STAT3 signaling, is a critical tumor-promoting
cytokine in CAC.

STAT3 may also be indirectly involved in CAC via activation of IL-22 production, for
example by CD4+ T cells [122]. IL-22 is an important cytokine for epithelial cell and mucus
layer regeneration, as well as for the production of antimicrobial compounds and mucosal
wound healing [123,124] (Figure 3). However, despite its role in intestinal homeostasis,



Int. J. Mol. Sci. 2021, 22, 12739 8 of 23

IL-22 may also possess pro-tumorigenic effects, as increased expression of IL-22, IL-22R
and phosphorylated STAT3 have been demonstrated in inflamed and dysplastic intestinal
tissues from UC patients [125,126].

4.1.3. NFAT

NFAT is a family of transcription factors mainly expressed in T cells, which regulate
important activating signaling pathways. NFAT has been shown to be involved in both
IBD pathogenesis and CRC development [127–129] and has therefore also been studied
in CAC development. In a CAC mouse model, NFATc2-deficiency resulted in decreased
tumorigenesis, which was accompanied by reduced intestinal inflammation and decreased
production of the pro-inflammatory cytokines IL-6 and IL-21 by CD4+ T cells in spleen
and lamina propria. Furthermore, the administration of hyper IL-6 abrogated the effect of
protection in NFATc2-KO mice [130]. This shows that NFATc2 promotes tumorigenesis in
the context of colitis, in a process dependent on IL-6. Apart from NFATc-2, NFATc-3 has
been shown to be upregulated in AOM/DSS-treated CAC mice as compared to control
mice. Mice deficient in NFATc3 showed a decrease in tumor numbers and size. In addi-
tion, NFATc3 inhibited proliferation and epithelial to mesenchymal transition in vitro in
a CRC cell line [131]. In conclusion, NFATc2 and NFATc3 are key regulators of intestinal
inflammation and are important in the initiation and progression of IBD-associated cancer.

4.1.4. IL23/STAT3/Th17 Signaling Pathway

IL-23 is produced by a variety of immune cells, including antigen presenting cells
(APCs), and plays an important role in sustaining the inflammatory response in IBD [132,133].
The IL-23 heterodimer is made up of the p19 and the p40 subunit. Once IL-23 binds to
its receptor IL-23R, it activates janus kinases, which will then phosphorylate the receptor,
inducing the recruitment of several STAT proteins, including STAT3. Ultimately, IL-23
signaling activates the transcription of effector cytokines genes belonging to the Th17
subtype, such as IL-17A, IL-17F, IL-22 and IFN-γ [134] (Figure 3). The role of the IL23/Th17
pathway in CAC pathogenesis is not completely clear, but IL-17A appears to drive tumor
formation in mouse models for inflammation-induced cancer, as both a blockade of IL-17A
by anti-IL-17A antibodies [135], and genetic deletion of IL-17A [136] was associated with
decreased tumor size and number.

According to the pro-tumorigenic role of the IL-23/Th17 signaling pathway, it could
be envisioned that treating IBD patients with anti-IL-23 or anti-IL-17A antibodies would
also contribute to a decrease in CAC incidence, both indirectly by decreasing inflammation,
but potentially also directly. Ustekinumab, a humanized monoclonal antibody that binds
to the p40 subunit, is currently used for the treatment of UC [137]. Even though clinical
data are still lacking, preliminary results in a mouse preclinical model identified IL-23
as a promising target to prevent CRC associated with chronic inflammation in IBD [138].
One of the important effects of the use of ustekinumab that needs to be considered as a
risk factor for CRC is that blocking p40 is also associated with decreased levels of anti-
tumorigenic IL-12 [139,140]. Fortunately, randomized clinical trials reported very low
incidence of colorectal cancer patients receiving Ustekinumab as compared to patients
receiving placebo, even though the follow-up period was short (52 weeks) [141], and
long-term safety data for its use in UC patients will follow.

4.2. Immune Cells in IBD and Its Contribution to IBD-Associated Cancer

In this section, we will comment on the role of immune cells in immunosurveillance
against cancer and IBD-associated cancer, and on the pro- and anti-inflammatory mech-
anisms that these cells possess to promote cancer development in the chronic inflamed
IBD environment.
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4.2.1. Macrophages

Macrophages, mainly tissue-resident cells belonging to the innate immune system,
are involved in both anti-inflammatory (M2 or alternatively activated) as well as pro-
inflammatory (M1 or classically activated) immune responses. In the intestine, mono-
cytes change into tolerogenic lamina propria macrophages, which are hyporesponsive
to microbial stimuli and do not initiate inflammatory responses [142]. In addition, these
macrophages produce large amounts of anti-inflammatory cytokines, such as IL-10 and
TGF-β, creating a tolerogenic environment and promoting the expansion of CD4+CD25+

Treg T cells [143]. Biopsies from IBD patients demonstrate a high abundance of monocyte-
derived macrophages infiltrating the intestinal mucosa, predominantly of the M1 or pro-
inflammatory phenotype [144–146]. More recently, it was shown that the non-dysplastic
mucosa from IBD patients is populated by both M1 and M2 macrophages [147].

Classically, M1 macrophages participate in anti-tumor immunosurveillance by directly
acting as APCs to activate T cells. In addition, macrophages produce cytokines that
determine polarization to different effector T-cell subtypes and phagocytose neoplastic cells
that are covered with antibodies and other opsonins [148]. In IBD, macrophages have also
been proposed to actively play a role in tumorigenesis. M1 proinflammatory macrophages
foster a pro tumorigenic environment by producing tumor-promoting cytokines, which
exert a well-known proliferative effect on colonic cells via induction of transcription factor
NF-κB and signal transducer STAT3 [76,149]. Macrophages have also been identified in IBD-
associated dysplastic lesions and the level of macrophage infiltration correlated positively
with the number of dysplastic lesions [150]. In line with these results, Khan and colleagues
also identified a progressive increase in macrophage density from colitis to dysplasia and
cancer [151]. Although the phenotype of these macrophages was not identified, another
study showed that the percentage of M2-like macrophages markedly increased in IBD-
associated cancers, suggesting a polarization to anti-inflammatory or immunosuppressive
macrophages in the transition from dysplasia to carcinoma [152]. In support of this, Kvorjak
et al. showed that CD163+ M2-like macrophages are significantly increased in intestinal
tissue from UC- and IBD-associated cancer patients [153]. Moreover, the authors postulate
that CCL17 and IL-13 produced by these CD163+ M2 macrophages induce activation of
oncogenic pathways involving AKT and STAT6, as well as expression of aberrant glycans
on colonic epithelial cells which inhibit activity of DCs and NK cells, thus dampening
immunosurveillance (Table 1). Another intriguing anti-inflammatory mechanism by which
macrophages may promote tumorigenesis is by the abolishment of T cell proliferation
through nitric oxide production. More specifically, it was shown that macrophages that
express inducible nitric oxide synthase (iNOS) were capable of suppressing antigen-specific
T-cell responses against Listeria monocytogenes in the spleen [154] (Table 1). As iNOS+
macrophages are abundant in inflamed intestinal mucosa in IBD, it seems plausible that
they also exert a suppressive effect in T cells, affecting immunosurveillance against the
malignant transformed cells that appear in the pro-tumorigenic, inflamed milieu. It has
also been proposed that macrophages may have a dichotomous effect in IBD-associated
cancer via TGF-β activation by the nuclear receptor PPAR-γ. In particular, linoleic acid, a
chemical compound present in the diet, activates PPAR-γ, which stimulates macrophages
to produce TGF-β, ameliorating colitis symptoms but increasing tumorigenesis in a CAC
mouse model [155].

In conclusion, macrophages display both pro- and anti-inflammatory mechanisms
that contribute to IBD-associated cancer. It could be envisioned that M1 macrophages
initially invade IBD-inflamed mucosa and are involved in carcinogenesis by the production
of pro-inflammatory mediators. M1-like macrophages acquire a more M2-like immuno-
suppressive phenotype as inflammation becomes chronic, and indeed a higher abundance
of M2 macrophages with anti-inflammatory properties is observed in dysplastic lesions
and carcinomas in IBD (Figure 1). This could further accelerate carcinogenesis as their im-
munosuppressive phenotype hinders adequate immunosurveillance. To better characterize
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these mechanisms, more studies into the role of macrophages in IBD-associated cancer
are necessary.

Table 1. Possible anti-inflammatory and immunosuppressive mechanisms that may dampen immunosurveillance during
IBD-associated carcinogenesis.

Immune Cell Mechanism

Macrophages

− Accumulation of CD163+ M2 macrophages that activate oncogenic pathways via IL-13 and
CCL17 in UC and CAC patients [153].

− Glycan-induced expression on colonic epithelial cells by CD163+ M2 macrophages that
inhibit NK and DC function in UC and CAC patients [153].

− Inhibition of T-cell responses via iNOS+ macrophages [154].
− TGF-β production by PPAR-γ expressing macrophages [155].

Dendritic Cells (DCs)

− Notch-2- DCs with less migration to MLNs and antigen presentation capacity to CD8+ T
cells [156].

− Plasmacytoid dendritic cells (pDCs) induce recruitment of MDSCs into intestinal mucosa in
a CAC mouse model [157].

Myeloid-derived suppressor
cells (MDSCs) − CXCR2-expressing MDSCs in mice colonic mucosa inhibit CD8+ T effector functions [158].

T cells

− Increased expression of inhibitory markers (PD-1, CTLA-4, PD-L1) in CD8+ T cells in
IBD-associated cancer tumors and intestinal epithelium from CAC mice [159,160].

− Decreased granzyme B expression in CD8+ T cells in IBD-associated cancer patients [161].
− Tregs suppress CD8+IFN-γ+ T cells producers of granzyme B in a CAC mouse

model [162,163].

Natural Killer (NK) cells
− Limited killing capacity and mitochondrial activity of circulating NK cells from IBD

patients [164].

4.2.2. Neutrophils and Eosinophils

Apart from monocyte-derived macrophages, other polymorphonuclear cells such as
neutrophils and eosinophils are recruited into the inflamed mucosa in IBD [165,166], but
their role in promoting IBD-associated cancer has not yet been well addressed. Interest-
ingly, expression of the transcription factor BATF3 in intestinal epithelial cells promoted
the transcription of CXCL5, which together with CXC chemokine receptor (CXCR)- 2 stim-
ulate neutrophil recruitment, which was associated with increased CAC development in
AOM/DSS-treated mice [167]. Neutrophils have a prominent place in IBD pathophysiology,
being a central effector cell in inducing mucosal damage, producing reactive oxygen species,
reactive nitrogen species and other specific enzymes that disrupt intestinal tissue [168].
This can also promote dysplasia and carcinoma development in the context of IBD, as
neutrophil-derived products generate DNA damage and genetic mutations and result
in increased epithelial cell proliferation [169]. Conversely, some studies show that neu-
trophils contribute to immunosurveillance, and have a protective role in the development
of IBD-associated cancer. For example, Zhou et al. reported the presence of a subpopula-
tion of neutrophils, namely CD177+ neutrophils, that have tumor-suppressor properties.
These neutrophils suppressed tumorigenesis and epithelial proliferation demonstrated
by increased expression of the proliferation marker Ki67 in CD177−/− mice. In line with
this, patients with IBD-associated cancer and CRC patients with high CD177+ neutrophil
infiltration had better overall survival compared to the control population [170]. Another
study recently showed that neutrophils slow tumor growth by restricting tumor-associated
microbiota and IL-17-dependent tumor-associated inflammatory responses [171]. Thus,
neutrophils have a dual role in IBD-associated carcinogenesis, being both pro-tumorigenic
by generating pro-inflammatory mediators that increase DNA damage and tissue turnover,
and anti-tumorigenic by playing an important role in immunosurveillance.

Together with neutrophil infiltration, eosinophils are also commonly present in the
inflamed mucosa of IBD patients [172,173]. Activated eosinophils accumulate in the
gut of IBD patients and directly contribute to the onset of the inflammatory process in
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IBD by degranulation [174]. In general, the presence of eosinophils in tumors correlates
with a better disease outcome [175,176], and the presence of activated eosinophils has
been demonstrated to reduce tumor growth in CRC [177,178]. In IBD-associated cancer,
eosinophils seem to play a protective role in tumor development mainly via the effect of
the cytokine IL-33. Specifically, IL-33 has been demonstrated to sustain eosinophils by
increasing their viability and cytotoxic potentials, making them more effective at fighting
malignant cells [179]. However, additional studies are necessary to unravel the function of
eosinophils in IBD-associated cancer.

4.2.3. Dendritic Cells

DCs are a heterogeneous group of APCs specialized in the recognition and processing
of antigens, and in the activation of naive T lymphocytes. In homeostasis, DCs promote and
maintain a tolerogenic immune response. Conversely, in IBD, DCs lose their tolerogenic
phenotype and display pro-inflammatory features, causing excessive T-cell responses with
the subsequent overload of pro-inflammatory cytokines [180–183]. This pro-inflammatory
milieu may drive cancer formation, yet the subsequent T cell responses also play a key role
in cancer immunosurveillance.

Only few studies exist that highlight a specific anti-tumoral function of DCs in IBD-
associated cancer. In a mouse model for CAC, IRF8-expressing cDC1s (conventional DCs
specialized in activating T CD8+ cells) do not seem to contribute to anti-cancer immune
responses [184]. Furthermore, it was shown that alterations in phenotype and function of
DCs in IBD could play a role in the onset of IBD-associated cancer. First, it was demon-
strated that DCs foster a pro-neoplastic inflammatory environment through expression of
the transcription factor T-bet [185]. Additionally, it was demonstrated that DCs may exert
anti-inflammatory or immunosuppressive mechanisms in the non-dysplastic mucosa from
IBD patients, dampening immunosurveillance and contributing to carcinoma progression.
For example, it was recently shown that malignant transformation of dysplastic lesions was
accelerated in CAC mice in which the transcription factor Notch 2 was deleted in DCs. The
authors further demonstrated that Notch2-deficient DCs displayed differentiation defects
and had less CC chemokine receptor (CCR)-7 expression, which impeded the migration to
the mesenteric lymph nodes and abolished adequate antigen cross-presentation to CD8+

T cells (Table 1). This may therefore impact immunosurveillance and favor the dysplasia
to carcinoma progression in mice [156]. Interestingly, pDCs could also play a role in the
development of IBD-associated cancer through the recruitment of MDSCs, as observed
in a mouse model for CAC [157] (Table 1). These MDSCs are known for their suppressor
capacity, are increased in several malignancies and have been implicated in tumorigene-
sis [186,187]. Thus, increased pDCs in IBD are involved in shaping a pro-tumorigenic milieu
by recruitment of immunosuppressive cells, including MDSCs. CXCR2-expressing MDSCs
are also recruited into the colonic mucosa of AOM/DSS-treated mice, which resulted in
inhibition of CD8+ T cell effector functions, thereby accelerating tumor growth [158].

Taken together, DCs in IBD-associated cancer may have an anti-inflammatory role,
associated with suppressed immunosurveillance. However, it is noteworthy that most
of our knowledge regarding the role of DCs in IBD-associated cancer relies on mouse
models. Therefore, more insight into the role of DCs in inflammation-associated colorectal
carcinogenesis in humans is necessary.

4.2.4. T Cells

The lamina propria intestinal T-cell compartment is mainly composed of effector mem-
ory CD4+ resident T cells [188]. They are categorized as CD4+ helper T cells (Th), which are
further subdivided into Th1, Th2, Th17 and Treg cells (Figure 3). The first three subtypes
are effector T cells that act against intracellular pathogens (Th1), helminth parasites and
other extracellular microbes (Th2) and extracellular bacteria and fungi (Th17) [189]. In
addition, they actively participate in other non-infectious pathologies, such as allergies,
autoimmune diseases or anti-tumor immune responses [189]. Conversely, Tregs are in
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charge of suppressing and controlling immune responses [190]. Although all these Th
subtypes are present in the lamina propria, there is an enrichment of Foxp3+ Tregs and
IL-17 producing Th17 cells in the lamina propria under homeostatic conditions [191]. In
IBD, however, an imbalance of the homeostatic Th populations has been observed in the
gut, with Th1-Th17/Th2 polarization of T CD4+ cell immune responses being involved in
IBD pathophysiology [192].

T cells play a crucial role in immunosurveillance; CD8+ T cells can directly eliminate
neoplastic cells, and CD4+ T cells collaborate with macrophages, NK cells and CD8+ T cells
to mount anti-tumor immune responses [50,95,193]. In IBD-associated cancer, possible
immunosurveillance functions of T cells in dysplastic lesions were postulated, associated
with the expression of the co-stimulatory molecule CD80. Specifically, it was demonstrated
that inhibition of CD80 signaling in vivo in a CAC mouse model significantly increased the
frequency and size of high-grade dysplastic lesions, whereas restoration of CD80 expres-
sion decreased colonic dysplasia [194]. Another T-cell related immunological interaction
relates to the CD30/CD30L axis. CD30L is expressed on T CD4+-activated cells [195].
Deletion of CD30L in an AOM/DSS-induced CAC mouse model promoted formation of an
immunosuppressive tumor microenvironment, characterized by an increased percentage
of PD-L1+ MDSCs and tolerogenic macrophages [196].

In addition, an earlier study comparing dysplastic lesions and cancers from patients
with and without IBD showed that although IBD-associated dysplasia and cancer was asso-
ciated with increased CD8+ T cell infiltration, these CD8+ T cells showed less expression of
granzyme B and were thus less efficient in killing tumor cells [161] (Table 1). Furthermore,
Yu et al. demonstrated that intratumoral CD8+ T cells in CAC mice display increased ex-
pression of the inhibitory markers PD-1 and CTLA-4, which may also indicate the presence
of exhausted T cells [159]. This suppressive T-cell phenotype may contribute to tumor de-
velopment, as effector cytokine production (IL-2, IFN-γ) is progressively lost in exhausted
T cells [197], dampening effective immune responses against neoplastic cells. Similarly,
upregulation of PD-1 expression in T CD8+ intraepithelial lymphocytes in mice subjected
to AOM/DSS was identified [160] (Table 1), which was likely induced by repetitive cycles
of inflammation. In humans, it was shown that patients with UC-associated dysplasia and
cancer had increased expression of the PD-1 ligand PD-L1 on CD8+ T cells, as compared to
sporadic CRC. PD-L1 overexpression correlated to chronic inflammation-induced DNA
damage, and PD-L1 upregulation was mediated by inflammation-induced upregulation of
IRF-1 [198] (Table 1). Whether this exhaustion phenotype on T cells also leads to decreased
effector functions of T cells, and thus interferes with their immunosurveillance function,
needs further investigation.

Lastly, Tregs have an important immunomodulatory role in limiting excessive inflam-
matory immune responses. They counteract the inflammatory response, but in the setting
of cancer, expansion of the Treg pool may shape an immunosuppressive niche in which
tumors can progress (Figure 2). In the context of IBD-associated cancer, studies in the
AOM/DSS mouse model have shown that ablation of CD4+Foxp3+ Treg cells suppressed
tumor growth, which was associated with increased numbers of CD8+IFN-γ+ Granzyme
B-producing effector T cells [162,163] (Table 1). This demonstrates how immunosuppres-
sive Tregs may be involved in the pathophysiology of IBD-associated cancer. Apart from
immunosuppressive Tregs, IL17+Foxp3+CD4+ T cells, which can be induced by TGF-β,
and IL-2 were identified as a functional proinflammatory Treg subpopulation present in
the mucosal tissues of patients with active UC and in patients with UC-associated cancer,
but not in non-inflammatory cancers, indicating that this subset of Tregs may also play a
role in CAC pathogenesis [199].

Another interesting Treg subset in the setting of intestinal inflammation-induced
cancer is the Foxp3+RORγt+ T cell. RORγt is a transcription factor other than Foxp3
which plays a role in Treg and Th17 differentiation. Studies have shown that RORγt+Treg
cells promote inflammation and tumorigenesis by production of IL-17 [200], and they are
observed in IBD and IBD-associated dysplastic lesions [201,202]. The tumor-promoting
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role of these cells has been demonstrated by Treg-specific deletion of RORγt in CAC mice,
which resulted in decreased tumor incidence and decreased expression of ki67 and STAT3
in dysplastic lesions [202]. These data highlight the potential role for this Treg subset in
IBD-associated tumorigenesis.

In summary, T cells exert a crucial function in killing neoplastic cells, but chronic
inflammation as observed in IBD may induce an immunosuppressive environment with
T-cell exhaustion and excessive Treg cell recruitment, which prevents adequate immuno-
surveillance and promotes evolution from non-dysplastic mucosa to dysplasia and/or
carcinoma. In addition, pro-inflammatory Treg subpopulations such as IL-17-producing
Tregs and Foxp3+RORγt+ Tregs may contribute to cancer development in IBD. It will be
interesting to unravel the role of these T cell subsets in IBD-associated dysplasia and cancer
in humans.

4.2.5. Innate Lymphoid Cells

Innate lymphoid cells (ILCs) are a relatively recently discovered group of innate
immune cells with diverse and important functions. They are generally classified in three
types, with type 1 ILCs including NK cells. A large body of evidence demonstrates their
role in IBD pathophysiology [203]. In line with this, patients with Crohn’s disease have
increased numbers of NK cells in the small intestinal epithelial compartment [204] and
colonic lamina propria [205].

Apart from their role in inflammation, NK cells have important anti-tumorigenic
functions and play a pivotal role in clearing cancer cells [206,207]. In IBD-associated
cancer, it has been proposed that NK cells participate in anti-tumor immunity through
IL-15 stimulation produced by CD11c+ DCs [208]. Specifically, AOM/DSS-treated mice
that deleted IL-15 showed reduced survival and higher tumor incidence. Conversely,
reconstitution of IL-15 expression selectively in CD11c+ DCs restored NK cells and CD8+

T-cell compartments, with a subsequent reduction in tumor burden.
In the setting of chronic inflammation, NK cell immunosurveillance capacity may be

compromised. In a recent study that addressed metabolic and functional profile of blood
circulating NK cells in IBD patients, it was demonstrated that these NK cells produce pro-
inflammatory cytokines such as IL-17A and TNF-α ex vivo, but they show limited killing
capacity and defective mitochondrial activity [164] (Table 1). It could be hypothesized that
such defects in NK cell killing capacity as observed in IBD patients might contribute to
decreased immunosurveillance.

Additionally, type 3 ILCs (ILC3s), the innate counterparts of Th17 cells from the
adaptive immune system, may be involved in IBD-associated cancer formation. ILC3s
secrete cytokines including IL-23, IL-17 and IL-22, all of which have pro-tumorigenic
effects [209–211]. Accumulation of IL-17+ IL-22+ ILC3s was identified in the colonic mucosa
from CAC mice. The authors demonstrated the contribution of these cells to tumorigenesis
in the context of UC, since its depletion blocks the development of invasive cancer lesions
from dysplastic precursors. Further mechanistic analyses showed that IL-22 produced by
colonic ILC3s in CAC mice acts on IECs to induce STAT3 phosphorylation [212]. Given the
already known pro-cancer effect of STAT3 immune signaling [213], this study demonstrates
an active role of ILCs in dampening anti-tumoral immune responses.

Thus, even though some ILCs, such as NK cells, are vital for mounting adequate
anti-tumor immune responses, other ILCs including ILC3s may have a pro-tumorigenic
effects via secretion of pro-inflammatory cytokines.

5. Conclusions

Long-standing chronic inflammation as observed in the intestinal mucosa of IBD pa-
tients increases the risk of CRC. The genetic and molecular changes in IECs of IBD-associated
cancers are well characterized, and the role of immune cell-derived pro-inflammatory media-
tors has been studied extensively, mostly using mouse models.
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Less studied potential mechanisms of CAC are the anti-inflammatory/immunosuppre-
ssive pathways that emerge during long lasting inflammation, which may create a niche
for tumors to grow. It is already well-known that cancers can promote an immunosup-
pressive microenvironment favoring its own growth and progression. In recent years,
this phenomenon has gained more attention, mainly due to the noticeable anti-tumor
effects of immune checkpoint inhibitors, which revert to this immunosuppressive state
and activate the immune system. Here, we provide an overview of different immune
cells that are recruited into the inflamed mucosa of IBD patients and describe how these
immune cells impact cancer development, either by anti- or pro-tumorigenic effects. For
example, increased expression of T-cell inhibitory receptors such as PD-1 and CTLA-4
have been observed in intratumoral CD4+ and CD8+ T cells lesions in mouse models for
inflammation-driven colorectal cancer, indicating that T-cell suppression may be involved
in the etiology of IBD-associated cancer. Although there are only limited data in humans,
the chronic inflammation-induced immunosuppressive environment may thus be another
mechanism driving colitis-associated cancer, not only by induction of dysfunctional, ex-
hausted T cells, but also by the recruitment of Tregs, MDSCs and other suppressor cells
into the inflamed intestinal mucosa.

It is important to understand the immunosuppressive mechanisms that evolve during
chronic inflammation and may be involved in cancer development by allowing cancers to
evade anti-tumor immune responses. This is especially the case for patients at high risk
for developing IBD-associated dysplasia and cancer, such as patients with IBD and PSC.
Additionally, better understanding of the mechanisms involved may dictate the choice of
immunosuppressive drugs used in these patients.
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Abbreviations

5-ASA 5-Aminosalicylic acid
AOM azoxymethane
APC antigen presenting cell
CAC colitis-associated cancer
CCL C-C motif ligand
CCR C-C chemokine receptor
CD crohn’s disease
CRC colorectal cancer
CTLA-4 cytotoxic T-lymphocyte-associated protein
CXCL C-X-C motif ligand
CXCR C-X-C chemokine receptor
DC dendritic cell
DSS dextran sodium sulphate
HGD high-grade dysplasia
IBD inflammatory bowel disease
IECs intestinal epithelial cells
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IFN-γ interferon-gamma
IL interleukin
ILC innate lymphoid cell
ILC3 type 3 innate lymphoid cell
iNOS inducible nitric oxide synthase
LGD low-grade dysplasia
MDSC myeloid-derived suppressor cell
NK natural killer
PD-1 programmed cell death protein 1
pDC plasmacytoid dendritic cell
PD-L1 programmed death ligand 1
PSC primary sclerosing cholangitis
TGF-β transforming growth factor beta
TNF-α tumor necrosis factor alpha
Th helper T cell
Treg regulatory T cell
UC ulcerative colitis
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