
 International Journal of 

Molecular Sciences

Review

Targeting PI3K/Akt/mTOR Pathway by Different Flavonoids:
A Cancer Chemopreventive Approach

Torki A. Zughaibi 1,2,† , Mohd Suhail 1,2,*,† , Mohammad Tarique 3 and Shams Tabrez 1,2,*

����������
�������

Citation: Zughaibi, T.A.; Suhail, M.;

Tarique, M.; Tabrez, S. Targeting

PI3K/Akt/mTOR Pathway by

Different Flavonoids: A Cancer

Chemopreventive Approach. Int. J.

Mol. Sci. 2021, 22, 12455. https://

doi.org/10.3390/ijms222212455

Academic Editors: Ylenia Zambito

and Liangcan He

Received: 30 September 2021

Accepted: 13 November 2021

Published: 18 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
taalzughaibi@kau.edu.sa

2 Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz
University, Jeddah 21589, Saudi Arabia

3 Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
tariqueunmatched@gmail.com

* Correspondence: suhaildbt@gmail.com (M.S.); shamstabrez1@gmail.com (S.T.); Tel.: +966-533018148 (M.S.);
+966-126401000 (ext. 25185) (S.T.); Fax: +966-126952076 (S.T.)

† Those authors contributed equally to this manuscript.

Abstract: Cancer is, globally, one of the main causes of death. Even though various therapies are avail-
able, they are still painful because of their adverse side effects. Available treatments frequently fail
due to unpromising responses, resistance to classical anticancer drugs, radiation therapy, chemother-
apy, and low accessibility to tumor tissues. Developing novel strategies to minimize adverse side
effects, improve chemotherapy sensitivity, and control cancer progression is needed. Many studies
have suggested small dietary molecules as complementary treatments for cancer patients. Different
components of herbal/edible plants, known as flavonoids, have recently garnered attention due
to their broad biological properties (e.g., antioxidant, antiviral, antimicrobial, anti-inflammatory,
anti-mutagenic, anticancer, hepatoprotective, and cardioprotective). These flavonoids have shown
anticancer activity by affecting different signaling cascades. This article summarizes the key progress
made in this area and discusses the role of flavonoids by specifically inhibiting the PI3K/Akt/mTOR
pathway in various cancers.
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1. Introduction

Cancer is a group of diseases where cells grow uncontrollably, and abnormal cells
spread throughout the body via the bloodstream and the lymphatic system [1]. According
to the World Health Organization (WHO), cancer was the second most lethal disease
in 2019 [2]. Recently, a GLOBOCAN report estimated that there were approximately
10 million deaths due to cancer and 19.3 million new cases in 2020 [3]. Furthermore, a
report published by WHO on 4 February 2020, warned that if the current upward trend
in cancer incidences continues, the world will see a 60% rise in cancer cases in the next
20 years [2]. There are many reasons for the occurrence of cancer, but one possible cause is
the aberrant regulation of different cell signaling pathways due to the acquisition of genetic
and epigenetic changes [4]. One such pathway is the phosphoinositide 3-kinase (PI3K)-
protein kinase B (Akt)-mammalian target of rapamycin (mTOR). Several studies have
reported the inappropriate PI3K/Akt/mTOR pathway regulation in different cancers, such
as breast, liver, colorectal, prostate, and gastric cancer [5–7]. Hence, the PI3K/Akt/mTOR
pathway has become a “hot spot” of molecular biomarker-based/targeted therapy of
different tumors.

Natural compounds obtained from plant sources have recently garnered interest due
to their easy availability, non-toxic/low adverse effects, cost-effectiveness, and ability to
modulate multiple pathways [8]. Among the natural compounds, flavonoids have gained
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attention as anticancer agents, and are documented as being effective against various
types of cancer [9,10]. Flavonoids are of low-molecular-weight, comprising polyphenolic
compounds, classified into six groups—isoflavonoids, flavanones, flavanols, flavonols,
flavones, and anthocyanidins [11]. The primary source of these flavonoids is the regu-
lar human diet, including fruits, vegetables, grains, bark, roots, stems, flowers (Table 1
and Figure 1), plant-derived beverages, such as green tea, wine, and cocoa-based prod-
ucts [12–20]. Flavonoids have shown various activities, such as inhibiting cell proliferation
and angiogenesis, cell cycle arrest, induction in apoptosis, and reversion in multidrug
resistance [21,22]. Furthermore, it has also been reported to act as a pro-oxidant in some
cases, and may interact with other therapeutic agents during biotransformation [23]. Rapid
metabolism, low solubility, and poor absorption in the gastrointestinal tract hinder the real
pharmacological potential of dietary flavonoids [24].

Table 1. Major dietary sources of different flavonoids inhibiting PI3K/Akt/mTOR pathway.

Class of Flavonoids Inhibitors of PI3K/Akt/mTOR Dietary Sources References

Flavonols Quercetin, myricetin, kaempferol,
isorhamnetin, ampelopsin

Green tea, black tea, onion, apple
with peel, oranges, blueberries, raw spinach, kale,

broccoli, almonds, walnuts, dark chocolate, white wine,
and red wine

[25–29]

Flavanol EGCG Green tea, black tea, cranberries, strawberries, red wine,
almonds, hazelnuts, and dark chocolate [30]

Flavanones Hesperidin citrus fruit, oranges, lemon, and grapefruit [31]

Flavones Baicalein, acacetin, genkwanin, oroxylin
A, pectolinarigenin, galangin Orange, yellow fruits, spices, and vegetables [32–34]

Isoflavones Genistein, lupiwighteone Soy, tofu, legumes, Glycyrrhiza glabra, Lupinus, and
Lotus pedunculatus [35]

Flavonolignan Silibinin Milk thistle (Silybum marianum) [36]

Anthocyanins Delphinidin, cyanidin, pelargonidin
Red to purplish, blue-colored leafy vegetables,

blueberries, other berries, currants, grapes, pomegranate,
blue corn, grains, roots, tubers, and red wine

[37,38]
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2. The Implication of PI3K/Akt/mTOR Pathway in Cancer

The PI3K/Akt/mTOR pathway is one of the most deregulated signaling cascades
involved in the development of different human cancers. Each central node of this pathway
is highly activated in most tumors [39,40]. The central nodes include phosphatidylinositol
4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), receptor tyrosine kinase (RTK)
class I (Epidermal growth factor receptor; EGFR, human epidermal growth factor receptor 2;
HER2, etc.), Akt, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN).
The PIK3CA gene encoding p110α catalytic subunit of PI3K is often mutated in most
of cancer types [41,42]. Mutation in PIK3CA and independent activation of the PI3K
pathway only (without Akt) can also induce cancer [43,44]. On the other hand, a mutation
in the EGFR gene acts as an activator of PI3K and plays a role in the pathogenesis of
non-small cell lung cancer [45]. Similarly, overexpression and amplification of the EGFR
gene are frequently observed in glioblastoma [46]. Another member of the EGFR family,
HER2, is overexpressed and amplified in invasive gastric and breast cancers. However, its
overexpression is less frequently observed in other cancer types, such as ovarian, colon,
salivary, biliary, and lung cancer [47]. The somatic mutations and amplification in pleckstrin
homology (PH) domain (E17K) of Akt1 have been identified in various cancers, such as
pancreatic, colorectal, and ovarian, and breast cancers [48]. The PI3K/Akt/mTOR pathway
is a master regulator of cancer progression and is considered as one of the most important
therapeutic targets. The PI3Ks phosphorylate phosphatidylinositol 4,5-bisphosphate (PIP2)
to phosphatidylinositol-3,4,5-triphosphate (PIP3), leading to Akt phosphorylation that
affects the cancer cell growth, cell survival, and cell cycle [49,50]. At the same time,
phosphatase, and tensin homolog (PTEN) act as antagonists of PI3K and dephosphorylate
PIP3 into PIP2 [51,52]. The complete blockage of PI3K signaling might effectively control
the progression of different types of cancer [50,53].

Akt plays an important role in regulating tumor-associated cell processes, includ-
ing cell survival, growth, migration, cell cycle progression, angiogenesis, and epithelial-
mesenchymal transition [54]. Inhibition of the Akt pathway induces apoptosis and inhibits
Akt-associated tumor cell growth [55,56]. The activation of the Akt pathway takes place
through different receptors, such as integrin receptors, cytokine receptors, B and T cell
receptors, tyrosine kinases receptor, and G-protein-coupled receptors (GPCRs) (Figure 2)
through PIP3 generated by PI3Ks [57,58]. PIP3 does not activate Akt directly but modifies
Akt configuration by binding to its PH domain and recruit Akt to the plasma membrane
allowing phosphoinositide-dependent kinase-1 (PDK1) to phosphorylate the kinase do-
main at Thr308 residue [59,60]. The activated Akt leads to the phosphorylation of different
downstream proteins present in the nucleus, cytosol, plasma membrane, supporting cell
growth and survival, among other cellular effects [61]. On the other hand, dephosphory-
lation of Akt at Thr308 and Ser473 residues, by protein phosphatase 2A (PP2A), leads to
its inhibition [62], and could increase fibroblast proliferation, vasodilatation, inhibition of
the forkhead box O1 (FOXO1) protein, cell cycle arrest, and activation of B-cell lymphoma
2 (Bcl-2) associated agonist of cell death (BAD), leading to increased cell survival, stimula-
tion of mTOR, resulting in reduced apoptosis and autophagy, and increased translocation
of glucose transporter type 4 (GLUT4) [63]. Several scientific reports suggested an aberrant
Akt signaling pathway in different types of cancer, resulting in tumor aggressiveness in
some cases. Abnormalities in Akt genes have been reported in various human cancers,
such as gastric carcinoma, glioblastoma, and gliosarcoma, whereas Akt2 amplification has
been reported in head and neck squamous cell carcinoma, pancreatic, ovarian, and breast
cancers [64].
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The mTOR pathway also plays a vital role in regulating different activities, such
as cell survival, cell growth, metabolism, and protein synthesis in response to upstream
signals [65]. This is a downstream substrate of PI3K and Akt with two distinct complexes
mTORC1 and mTORC2 [66]. Akt activates mTOR activity either by direct phosphorylation
of mTOR at Ser2448 or by indirect phosphorylation and inhibition of tuberous sclerosis
complex 2 (TSC2). Direct phosphorylation of TSC2 at S939 and T1462 [67,68] by Akt
releases its inhibitory effect on mTOR and upregulates mTOR activity. TSC2 makes a
heterodimeric complex with TSC1 and acts as a negative regulator of GTPase-activating
protein (GAP) activity [69]. Because TSC2 suppresses the activity of the Ras-related GTPase
Rheb, a selective activator of mTORC1, inhibition of TSC2 by Akt results in activation
of mTORC1 [70]. The hyperactivation of this cascade can stimulate tumor development
and progression through different mechanisms such as promoting growth factor receptor
signaling, suppression of autophagy, lipid metabolism, glycolytic metabolism, angiogenesis,
and cancer cell migration [71,72]. The different growth factors, such as vascular endothelial
growth factor, hepatocyte growth factor, transforming growth factor, platelet-derived
growth factor, insulin-like growth factor 1, and epidermal growth factor regulate the
activity of mTOR signaling [73].
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3. Inhibition of PI3K/Akt/mTOR Signaling Pathway by Different Flavonoids

PI3K/Akt/mTOR signaling pathways are crucial to multiple aspects of cell growth
and survival in physiological and pathological conditions, such as cancer [74]. In response
to extracellular stimuli, the recruitment of class IA PI3K to the plasma membrane occurs
by interaction of p85 and insulin receptor substrate (IRS) through the activation of RTKs
or GPCRs [75]. The heterodimeric class IA PI3Ks phosphorylate PIP2 at position 3 of
the inositol ring to convert it into PIP3, which acts as a second cellular messenger that
controls cell growth, cell survival, and proliferation [76–78]. PIP3 binds to the PH domain
of Akt and translocates it to the plasma membrane (Figure 3), where PDK-1 phosphorylates
Akt [60,79]. Once Akt is activated, it further phosphorylates a broad array of proteins
involved in cell cycle regulation, growth, proliferation, apoptosis, and cell survival [63,80].
The phosphatase PTEN plays a negative modulator of mTOR cascade [81]. It inhibits the
signaling through the PI3K-Akt pathway through the involvement of TSC1/2 [82]. Deregu-
lation of various components of the mTOR pathway, such as PI3K amplification/mutation,
loss of PTEN function, overexpression of Akt, ribosomal protein S6 kinase beta-1 (S6K1),
eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), and overexpression of
eukaryotic translation initiation factor 4E (eIF4E), has been reported in numerous cancers,
especially melanoma, where variation in key elements of the mTOR signaling have major
effects on tumor growth [83]. One study suggested natural compounds and herbs, such
as resveratrol, diosgenin, timosaponin III, 3,3’-diindolylmethane, epigallocatechin gallate
(EGCC), pomegranate, curcumin, gallic acid, and genistein, could directly or indirectly
inhibit the mTOR pathway [84]. In the below-mentioned section, we have listed some
well-known flavonoids reported as anticancer agents in various cancer models (Table 2).

Table 2. Different flavonoids and their PI3K/Akt/mTOR inhibitory activity.

Name of Inhibitor Structure of Inhibitor Inhibitory Activity Cancer/Cell Type Reference

Quercetin
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Table 2. Cont.

Name of Inhibitor Structure of Inhibitor Inhibitory Activity Cancer/Cell Type Reference

Isorhamnetin
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ERK1/2 mitogen-activated
protein pathway
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HCC, hepatocellular carcinoma; MMP, mitochondrial membrane potential.
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3.1. Quercetin

Quercetin is a flavonol and is a subclass of flavonoids. Some vegetables and fruits, such
as onions, scallions, kale, broccoli, apples, berries (and even teas), are the primary sources
of quercetin [23]. Some studies reported that quercetin inhibits phosphorylation of the
mTOR primary downstream targets, namely 4E-BP1 and ribosomal protein S6K [101–103].
It has shown a potential anticancer activity in various cancer cell lines and animal models
in a dose-dependent manner. Quercetin has been reported to be more cytotoxic compared
to ellagic acid and it inhibits cell cycle progression in the S phase in leukemia and breast
cancer cells. It has also shown to have a ~5-fold increase in the life span of tumor-bearing
mice than untreated mice [104].

3.2. Myricetin

Myricetin, a plant-derived flavonoid, commonly exists in fruits and other foods/beverages,
such as oranges, berries, nuts, tea, red wine, and vegetables (tomatoes) [105], possessing
anticancer effects [28,106]. It inhibits cell cycle progression and proliferation and induces
apoptosis and autophagy in human colon cancer cells by inhibiting the PI3K/Akt/mTOR
signaling [107]. Myricetin also suppresses breast cancer cell growth and inhibits UVB-
induced skin cancer [108,109]. One study reported that myricetin induces apoptosis
through ROS induction and inhibits cell migration, tube formation, and PI3K/Akt/mTOR
signaling in human umbilical vascular endothelial cells [28].

3.3. Kaempferol

Kaempferol is a natural flavonol commonly found in plants and fruits, such as kale,
beans, green tea, Brussels sprouts, spinach, apple, grapefruit, and broccoli [110]. It has been
reported to have antioxidant and antitumor properties. Kaempferol exerts strong anticancer
effects through inducing apoptosis, cell migration, cell cycle arrest at the G2/M phase,
inhibiting and reducing the level of mTOR, pm-TOR, PI3K, p-PI3K, and Akt protein levels
in the human malignant melanoma A375 cell line [29]. Further, it exerts anti-proliferative
effects on lung cancer and human endothelial cells by activating mitogen-activated protein
kinase (MAPK) signaling [111]. A recent study also suggested potent anticancer, anti-
proliferation activity of kaempferol in liver cancer [112]. In addition, kaempferol has been
reported to significantly inhibit HepG2 cell proliferation, invasion, and migration, and
induce apoptosis by up/downregulating PTEN and microRNA-21 (miR-21), respectively,
ultimately inhibiting the PI3K/Akt/mTOR pathway [85].

3.4. Isorhamnetin

Flavonoid isorhamnetin obtained from the medicinal plant Hippophae rhamnoides L.
has shown anticancer effects in colorectal cancer. It has been reported to suppress cell pro-
liferation and induce the G2/M phase cell cycle arrest by inhibiting the PI3K/Akt/mTOR
pathway in colorectal and breast cancer [33,86].

3.5. Green Tea Catechins, Epicatechin, and Epigallocatechin-3-Gallate

Green tea catechin, such as epicatechin and epigallocatechin-3-gallate, is present in
green tea, a typical refreshment drink enjoyed worldwide [113]. Epigallocatechin-3-gallate
has shown significant anticancer activities in different cancer models [114]. Recent studies
have suggested that epicatechin interacts and neutralizes reactive oxygen species (ROS) in
the cell and modulates the MAP kinase pathway to inhibit cell proliferation [115]. In addi-
tion, it has shown inhibitory activities against Akt and NF-κB in combination with panaxa-
diol or cisplatin in HCT-116 and renal tubular carcinoma [116]. Some evidence shows
that it downregulates doxorubicin-induced overexpression of P-glycoprotein through the
inhibition of PI3K/Akt and mitogen-activated protein kinase kinase/extracellular signal-
regulated kinase (MEK/ERK) signaling pathways [117,118]. Additionally, it downregulates
the PI3K/Akt and MEK/ERK signaling pathways and promote apoptosis in T47D cells of
human breast cancer [119,120].
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3.6. Fisetin

Fisetin is a flavonol commonly found in some fruits/plants, such as strawberries,
grapes, apples, persimmons, onions, kiwi, kale, etc. It shares antioxidant properties
with many other plant polyphenols [121]. A study reported that a dietary tetrahydrox-
yflavone, fisetin inhibited human non-small cell lung cancer cells by downregulating the
PI3K/Akt/mTOR signaling pathway [122]. Fisetin has shown to downregulate the PTEN
protein levels in multiple myeloma U266 cells and A549 lung carcinoma [122,123]. In addi-
tion, it reduces phosphorylation of Akt, mTOR, microphthalmia-associated transcription
factor (MITF), and p70S6K proteins in human melanoma 451Lu cells in a dose-dependent
manner [122,124].

3.7. Lupiwighteone

Isoflavone, lupiwighteone is majorly present in medicinal plants Glycyrrhiza glabra,
Lupinus sp., and Lotus pedunculatus. Lupiwighteone has shown anticancer activity in
various cancer cells of neuroblastoma, prostate, and breast cancer [91,92]. It could also
induce caspase-dependent and independent apoptosis in breast cancer cells by inhibiting
the PI3K/Akt/mTOR pathway [92].

3.8. Apigenin

Flavone, apigenin is an active plant-originated compound found in parsley, celery,
and chamomile. It has shown to inhibit cancer progression and development by blocking
inhibitory-κB kinase (IKK) alpha activation and the PI3K/Akt/FoxO pathway in a TRAMP
mice model [125,126]. It also inhibits cell proliferation and induces autophagy by blocking
the PI3K/Akt/mTOR pathway in liver cancer cells [127].

3.9. Nobiletin

Nobiletin (5,6,7,8,3′,4′-hexamethoxyflavone) is a polymethoxy flavonoid compound de-
rived from citrus fruits [128]. It has shown several pharmacological activities, including anti-
oxidative, anti-inflammatory, anticancer, cardio/neuro-protective, and anti-metabolic [128,129].
It has been reported to inhibit ovarian cancer cell growth by inhibiting the secretion of the
primary angiogenesis mediators, Akt, hypoxia-inducible factor 1-alpha (HIF-1α), nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB), and vascular endothelial
growth factor (VEGF). Moreover, it does not affect the viability of normal ovarian epithelial
cells at less than 40 µM [130].

3.10. Galangin

Galangin is a natural flavonoid obtained from honey and Alpinia officinarum Hance
(Zingiberaceae), one of the Chinese herbal medicines. It has various beneficial properties,
such as antidiabetic, anticancer, antiviral, and antimicrobial, and does not show any compli-
cations [131]. A study reported that galangin could inhibit the proliferation, migration, and
invasion of the A498 cells of kidney cancer. Furthermore, it could also induce apoptosis
and suppress the PI3K/Akt/mTOR signaling pathway [96].

3.11. Hesperidin

Hesperidin is a dietary flavanone widely distributed in citrus fruits, such as oranges,
lemon, and lime. Data obtained from several in vitro and in vivo studies suggested a
wide spectrum of biological properties associated with hesperidin, which include anti-
carcinogenic, antioxidant, and anti-inflammatory [97]. Scientific evidence has indicated that
hesperidin induces apoptosis and cell cycle arrest and inhibits cancer cell proliferation by
interacting with various cellular targets [31]. Further, it inhibits tumor metastasis, angiogen-
esis, and chemoresistance [31]. One study reported that hesperidin treatment could induce
apoptosis and trigger autophagy by inhibiting the aurora-a mediated PI3K/Akt/mTOR
and glycogen synthase kinase 3 beta (GSK-3β) pathway in colon cancer mouse model [132].
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3.12. Anthocyanins

Anthocyanins are a subclass of flavonoids widely distributed in fruits, such as cherries,
berries, grapes, and vegetables, as glycosides, attached to different sugars [133]. Cyanidin
is one of the members of the anthocyanin family, which is reported to inhibit cell migration
and reverse oxaliplatin-induced EMT biomarker changes through inactivation of PI3K/Akt
signaling in hepatocellular carcinoma [100]. Pelargonidin is another member of antho-
cyanins, and exerts an anticancer effect in human osteosarcoma cells. This anthocyanin’s
family member induces autophagy, triggers the ROS induced reduction in mitochondrial
membrane potential, and induces cell cycle arrest at the G2/M phase. It also inhibits the
expression of p-PI3K and p-Akt in a dose-dependent manner [38].

3.13. Delphinidin

Delphinidin plays a vital role in preventing oxidative stress, inflammation, angio-
genesis, metastasis, and carcinogenesis [134,135] in different cancers, such as breast [136],
prostate [137], lungs [138], liver [139], colon [140], and fibrosarcoma [141] by regulating
different cell signal transduction pathways. Delphinidin has shown anti-proliferative
properties through inactivation of the PI3K/Akt and ERK1/2 MAPK signaling pathway in
ovarian cancer cells [99]. The dose-dependent treatment of delphinidin reduce the SKOV3
cell proliferation by inhibiting the PI3K/Akt and ERK1/2 mitogen-activated protein kinase
signaling pathway [99].

3.14. Sulforaphane

Sulforaphane is an isothiocyanate, commonly found in cruciferous vegetables. It
also possesses anticancer properties and acts as an effective natural agent to modulate the
PI3K/Akt signaling pathway. One study demonstrated that sulforaphane inhibits lung
cancer cell growth by inhibiting Akt phosphorylation and reduces PTEN expression in
lung cancer xenografts mice. Due to this property, sulforaphane could be considered as an
important anticancer agent for lung cancer treatment [142].

4. Biodisponibility/Bioavailability of Flavonoids

It is well known that human beings have been consuming flavonoids since ancient
times. In the modern world, these bioactive flavonoids are widely consumed as part of
the diet or nutritional supplements [143,144]. However, low/limited biodisponibility has
been an issue that significantly limits the clinical usage of these compounds as anticancer
agents [145–147]. The poor bioavailability of these flavonoids is due to metabolism carried
out by phase II enzymes, resulting in hydrophilic excretable conjugates. Failed or inefficient
excretion of these metabolites could hurt overall cellular metabolism, leading to higher
exposure to flavonoids [148,149]. To increase the biodisponibility of these flavonoids, the
scientific community is focusing their research on limiting the metabolism or targeted
delivery of these compounds. These approaches, if successfully implemented, could lead
to potent utilization of flavonoids as anticancer agents.

5. Conclusions

The above-mentioned scientific literature indicates the role of different signaling
pathways in the progression of various cancers. The PI3K/Akt/mTOR is a well-known
“hot spot” target for anticancer compounds. Due to natural resources, cost-effectiveness,
and ease of use, flavonoids are recommended as anticancer agents. However, even with
significant pharmacological potential, they are not fully exploited clinically because of their
inherent properties, such as limited bioavailability, rapid metabolism, untargeted delivery,
cytotoxicity to normal cells, etc. To enhance their anticancer potential, the possible usage of
a mixture of flavonoids has been suggested, considering the probability of affecting different
signaling cascades simultaneously. The use of state-of-the-art techniques, including various
nanotechnology-based approaches, is also recommended to reduce/nullify the above-listed
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drawbacks. Their use, alongside currently available chemotherapeutic drugs, could help
with reducing required doses, ultimately resulting in fewer side effects.
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MAPK Mitogen-activated protein kinase
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PIK3CA Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha
PIP3 Phosphatidylinositol-3,4,5-triphosphate
PP2A Protein phosphatase 2A
PTEN Phosphatase and tensin homolog deleted on chromosome 10
RHEB GDP Ras homolog enriched in brain GDP
RHEB GTP Ras homolog enriched in brain GTP
ROS Reactive oxygen species
RTK Receptor tyrosine kinase
S6k1 Ribosomal protein S6 kinase beta-1
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