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Abstract: The infiltration and activation of macrophages as well as lymphocytes within atherosclerotic
lesion contribute to the pathogenesis of plaque rupture. We have demonstrated that invariant natural
killer T (iNKT) cells, a unique subset of T lymphocytes that recognize glycolipid antigens, play a
crucial role in atherogenesis. However, it remained unclear whether iNKT cells are also involved in
plaque instability. Apolipoprotein E (apoE) knockout mice were fed a standard diet (SD) or a high-fat
diet (HFD) for 8 weeks. Moreover, the SD- and the HFD-fed mice were divided into two groups
according to the intraperitoneal injection of α-galactosylceramide (αGC) that specifically activates
iNKT cells or phosphate-buffered saline alone (PBS). ApoE/Jα18 double knockout mice, which lack
iNKT cells, were also fed an SD or HFD. Plaque instability was assessed at the brachiocephalic artery
by the histological analysis. In the HFD group, αGC significantly enhanced iNKT cell infiltration and
exacerbated atherosclerotic plaque instability, whereas the depletion of iNKT cells attenuated plaque
instability compared to PBS-treated mice. Real-time PCR analyses in the aortic tissues showed that
αGC administration significantly increased expressional levels of inflammatory genes such as IFN-γ
and MMP-2, while the depletion of iNKT cells attenuated these expression levels compared to those
in the PBS-treated mice. Our findings suggested that iNKT cells are involved in the exacerbation
of plaque instability via the activation of inflammatory cells and upregulation of MMP-2 in the
vascular tissues.

Keywords: α-galactosylceramide; apolipoprotein E knockout mice; atherosclerosis; brachiocephalic
artery; macrophages; matrix metalloproteinase; natural killer T cells; plaque instability

1. Introduction

Clinical complications of atherosclerosis, such as myocardial infarction and ischemic
stroke, result from the sudden thrombotic occlusion of the artery that arises from atheroscle-
rotic plaques not necessarily causing flow-limiting stenoses [1]. Physical disruption of
the atherosclerotic plaque is attributable to rupture of the fibrous cap that overlies the
lipid core with the plaque [2]. Interstitial collagen fibers normally confer the structural
stability of the fibrous cap on the plaque. Atherosclerosis results from complex inflam-
matory processes between hematocytes and vascular tissues [3]. In the early stage of
atherosclerosis (characterized by fatty-streak lesions), macrophages and T lymphocytes are
frequently found in the atherosclerotic lesions, whereas, in the late stage after progression
of atherosclerosis, aggregation of activated macrophages, T lymphocytes, and smooth
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muscle cells (SMC) is associated with the development of complex atherosclerotic lesions.
It has been reported that T lymphocyte activation markedly increases production of in-
terferon (IFN)-γ and strongly inhibits the synthesis of collagens by vascular SMC. IFN-γ
also inhibits the proliferation of vascular SMCs, leading to instability of the plaque due to
reduction of collagen-synthesizing cellular component in the plaque. Furthermore, it has
been demonstrated that T lymphocytes in atherosclerotic plaques activate macrophages
via increased expression of matrix metalloproteinase (MMP)-2 and MMP-9. Accordingly, T
cells play an important role in regulation of SMCs and macrophages, both of which may
restore the integrity of the fibrous cap of the plaque and finally prevent plaque rupture.

Natural killer T (NKT) cells are innate-like T lymphocytes that share surface receptors
with both conventional T lymphocytes (TCR; T cell receptors) and natural killer (NK)
cells (NK1.1). These NKT cells recognize glycolipid antigens presented by the major his-
tocompatibility complex (MHC) class I-like molecule CD1d. Upon activation NKT cells
rapidly and robustly produce a mixture of T helper type 1 (Th1) and Th2 cytokines such
as IFN-γ and interleukin (IL)-4 that shape subsequent adaptive immune responses on
activation [4]. Thus, NKT cells can function as a bridge between the innate and adaptive
immune systems, and orchestrate tissue inflammation. Indeed, we have demonstrated
that invariant NKT (iNKT) cells, which are the major subset of NKT cells and possess a
restricted TCR expression (Vα14-Jα18 in mice and Vα24-Jα18 in humans), are involved
in atherogenesis, and their activation decreased collagen content and increased cellular-
ity within the atherosclerotic lesions in apolipoprotein E (apoE) knockout mice [5]. The
administration of α-galactosylceramide (αGC), a specific activator for iNKT cells [6], to
apoE knockout mice decreased the collagen content in the aortic atherosclerotic lesions
stained with Elastica-Masson [5]. We also reported that the prevalence of iNKT cells in
peripheral blood was significantly decreased in patients with unstable angina compared
to control subjects [7]. These findings suggest that iNKT cell’s activation may amplify
the local inflammatory response and be involved in the pathophysiology of plaque insta-
bility leading to plaque rupture. However, the role of iNKT cells in plaque instability is
completely unknown.

An animal model of spontaneously occurred plaque rupture was proposed by Johnson
et al., in which ruptured atherosclerotic plaques occurred in the brachiocephalic artery from
male apoE knockout mice after 8 weeks of high-fat diet (HFD) feeding [8,9]. In the present
study, we examined whether iNKT cells were involved in the stability of atherosclerotic
plaques and the inflammation of aortic tissues in this model of plaque rupture following
the iNKT cell’s activation after administration of αGC. In addition, we examined the effects
of iNKT cell’s depletion on this disease process using apoE/Jα18 double knockout mice
fed an HFD. We herein report that activation of iNKT cells plays a key role in instability of
the atherosclerotic plaques.

2. Results
2.1. Animal Characteristics

ApoE knockout mice were fed a standard diet (SD) or HFD for 8 weeks and the SD- and
the HFD-fed mice were further divided into two groups according to the intraperitoneal
injection of αGC (SD-αGC and HFD-αGC) or phosphate-buffered saline (PBS; SD-PBS and
HFD-PBS) twice a week for 8 weeks. ApoE/Jα18 double knockout mice were also fed an
SD or HFD for 8 weeks (SD-KO and HFD-KO).

HFD feeding did not affect the body weight, serum high-density lipoprotein (HDL)-
cholesterol, free fatty acid, and fasting blood glucose of male apoE knockout mice, but
total cholesterol tended to be higher in the HFD-PBS, the HFD-αGC, and the HFD-KO
groups, compared to the SD-PBS, the SD-αGC, and the SD-KO groups (Table 1). Serum
triglyceride and free fatty acid levels were significantly lower in the HFD-KO group than in
the HFD-PBS group. Serum IFN-γ levels were significantly higher in the HFD-PBS group
than in the SD-PBS group. In contrast, the elevated levels of serum IFN-γ in the HFD-PBS
group was significantly ameliorated in the HFD-KO group (Table 1).
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Table 1. Animal characteristics.

SD-PBS
(n = 6)

SD-αGC
(n = 7)

SD-KO
(n = 3)

HFD-PBS
(n = 21)

HFD-αGC
(n = 21)

HFD-KO
(n = 9)

Body weight, g 26.0 ± 0.7 25.8 ± 0.6 30.8 ± 1.6 *† 27.0 ± 0.5 26.0 ± 0.6 26.6 ± 0.5
Blood chemistry

Total cholesterol, mg/dL 685 ± 19 708 ± 96 639 ± 47 1068 ± 65 1001 ± 103 961 ± 98
HDL cholesterol, mg/dL 15 ± 4 15 ± 2 28 ± 3 37 ± 8 34 ± 6 24 ± 5
Triglyceride, mg/dL 77 ± 5 84 ± 10 95 ± 7 221 ± 31 181 ± 27 84 ± 7 ‡

Free fatty acid, mEq/L 1.31 ± 0.13 1.18 ± 0.14 0.98 ± 0.14 1.37 ± 0.09 1.53 ± 0.08 0.93 ± 0.04 ‡§

Fasting blood glucose, mg/dL 67 ± 6 82 ± 13 89 ± 23 69 ± 3 65 ± 2 135 ± 11 ‡§

IFN-γ, pg/mL ¶ 0.9 ± 0.4 1.3 ± 0.3 0.7 ± 0.2 29.4 ± 8.0 * 35.8 ± 7.7 0.5 ± 0.2 ‡§

PBS: phosphate buffered saline, αGC: α-galactosylceramide, KO: ApoE/J18 double knockout mice, SD: standard diet, HFD: high fat diet,
HDL: high-density lipoprotein, IFN-γ: interferon gamma. * p < 0.05 vs. SD-PBS, † p < 0.05 vs. SD-αGC, ‡ p < 0.05 vs. HFD-PBS, and
§ p < 0.01 vs. HFD-αGC by ANOVA. ¶ IFN-γ was measured in the subgroups of the HFD-PBS (n = 7) and the HFD-αGC (n = 6) mice. All
data are expressed as means ± S.E.

2.2. αGC-Induced iNKT Cell Accumulation in Aortic Tissues

iNKT cell accumulation into aortic tissues quantified by Vα14/Jα18 gene expression
was comparable between the SD-PBS and the HFD-PBS groups. αGC injection significantly
enhanced iNKT cell accumulation in the HFD-αGC group, but not in the SD-αGC group
(Figure 1).
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Figure 1. Gene expression of Vα14Jα18, a specific marker of iNKT cell accumulation, in aortic tissues
from four groups of SD-PBS (n = 6), SD-αGC (n = 7), HFD-PBS (n = 21), and HFD-αGC (n = 21) mice.
* p < 0.01 vs. SD-PBS, † p < 0.01 vs. HFD-PBS by ANOVA. All data are expressed as means ± S.E.

2.3. Atherosclerotic Plaque Instability

Fatty streak lesions were observed in brachiocephalic artery from the SD-PBS group
(Figures 2A and S1A,B). αGC administration altered no structural changes in these SD
mice. In contrast, complex fibro-atheromatous lesions with well-defined fibrous caps were
present in the HFD-PBS group. Although acute plaque rupture, defined as a visible bleach
in the cap with intraplaque hemorrhage, was not observed, the atherosclerotic plaque area
appeared to be slightly higher in the HFD-PBS, the HFD-αGC, and the HFD-KO groups
compared to the SD-PBS group (Figures 2A,B and S1A,B). The number of buried fibrous
caps, the signs of healed plaque ruptures, and the disrupted elastic laminae in the HFD-PBS
group were nearly same as those in the SD-PBS group. However, the number of buried
fibrous caps and disrupted elastic laminae, respectively, was significantly increased in the
HFD-αGC group compared to the HFD-PBS group (Figure 2A,C,D). Fibrous cap thickness
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appeared to be slightly thinner in the HFD-αGC group than that in the HFD-PBS group
(Figure 2E). In contrast, these increases in the number of buried fibrous caps and disrupted
elastic laminae in the HFD-αGC group were completely ameliorated in the HFD-KO group
(Figure 2A,C,D). Moreover, fibrous cap thickness appeared to be slightly greater in the
HFD-KO group than that in the HFD-αGC group (Figure 2E). These findings suggest that
the activation of iNKT cells by an αGC administration may enhance the instability of
atherosclerotic plaque and depletion of iNKT cells may stabilize atherosclerotic plaque in
HFD-fed mice.

2.4. Inflammation and MMP in Aortic Tissues

F4/80 as well as MHC class II and regulated upon activation, normal T cell expressed
and secreted (RANTES) gene expressions, markers of macrophage and T lymphocyte
accumulation, respectively, appeared to be slightly greater in aortic tissues from the HFD-
PBS group compared to those from the SD-PBS group. In contrast, an αGC administration
enhanced the accumulation of inflammatory cells in the aortic tissues in the HFD-αGC
mice (Figure 3A–C). In addition, αGC significantly increased IFN-γ gene expression in the
HFD-αGC group (Figure 3D), suggesting that αGC enhanced the shift toward to Th1. In
contrast, the depletion of iNKT cells in the HFD-KO group significantly attenuated the
inflammatory cell’s accumulation and increased gene expression of IFN-γ observed in
the HFD-αGC group (Figure 3A–D). Moreover, αGC increased MMP-2 gene expression,
which enhances the matrix degradation within the aortic tissues, in the HFD-fed mice,
and this increase was significantly attenuated in the HFD-KO mice where no iNKT cells
were present (Figure 3E). An αGC administration showed no effect on the MMP-9 gene
expression (data not shown).

In parallel with increasing F4/80 gene expression, the infiltration of F4/80 positive
macrophages by immunohistochemical staining was significantly increased in atheroscle-
rotic plaques in HFD-αGC than HFD-PBS and this increase was significantly ameliorated
in HFD-KO (Figure 4A,B). CD3-positive T lymphocytes were infiltrated into the atheroscle-
rotic plaques in each group; however, their infiltration did not significantly differ among
the groups (data not shown).
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Figure 3. Gene expression of F4/80 (A), major histocompatibility complex (MHC) class II (B), regulated upon activation
normal T cell expressed secretion (RANTES; (C)), interferon (IFN)-γ (D), and matrix metalloproteinase (MMP)-2 (E) in
aortic tissues from six groups of SD-PBS (n = 6), SD-αGC (n = 7), SD-KO (n = 3), HFD-PBS (n = 21), HFD-αGC (n = 21), and
HFD-KO (n = 9) mice. * p < 0.05 vs. HFD-PBS, † p < 0.01 vs. HFD-αGC by ANOVA, and ‡ p < 0.05 vs. HFD-PBS by student
t test. All data are expressed as means ± S.E. ND, not detected.
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3. Discussion

The present study demonstrated that the activation of iNKT cells by an administration
of αGC exacerbated atherosclerotic plaque instability via activating macrophages and T
lymphocytes and upregulation of MMP-2 in a mouse model of plaque rupture. On the
contrary, the depletion of iNKT cells in apoE/Jα18 double knockout mice significantly
attenuated the inflammatory cell accumulation, upregulation of MMP-2 gene expression,
and atherosclerotic plaque instability. These findings support the hypothesis that iNKT cells
play a pivotal role in the pathophysiology of plaque instability by modulating inflammatory
processes within the atherosclerotic wall.

Plaque rupture is a major cause of atherothrombotic events [2]. The infiltration and
activation of macrophages and lymphocytes within the atherosclerotic lesion contribute to
the plaque instability and subsequent plaque rupture [3]. iNKT cells are an innate-like T
lymphocyte that recognize glycolipid antigens presented by the MHC class I-like molecule
CD1d and is capable to rapidly and robustly produce a mixture of Th1 and Th2 cytokines,
such as IFN-γ and IL-4, leading to subsequent immune responses on activation [4]. Thus,
iNKT cells can function as a bridge between the innate and adaptive immune systems, and
orchestrate tissue inflammation. We previously demonstrated that in vivo administration
of αGC decreased collagen content and increased cellularity of atherosclerotic lesions
in the aortic sinus from apoE knockout mice, suggesting that iNKT cells may affect the
plaque instability [5]. However, the relevance of changes in the atherosclerotic lesions in
the aortic sinus is rather limited because the incident plaque rupture is very rare in the
aortic sinus [10,11]. In contrast, in an animal model that we employed in the present study,
HFD feeding can develop advanced atherosclerotic lesions in the brachiocephalic artery
from apoE knockout mice with several morphological features similar to human ruptured
plaques [12,13]. Taking the preset findings and previous reports together, we confirmed
that iNKT cells are involved in the arterial plaque instability.

The inflammatory cells accumulate within atherosclerotic plaques and produce pro-
inflammatory cytokines as well as proteases, which may contribute to the plaque instability.
Notably, IFN-γ, the primary Th1 cytokine secreted from T lymphocytes, has been reported
to play an important role in plaque instability by inhibiting SMC proliferation and further
reducing collagen synthesis within the vascular tissues [14]. In addition to SMC, immune
cells from the fibrous cap of atherosclerotic lesions are sensitized to Fas-induced apoptosis
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by IFN-γ, which is one of the major contributing factors to the plaque rupture [15]. More-
over, the IFN-γ activates macrophages and upregulates the expressional levels of MMPs
within atherosclerotic plaques, which can degrade collagens [14,16]. Activated T cells
stimulate macrophages to produce MMPs via increased secretion of IFN-γ. In particular,
MMP-2 and MMP-9 play an essential role in the pathogenesis of vascular remodeling. The
present study demonstrated that iNKT cell activation by αGC increased MMP-2 expression
and this increase was attenuated by the iNKT cell depletion (Figure 3E), whereas it did not
affect MMP-9 gene expression within the aortic tissues. Activated macrophages secrete
larger amounts of MMP-9 under the Th1 slant [17]. In contrast, IFN-γ has been shown to
inhibit MMP-9 gene expression in macrophages [18]. Taken together, the increased IFN-γ
might suppress the increase of MMP-9 by iNKT cell activation.

In addition, we demonstrated that activation of iNKT cells was associated with in-
creased gene expression of F4/80, MHC class II, RANTES, IFN-γ, and MMP-2 in the aortic
tissues (Figure 3A–E). Accordingly, cytokines, chemokines, and MMPs, including IFN-γ,
were considered to be mechanistically involved in the plaque instability as a result of
iNKT cell activation in our mouse model of spontaneously occurred plaque rupture. We
previously demonstrated that macrophages conditioned with activated iNKT cells by αGC
secreted greater amount of MCP-1 into the co-culture medium [19]. The iNKT cells may
orchestrate the inflammatory process in association with the development of atherosclerotic
plaque. Thus, iNKT cells appear to be involved in the enhancement of plaque instability via
activating inflammatory cells in vascular tissues. We previously reported that iNKT cells
accelerate atherogenesis and supportive reports have been accumulated [5,19]. Based on
these findings, we speculate that iNKT cells may play a critical role from early to advanced
stages of atherosclerosis.

Recent pathological analyses suggest that clinically critical plaques possess following
each aspect; (i) numerous inflammatory cells, lipid-rich necrotic cores, and thin fibrous caps
(plaque rupture) or (ii) abundant extracellular matrix and endothelial apoptosis (plaque
erosion) [20]. The former aspect, plaque rupture, has been extensively studied and the
underlying mechanism of necrotic core formation involves in the death of inflammatory
cells (including macrophages), coupled with poor phagocytic clearance of these dead
cells by a process called efferocytosis [21]. Macrophages are highly plastic cells and alter
the efferocytotic function mediated by complex combinations of inflammatory cytokines,
extracellular matrix, environmental factors such as hypoxia, and other inflammatory
cells [22]. Further studies are needed for better understanding the inter- and intracellular
impact on macrophage’s phenotype switch in the atherosclerotic lesions.

We previously showed that iNKT cells were infiltrated into visceral adipose tissues
from HFD-induced obese mice in association with activation of macrophages [23]. Thus, the
metabolic abnormalities may indirectly contribute to plaque instability in our model. Recent
studies have demonstrated that obesity induces chronic inflammation in perivascular
adipose tissues, suggesting direct relationships between metabolic derangements and
vascular inflammation [24–26]. In our mouse model, iNKT cells may play a key role in
chronic inflammation in both vascular tissues and adipose tissues, which may result in the
development of plaque instability and glucose intolerance. However, we could not obtain
sufficient amounts of perivascular adipose tissue around the brachiocephalic artery, and
thus, we did not assess the link between inflammation in perivascular adipose tissues and
plaque instability.

There are several limitations to be acknowledged in the present study. First, we could
not directly demonstrate the distribution of iNKT cells in situ by the immunohistochemical
analysis using CD1d dimer with loading of αGC, which specifically binds to Vα14/Jα18,
according to a previous report [27]. We also tried to conduct the double immunohistochem-
ical staining using antibodies for anti-TCR-β and anti-NK 1.1 according to the methods
reported by another paper [28]. Furthermore, we performed in situ hybridization using
DNA probes for mouse Vα14Jα18 as well as the flow cytometric analysis. Unfortunately,
we could not directly show the distribution of iNKT cells in situ within the aortic tissues,
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although we could define iNKT cells and inflammatory cytokines by gene expression.
Further studies are needed to overcome some technical difficulties of in situ detection
and to demonstrate the distribution of iNKT cells in various types of lesions. Second,
serum levels of triglyceride and free fatty acid were significantly decreased in the HFD-KO
mice compared to the HFD-PBS mice. These alterations might have partly affected the
plaque instability along with the attenuation of inflammatory gene expressions. iNKT cells
may affect lipid metabolism; however, the causal relationship between them needs to be
elucidated. Third, serum levels of IFN-γ were elevated in HFD-PBS and HFD-αGC; on the
other hand, the expressional levels of IFN-γ in aortic tissues were significantly increased
only in HFD-αGC group. The source of IFN-γ production after the stimulation of αGC
remains to be determined. IFN-γ has been shown to be produced by iNKT cells themselves
upon exogenous stimulation [4]. In addition, IFN-γ can be expressed and secreted from
macrophages which are activated by iNKT cells. Alternatively, inflammatory cells in other
tissues such as visceral adipose tissues may contribute to increase the serum levels of IFN-γ
in the HFD-PBS mice. Molecular mechanisms that connect activating iNKT cells to priming
immune response toward Th1 slant remains to be elucidated. Finally, the present study
showed that administration of αGC increased gene expression of MMP-2 in the aortic
tissue of the HFD-fed mice, but we could not show the change in the protein levels of
MMP-2 in this tissue due to lack of samples.

In conclusion, the activation of iNKT cells by αGC exacerbated atherosclerotic plaque
instability via activating macrophages and upregulation of MMP-2 in a mouse model of
plaque rupture. On the other hand, the depletion of iNKT cells in apoE/Jα18 double
knockout mice significantly attenuated the macrophage accumulation, upregulation of
MMP-2 gene expression, and atherosclerotic plaque instability. Taken together, iNKT
cells are involved in the exacerbation of atherosclerotic plaque instability via activating
inflammatory cells and upregulation of MMP. The iNKT cells may be a novel therapeutic
target against not only atherosclerosis but also plaque rupture.

4. Materials and Methods
4.1. Experimental Mice

Male apoE knockout mice (The Jackson Laboratory, Bar Harbor, ME, USA), 8 weeks of
age, were fed an SD or HFD (containing 34.15% (wt/wt) sucrose, 21% (wt/wt) anhydrous
milkfat, 19.5% (wt/wt) casein, 15% (wt/wt) corn starch, 5% (wt/wt) cellulose, 3.5% (wt/wt)
mineral mix AIN-76, 1% (wt/wt) vitamin mix, 0.4% (wt/wt) calcium carbonate, 0.3% (wt/wt)
DL-methionine, and 0.15% (wt/wt) cholesterol; Oriental Yeast Co. Ltd., Tokyo, Japan) for
8 weeks. The HFD-fed apoE knockout mice were divided into two groups according to
the intraperitoneal injection of α-galactosylceramide (αGC 2 µg/mouse, Funakoshi Co.
Ltd., Tokyo, Japan; HFD-αGC, n = 21) or phosphate-buffered saline (PBS; HFD-PBS, n = 21)
twice a week for 8 weeks. SD-fed apoE knockout mice were also divided into two groups
by the injection of αGC (SD-αGC, n = 7) or PBS (SD-PBS, n = 6).

Male apoE knockout mice and female Jα18 (previously defined as Jα281) knockout
mice, which lack iNKT cells on the C57BL/6 background [29], were crossed to generate
apoE/Jα18 double knockout mice. The apoE/Jα18 double knockout mice, 9 weeks of age,
were also fed an SD or HFD for 8 weeks (SD-KO, n = 3 and HFD-KO, n = 9).

At 16–17 weeks of age, these six groups of animals were intraperitoneally anesthetized
with overdose of pentobarbital sodium (100 mg/kg) and euthanized by collection of blood
from right ventricle, and organs, including the brachiocephalic artery and aortic tissues,
were dissected via a thoracotomy. The animal care and procedures for the experiments
(08-0267) were approved by the Committee of Hokkaido University Graduate School of
Medicine on Animal Experimentation and conformed the Guide for the Care and Use of
Laboratory Animals published by the US National Institutes of Health.
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4.2. Blood Chemistry

After fasting for 16 h, serum levels of total cholesterol, HDL-cholesterol, triglyceride,
and free fatty acid were assayed by enzymatic methods (Wako Pure Chemical Industries,
Ltd., Osaka, Japan). Serum IFN-γ levels were measured by enzyme-linked immunosorbent
assay kit (R&D Systems, Inc., Minneapolis, MN, USA). Fasting blood glucose levels were
measured by using an automatic blood glucose meter (Glutest Ace, Sanwa chemical,
Nagoya, Japan).

4.3. Histomorphometric Analysis

Brachiocephalic arteries were fixed in 10% neutralized buffered formaldehyde and
embedded in optimum cutting temperature compound (OCT; Sakura Finetek Japan Co.,
Ltd., Tokyo, Japan). Serial sections of 3 µm thickness at 30 µm intervals along the long
axis of the artery were stained with hematoxylin and eosin, oil red O, or elastica-van
Gieson. Atherosclerotic lesions were captured with a BZ-8000 microscope (Keyence Corp.,
Osaka, Japan) and analyzed using image analysis software (Image J version 1.43, National
Institutes of Health, Bethesda, MD, USA).

Atherosclerotic plaque area was measured in oil red O-stained sections obtained
throughout the brachiocephalic artery. Characteristics of ruptured atherosclerotic plaques
in brachiocephalic arteries were assessed by the methods described by Jackson et al. [8].
Acute plaque rupture was defined as a visible bleach in the cap with intraplaque hemor-
rhage intruding into the lesion at the same site. Buried fibrous caps, defined as remnants
of previous fibrous caps that have ruptured and been incorporated into the body of the
plaque as it develops, was counted as indicative of healed plaque rupture on elastica-van
Gieson-stained sections [30]. Disrupted elastic laminae within the body of the plaque were
counted with serial sections at 30 µm intervals, and the mean number of disrupted elastic
laminae per section was calculated throughout the artery. Maximal fibrous cap thickness
was measured in the serial sections throughout the artery.

To quantify the infiltration of macrophages and T lymphocytes to the atherosclerotic
plaques in brachiocephalic arteries, three sections were stained with monoclonal antibody
against mouse F4/80 (rat anti-mouse F4/80 monoclonal antibody, AbD Serotec, Kidlington,
UK), a specific maker for mature macrophages, and mouse CD3 (hamster anti-mouse CD3
monoclonal antibody, AbD Serotec, Kidlington, UK), a specific maker for T lymphocytes,
followed by counter-staining with hematoxylin. The degree of macrophage or T lym-
phocyte infiltration was expressed as a percentage based upon the ratio of the F4/80- or
CD3-positive area to the total atherosclerotic plaque area.

4.4. Quantitative Reverse Transcriptase PCR

Total RNA was extracted from aortic tissues including distal aortic arch, left common
carotid artery, and left subclavian artery with RNeasy mini kit (QIAGEN, Tokyo, Japan)
according to the manufacturer’s protocol. cDNA was synthesized with the high-capacity
cDNA reverse transcription kit (Applied Biosystems, Foster City, CA, USA). TaqMan
quantitative PCR was performed with the 7300 real-time PCR system (Applied Biosystems)
to amplify samples for Vα14/Jα18 (a specific marker of iNKT cells), F4/80, MHC class-II
(a marker for macrophage activation), RANTES, IFN-γ, MMP-2, and MMP-9 cDNA. These
transcripts were normalized to GAPDH. The sequences used to amplify Vα14/Jα18 are as
follows: Forward; CTG GAG CAA CCA GAC AAG CTT, Reverse; GGT GGC GTT GGT
CTC TTT GA, TaqMan Probe; CCT GCC AAG ATA TC. The other primers were purchased
from Applied Biosystems.

4.5. Statistical Analysis

Data were expressed as the means ± S.E. Statistical analysis was performed using
the ANOVA among six groups or student t test between HFD-PBS and HFD-αGC (Graph-
Pad Prism 5, GraphPad Software, San Diego, CA, USA). A p value < 0.05 was consid-
ered statistically significant. If statistical significance was determined by the ANOVA,
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the data were further analyzed by the three series of Bonferroni post-hoc test to detect
specific differences among the SD-fed groups, the HFD-fed groups, or between SD-PBS
and HFD-PBS.

Supplementary Materials: The supplementary material is available online at https://www.mdpi.
com/article/10.3390/ijms222212451/s1, Figure S1: Photomicrographs of brachiocephalic artery from
four groups of SD-PBS (n = 6), SD-αGC (n = 7), HFD-PBS (n = 21), and HFD-αGC (n = 21) mice.
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Abbreviations

αGC α-galactosylceramide
apoE apolipoprotein E
HDL high-density lipoprotein
HFD high-fat diet
IFN-γ interferon-γ
IL-4 interleukin-4
iNKT cell invariant natural killer T cell
MHC major histocompatibility complex
MMP matrix metalloproteinase
NK cell natural killer cell
RANTES regulated upon activation, normal T cell expressed and secreted
SD standard diet
SMC smooth muscle cell
TCR T cell receptor
Th1 T helper type 1
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