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Abstract

:

The high cytotoxicity of the secondary metabolites of mycotoxins is capable of killing microbes and tumour cells alike, similarly to the genotoxic effect characteristic of Janus-faced molecules. The “double-edged sword” effect of several cytotoxins is known, and these agents have, therefore, been utilized only reluctantly against fungal infections. In this review, consideration was given to (a) toxins that could be used against plant and human pathogens, (b) animal models that measure the effect of antifungal agents, (c) known antifungal agents that have been described and efficiently prevent the growth of fungal cells, and (d) the chemical interactions that are characteristic of antifungal agents. The utilization of apoptotic effects against tumour growth by agents that, at the same time, induce mutations may raise ethical issues. Nevertheless, it deserves consideration despite the mutagenic impact of Janus-faced molecules for those patients who suffer from plant pathogenic fungal infections and are older than their fertility age, in the same way that the short-term cytotoxicity of cancer treatment is favoured over the long-term mutagenic effect.
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1. Introduction


The Roman god Janus is depicted as having two faces, one facing the past and the other looking into the future [1]. Double-edged swords, also referred to as Janus-faced molecules, represent both beneficial and toxic effects and are widespread in biology; however, their molecular mechanisms are only poorly clarified. Among the double-edged swords are curcumin, known for its cancer-preventive and therapeutic role [2], nitric oxide [3], cholesterol [4], and peptide nucleic acid (PNA) [5]. Mycotoxins are regarded as “Janus-faced” molecules due to their adverse effects. The definition of Janus-faced molecules refers to the harmful genotoxic (mutagenic, teratogenic, and carcinogenic) effect [6,7] as well as the cytocidal and antineoplastic effects [8,9,10].



The prevalence of fungal infections is increasing worldwide due to the increase in the ageing population and patients with compromised immune systems. Cases of opportunistic mycoses are known to increase each year [11]. The ubiquitous plant and human pathogenic conditions aspergillosis, fusariosis, and cryptococcosis were known earlier as exceptionally rare human diseases. The frequency of aspergillosis has especially increased in patients without weakened immune systems but who have severe respiratory infections caused by viruses, such as influenza. Recent reports describe COVID-19-associated pulmonary aspergillosis [12,13,14,15,16,17,18,19]. Fusarium secondary metabolites are sporadically present in livestock feeds and may cause a variety of disorders termed “mycotoxicoses”, some of which are fatal [20]. Mycotoxins are carcinogenic toxins that are produced by many Aspergillus and Penicillium species growing on food commodities [21]. In the past, it seemed unrealistic to treat saprophytes and plant pathogenic fungi with expensive antifungal agents, such as antibiotics. This attitude changed in the last decades since it was discovered that plant pathogenic fungi may cause fatal infections. The most frequently occurring lethal infection is aspergillosis, especially in neutropenic patients with hematologic malignancy [22]. Disseminated fusariosis is the second most frequent lethal fungal infection [23,24,25].



Experiments related to the antifungal activity of antibiotics against plant pathogenic fungi were carried out in the 1970s but were not practical and remained unpublished until the retrospective evaluation of gentamicins against Fusarium species [24]. Major fractions of the gentamicin complex (C1, C1a, C2, C2a) are toxic and possess only moderate antifungal activity. However, among minor gentamicin components (A, A1–A4, B, B1, X), gentamicin B1 was found to be an efficient antifungal agent in vitro, maintaining some of its useful in vivo antifungal potential in mice, either alone or in combination with amphotericin B [25].



Gentamicin B1 is a minor gentamicin component that was reported to be a major nonsense mutation suppressor [25,26]. In addition to gentamicin, the G418 readthrough inducer was reported to counteract the effects of nonsense mutations [26,27]. However, it turned out that the synthetic aminoglycoside G418, closely related to gentamicin B1, was not an inducer of premature termination codon readthrough [26]. Gentamicin B1 and G418 (geneticin) differ only in the location of C2 of the purpuroseamine ring by the substitution of a hydroxyl group in gentamicin B1 by an amino group in G418. The gentamicin B1 compound used in this study was acquired commercially and was not gentamicin B1 but the closely related aminoglycoside G418 [28]. We used gentamicin fractions, among them gentamicin B1, that were separated, purified, and characterized, and their structures were determined by established protocols [29,30].



Toxins produced by plant and human pathogenic fungi, as well as agents with functional groups exerting demonstrated antifungal effects on these species, are overviewed in this paper. More attention is given to the toxins of the more aggressive Aspergillus species than to other plant pathogenic fungi, such as Fusarium and Cryptococcus. In immunocompetent individuals, the conidia of Aspergillus fumigatus are effectively eliminated by the innate immune system, but in immunosuppressed patients, they cause mainly serious pulmonary diseases [31]. The presence of these toxins in food and feed diminish liver and/or kidney functions. Aspergillus-derived mycotoxins in the feed and food chain have been recently reviewed in several publications [32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51].



1.1. Aspergillus Toxins


Mycotoxigenic fungi [52,53] belong mainly to three genera, the Aspergillus, Fusarium, and Penicillium species [53,54]. The most dangerous mycotoxins are carcinogenic compounds (Figure 1).



The International Agency for Research on Cancer (IARC) (Lyon, France) categorized human carcinogenic mycotoxins and found that only aflatoxins belong to the most carcinogenic IARC 1 category (Figure 1a). The dicumarin derivative aflatoxins produced mainly by Aspergillus flavus and A. parasiticus were isolated as B1, B2, G1, and G2 aflatoxins. The B and G aflatoxins exhibit blue and green fluorescence under UV light [55]. It is self-evident that polyaromatic carcinogenic aflatoxins cannot be used against cancer. Other less toxic mycotoxins containing simple aromatic rings are less toxic and often found in physiological compounds, such as five-membered heterocyclic rings, like furane or pyrrole, or six-membered rings, such as benzene or heteropolycyclic pyridine. Fused/condensed aromatic rings, consisting of monocyclic rings and sharing their connecting bonds, deserve even more attention as potential cytotoxic agents.




1.2. Structural and Toxic Similarities of Aspergillus Mycotoxins


The functional and structural similarities of A. fumigatus mycotoxins are illustrated in Figure 1. The carcinogenic properties of mycotoxins are exemplified by polyaromatic aflatoxins and aliphatic aurantosides, as shown in Figure 1ab [32,56,57]. Aspergillus toxins, such as ergot alkaloids, especially from A. Fumigatus, cover a wide range of biological activities with effects on blood circulation and neurotransmission, to mention the most important ones [58,59]. The permeable ergot-like alkaloid cyclopiazonic acid isolated from Aspergillus flavus and Aspergillus versicolor exerts reversible inhibition on the sarcoendoplasmic (SERCA) reticulum and sarcoplasmic Ca2+ ATPases [60].



The secondary metabolite pseurotin of Aspergillus and other fungi [60,61] are induced in response to hypoxia [61,62]. Pseurotins are characterized by an unusual spirocyclic furanone–lactam core and have different biological activities, including the modulation of the immune response. Pseurotin A showed a moderate effect against phytopathogenic bacteria and presented low cytotoxicity toward human lung fibroblasts [63]. Pseurotin and its analogue, synerazol, are inhibitors of immunoglobulin E [64]. Natural pseurotins inhibit not only the activation of B-cells into plasma cells [65] but also the activation of lymphocyte proliferation [66] and inflammatory responses, inactivating the STAT signalling pathways in macrophages [67]. More importantly, the anticancer agent pseurotin A became known as a novel suppressor of hormone-dependent breast cancer progression [68]. Pseurotin A isolated from Aspergillus fumigatus also possesses antioxidant properties and was recently shown to exhibit a wide range of potential therapeutic applications [69].



Among the xanthene-derivative sterigmatocystins, the mycotoxin 5-5-MS was isolated from an Aspergillus sp. strain, and it was found that the active substance 5-MS possessed a strong antineoplastic effect [70]. It is associated with the bisfurano ring and the double bond in the highly cytotoxic mycotoxins, has tolerable side effects, and could potentially act against metastasis [32]. The ‘Janus-faced’ terminal furan ring, which is also present in aflatoxins, is produced mainly by Aspergillus flavus and Aspergillus parasiticus, but the carcinogenic side effect of aflatoxins makes them unsuitable as antimetastatic agents.



The toxin of the marine fungus Aspergillus terreus induces changes in metabolism [70,71]. The structural relationship suggests that, after aflatoxin B1 (Figure 2a), 5-MS (Figure 2b) appears to be the second most dangerous mycotoxin, possibly belonging to the carcinogenic IARC 2B category.



The cytotoxicity of mycotoxins is definitely attributable to their multiple hydroxyl groups, whereas the carcinogenic properties are attributable to their polyene structure and cumulative presence of keto groups. The reduction in toxicity is discussed in the section on basic water-soluble antibiotics.



The structure of IARC carcinogens, such as ochratoxins and fumonisins, confirms that mutagenicity is contributed primarily by the keto, hydroxy, and the cumulative presence of carboxy groups (Figure 2c,d). Mycotoxins belonging to higher IARC numbers are not classifiable as to their carcinogenicity to humans. Major mycotoxins belonging to the non-carcinogenic IARC 3 category are nivalenol, deoxynivalenol, patulin, T-2/HT-2 toxins, zearalenone [22]. T-2 and HT-2 are the toxins produced primarily by Fusarium sporotrichioides, which occur in small grains. Patulin is a poison produced by the Aspergillus and Penicillium species. Patulin is present in apples, its amount correlating with the degree of rot in apples.



Besides the structural similarities of carcinogenic Aspergillus toxins, the polyene ring structures of aromatic compounds, as well as the polyhydroxy and polycarboxylic substituent aliphatic fumonisin B1, deserve mention. Ochratoxin A is nephrotoxic and hepatotoxic to animals and humans and is a potent teratogen, carcinogenic, and immune suppressant [72,73,74].




1.3. Fusarium Toxins


Mycotoxin-producing Fusarium species are F. sporotrichioides, F. graminearum, and F. verticillioides. The structures of major toxins include zearalenone, zearalene, deoxynivalenol, nivalenol, T-2 toxin, and diacetoxyscirpenol (Figure 3) [75].



Trichothecenes A, B, C, and D are synthesized by several fungal genera, but only types A and B are produced by Fusarium spp. Types C and D trichothecenes have different chemical structures and are not produced by Fusarium species [76]. The Fusarium-produced trichothecenes include simple as well as complex mycotoxins, containing a single six-membered ring in the type A and type B trichothecenes, the anguidine analogues, and the antileukemic 5-methoxysterigmatocystin (5-MS) derivatives (Figure 3 [77,78]). All trichothecenes containing the core six-membered ring are flanked by a single oxygen atom in an epoxy constellation [66], which makes it strained and highly reactive. The major type B trichothecenes, including deoxynivalenol, nivalenol, and acetyldeoxynivalenol mycotoxins, induce pathological lesions, primarily necrosis of the intestinal epithelium [79]. The problem with the distribution is the identification of Fusarium isolates at the species level. Further improvement of the mass spectrometry database is needed to enable the precise identification at the species level of any Fusarium isolates encountered either in human pathology or in the environment [80].



As far as anguidine analogues are concerned (Figure 3B), the in vivo antitumor activity in mice was measured upon treatment by triacetoxyscirpenol, the three diacetoxyscirpenols, the three monoacetoxyscirpenols, and scirpenetriol [81].



The 5-methoxysterigmatocystin (Figure 3C) is produced by Aspergillus versicolor and A. flavus and is known for its antineoplastic property, with high cytotoxicity and genotoxicity characteristic of Janus-faced molecules. Although 5-methoxysterigmatocystin was investigated [82], it was not suitable for diagnostic or therapeutic use due to its hepatotoxicity and carcinogenic properties (https://www.scbt.com/p/5-methoxysterigmatocystin-22897-08-1 (accessed on 05 November 2021) (SCBT—Santa Cruz Biotechnology-scbt.com, Dallas, TX, USA).




1.4. Cryptococcus Toxins


Cryptococcosis is a potentially fatal fungal disease caused by the toxins of a few species of Cryptococcus, primarily C. neoformans and C. gattii. C. gattii, unlike C. neoformans, prefers to grow in a moist environment. Cryptococcus neoformans is the major pathogenic species in both human and animal hosts. C. neoformans secretes a large variety of enzymes with the potential to degrade host molecules [83].



Among the enzymes produced by the fungus, the major candidates as mediators of host toxicity at the molecular level are proteases, ureases, phospholipases, and nucleases. C. neoformans can metabolize immunoglobulins and complement proteins for growth, as these compounds are presumably degraded by the released proteases [84].




1.5. Toxins Inhibiting the Growth of Aspergillus Species


Aurantosides are cytotoxic tetrameric acid glycosides isolated from marine Theonella species and exhibit the most efficient antifungal activity against Aspergillus fumigatus besides the yeast C. albicans [85,86].





2. Animal Models to Test Mycoses Caused by Plant Pathogenic Fungi


Among the reproducible rodent models of invasive aspergillosis, the murine model is the most popular and frequently used, followed by the rat models These models are suitable for testing fungal virulence, infection pathogenesis, diagnostic markers, and testing the antifungal therapy of invasive aspergillosis with relative ease of manipulation, economy, and handling of a large number of reagents. Murine models remain the most commonly used models for studying aspergillosis due to the ease of manipulation and the large number of reagents available for studying disease-host responses [87].



Invasive fungal infections are the major cause of death in organ transplant patients. Invasive human aspergillosis was mimicked by immunosuppressing mice with cyclophosphamide and cortisone acetate and then infecting them in an aerosol chamber. This procedure reproducibly delivered 103 to 3 × 103 conidia to the lungs. Lethal pulmonary aspergillosis developed in 2 weeks but could be prevented by amphotericin B. The murine hydrocortisone-mediated immunosuppression model of pulmonary aspergillosis is commonly used to characterise invasive fungal infections. However, this model does not take into account the effects of the fungal calcineurin pathway, which is required for both virulence and antifungal drug resistance. A new and clinically relevant transplant immunosuppression model showed that patients with pulmonary aspergillosis were immunosuppressed with calcineurin inhibitors and steroids [88]. Due to the growing importance of plant pathogenic fungi and their human diseases causing high morbidity in humans and animals, aspergillosis, over recent decades, has created a need for practical and reproducible models.



Airborne fungal disease, generated by plant pathogenic ubiquitous moulds, causes high morbidity and mortality in both human and animal populations. The growing significance of these infections in the last 50 years is demonstrated by the interest in efficient in vitro treatment of plant pathogenic fungi. Recent experiments relate to reproducible experimental rodent models of systemic candidiasis, meningeal cryptococcosis, pulmonary aspergillosis, and disseminated fusariosis.



These include improved murine models adapted to combat pulmonary aspergillosis [89]. The first murine model of aspergillosis was published in 1967 [89]. Early models [90,91] included intranasal [91], intratracheal administration [92], and inhalation of Aspergillus conidia [89,90,91,92,93,94,95,96].



Rodent models are intended to provide a more efficient diagnosis, involve intravenous treatment, and improve the quality of images of histological examinations by image analysis [97]. Standardization included the lossless compression to JPEG format images, using a NIKON D5100 camera, with a 1/25-s exposure, the ImageJ open-source software package, fast Fourier transformation, and bandpass filtering to avoid uneven illumination artefacts (bulb-effect removal). Local contrast was enhanced by using the histogram equalization method [98] and versatile wand tool for specific GMS staining (https://imagej.nih.gov/ij/plugins/versatile-wand-tool/index.html (accessed on 05 November 2021). As an example, Grocott’s methenamine silver staining of murine aspergillosis after image analysis is presented in Figure 4.



Detection of Serum Beta (1-3)-D-Glucan


The fungal cell wall constituent, triple helical lentinan, a linear beta (1-3)-D-glucan, has received FDA approval, is highly sensitive, and serves as a specific test for invasive deep mycosis. The presence of this glucan can be traced in the cell wall in beta (1→3)-D-glucanaemia in deep mycosis [99]. This test could be useful in immunocompromised patients, including those infected with plant pathogenic fungi, such as fusariosis or aspergillosis. The visual nature of the plant–fungal monitoring makes digital image processing techniques adaptable to solve this problem. [100]. Adherence and growth patterns of Candida albicans yeast cells strains were performed earlier [101]. Recently, time-lapse image analysis has been extended to plant pathogenic fungi.





3. Treatment of Plant Pathogenic Fungal Infections


Non-invasive bronchopulmonary diseases may lead to invasive pulmonary aspergillosis even in immunocompetent individuals [102]. The incidence of aspergillosis rose due to infections with A. fumigatus and other pathogenic Aspergillus species [103]. The most frequently occurring pathogenic fungal infections (aspergillosis, fusariosis, and cryptococcosis) are difficult to treat because patients are immunosuppressed and resistant to antifungal agents [24,104].



The pulmonary aspects of cryptococcosis are often overlooked because the manifestation of cryptococcal infection is meningoencephalitis, although the initial pathogenetic event is pulmonary infection. Cryptococcus gatti and C. neoformans are the etiologic agents that cause major systemic pulmonary infections [105].



Although the mechanism of infection by fungal spores in mammalian hosts remains largely unknown, the infections of immunocompromised patients of disseminated fusariosis in immunosuppressed mice resemble patients infected by Aspergillus spores. Symptoms of immunosuppressed mice are also remarkably similar to those reported in humans. Fusarium species, such as F. oxysporum, can disseminate and persist in the organs of immunocompetent animals, and these latent infections can lead to lethal systemic fusariosis if the host is later subjected to immunosuppressive treatment [106,107,108,109,110,111,112,113,114,115].



3.1. Therapy of Invasive Plant Mycoses


Aspergillosis and Cryptococcosis


Fusarium spp. is an opportunistic pathogen that causes potentially fatal infection in immunocompromised patients. The mean minimal inhibitory concentration (MIC) against Fusarium of applied amphotericin B was 3.3 µg/mL, and of miconazole, 5.3 µg/mL. Patients recovered after receiving amphotericin B plus 5-fluorocytosine [116]. Posaconazole was efficient in the treatment and prophylaxis against Fusarium solani [117]. Pentamidine is active in a neutropenic murine model of acute invasive pulmonary fusariosis [106].



The following therapeutic guidelines apply:




	- 

	
Infection with conidial spores of Aspergillus species should be avoided.




	- 

	
Filtered air should be introduced into the air-conditioning systems in bone and marrow transplant units.




	- 

	
Invasive aspergillosis can be effectively treated with azoles, especially with voriconazole.




	- 

	
Due to the relatively fast-developing resistance, the combined therapy of voriconazole with amphotericin B or in combination with other fungal agents is recommended.




	- 

	
Double and triple antifungal combinations against clinical isolates of Aspergillus fumigatus and A. terreus are recommended. Combinations of caspofungin with either amphotericin B or voriconazole were additive for all the isolates, and antagonism was not observed. In contrast, the interaction between voriconazole and fluorocytosine was not synergistic; rather, antagonism was noted for 93% of the isolates [116].




	- 

	
Prophylactic measures should be taken to prevent the infection of the personnel.












4. Functional Groups of Aminoglycosides against Plant Pathogenic Fungi


Gentamicin is a broad-spectrum aminoglycoside antibiotic produced by Micromonospora purpurea bacteria and is effective against Gram-negative bacterial infections. Major fractions of the gentamicin complex (C1, C1a, C2, C2a) possess weak antifungal activity, but one of the minor components (A, A1-A4, B, B1, X) of gentamicin B1was found to exert strong in vitro antifungal activity against plant pathogenic fungi [25]. The in vitro antifungal activity of aminoglycosides, among them gentamicin major and minor fractions, was detected with gentamycin B1 as the most active minor fraction. The effect of basic water-soluble antibiotics, including gentamicin fractions, has been recently described [24,25]. The structure and function relationship of aminoglycosides, including the fractions of gentamycin, are summarised in Figure 5.



The in vitro antifungal potency of gentamicin B1 turned out to be higher than other established antifungal agents, including amphotericin B, clotrimazole, nystatin, and griseofulvin [24].



This relationship is placed in a broader perspective, as it suggests that not only the kinship of aminoglycoside ring structures and their substituents need consideration but the structures of other mycotoxins do as well. As a general tendency, the toxicity of mycotoxins depends largely on the oxidation state, with -OH groups responsible for the toxicity, and keto groups for the apoptotic effect. In aminoglycosides, ring structures are not aromatic and do not contribute to genotoxicity, but polyhydroxy and carbonyl (=CO) groups do contribute. It is worth mentioning that aminoglycosides, including gentamicins, are much less toxic than one would expect from oxygen-containing substituents. The purpuroseamine ring substituents of gentamicins (Figure 5) in those aminoglycoside derivatives (hygromycin, paromomycin, and neomycin) consist of four rings. The presence of the fourth ring and its substituents does not significantly impact the antifungal effect. The antifusarial spectrum of aminoglycosides [26] resolved several doubts concerning the structure–function relationship of gentamicins. The critical element of the antifusarium effect takes place at the purpuroseamine ring of the gentamicin complex and not at the garoseamine and 2-deoxystreptamine units (upper right panel of Figure 5). The substituents of the garoseamine and 2-deoxystreptamine rings are identical in each gentamicin, but their MIC values are different, suggesting no involvement of these rings in function.



It was shown previously that the antifungal activity of gentamicin B1 on Fusarium species affects other plant pathogen fungi, such as Aspergillus, Fusarium, Cryptococcus, Microsporum, and Trichophyton culture, much more so than the yeast Candida albicans [24]. The antifungal activities of different agents besides gentamicin B1, including clotrimazole, amphotericin B, nystatin, and griseofulvin [25], showed that some of the MIC values of gentamicin B1 for Trychophyton and Candida albicans were higher than those of amphotericin B and clotrimazole. Gentamicin B1 was more efficient against Fusarium, Aspergillus, Microsporum, and Cryptococcus species than other established antifungal agents, such as clotrimazole, amphotericin B, nystatin, or griseofulvin. This could mean that the variability of the antifungal effect depends not only on the chemical composition of gentamicin but also on the types of plant fungi tested, and it varies with different batches of mycotoxins. The soil dermatophyte Microsporum gypseum is often difficult to distinguish from Trichophyton gypseum. Based on its inhibition pattern, Microsporum gypseum is more susceptible (MIC 3.1 µg/mL) to gentamicin B1 than Trichophyton gypseum (MIC 25 µg/mL) [25]. Based on this observation, gentamicin B1 could serve as a differential diagnostic tool to distinguish between Trichophyton gypseum and Microsporum gypseum.



Murine experiments proved that gentamicin B1 maintained some of its antifungal effects against experimental cryptococcal infection. A combined gentamicin B1 and amphotericin B treatment, as well as their repeated application, could reduce the toxicity of elevated concentrations of gentamicin and improve the survival of patients [25]. Gentamicin as a marketed medicine might be tested against cryptococcosis and systemic plant mycoses that are still lacking efficient medical treatment.




5. Discussion


Three types of antifungal agents have been reviewed in this study, including ’Janus-faced’ mycotoxins, aminoglycoside molecules as double-edged swords, and the efficient minor fraction gentamicin B1. Particular attention was given to their antifungal activity, and they were compared with the classical antifungal drugs (amphotericin B, clotrimazole, nystatin, and griseofulvin). Mycotoxins are poisonous, ubiquitous in nature, and produced by various fungi species whose occurrence in the food chain is inevitable. Therefore, they pose a serious problem on a global scale [117,118]. Human exposure to mycotoxins is commonly due to food and feed contamination [119,120]. The double-edged sword effect of antineoplastic mycotoxins has been reviewed with respect to selected mycotoxins, which affect eukaryotic cells with a broad range of structural and functional groups, contributing to their classification. The strong toxic effects and anticancer potential of the following mycotoxins were described: ergotamine, cyclopiazonic acid, T-2 toxin, satratoxin H, alternariol, pseurotin, synerazol, rubratoxin, beauvericin, enniatin, tenuazonic acid, cytochalasin B, cytochalasin C, and MT81 [32].



The aspects of classifications of the International Agency for Research on Cancer (IARC) (Lyon, France), categorizing human carcinogenic mycotoxins, should be kept in mind (International Agency for Research on Cancer, Lyon, France, 2021) when the cytotoxicity of a Janus-faced mycotoxin is considered as a potential antineoplastic agent. The IARC I category most carcinogenic to humans (e.g., aflatoxins) should be definitively excluded from the list of candidates. The IARC 2A group is probably carcinogenic to humans but provides strong evidence of anticarcinogenicity, making it likely that carcinogenesis is mediated by mechanisms that also operate in humans. These compounds should, therefore, not be kept on the waiting list of antitumor mycotoxins. The IARC 2B group is possibly carcinogenic to humans, although there is limited evidence of carcinogenicity and less than sufficient evidence of anticarcinogenicity. This group deserves consideration but only after the mechanism of carcinogenicity has been ruled out. The IARC 3 group is not classifiable as to its carcinogenicity to humans but is potentially carcinogenic in experimental animals, whereas the mechanism of carcinogenicity does not work in humans. Agents in group 3 and other mycotoxins that do not fall into any other group mentioned are regarded as safe overall, but this does not mean that further research can be avoided.



Due to the inherent toxicity of gentamicins (mainly ototoxicity and nephrotoxicity) that is associated with their long-term use, as well as the emergence of resistant bacterial strains, these molecules can also be regarded as Janus-faced molecules owing to their limited usage. The applications of some aminoglycosides have been extended, as they display clinically relevant activity against protozoa, Neisseria gonorrhoeae, and mycobacteria.



The recent emergence of infections due to Gram-negative bacteria and bacterial resistance has prompted a revived interest in the use of aminoglycosides while addressing the bacterial resistance, nephrotoxicity, and ototoxicity problems associated with their clinical use [121]. Major fractions of the gentamicin complex (C1, C1a, C2, C2a) possess weak antifungal activity. The cytotoxicity of aminoglycosides against plant pathogenic fungi is indicated by their >25 µg/mL MIC values and they are not recommended for human use. This is the reason aminoglycosides can be regarded as ’Janus-faced’ molecules. Among the minor components (A, A1–A4, B, B1, X), gentamicin B1 showed strong antifungal activity in vitro (0.4–6.2 µg/mL MIC) [1], and moderate but noticeable activity in vivo against plant pathogenic fungi [122]. Consequently, by knowing the structures, the substituents, and the functional groups of aminoglycosides, it should be possible to improve their antifungal activity. The best example is gentamicin B1 itself. Its low in vitro MIC values suggest that gentamicin B1 and the family of aminoglycosides merit further study regarding hemo- and cytotoxicity, not only in inhibitory but also in the killing range. Gentamicin is in medical use and its minor fraction, gentamicin B1, deserves to be tested against systemic plant mycoses that have no efficient medical treatment. Another issue is the interaction between gentamicin B1 and amphotericin B and the exact mechanism of action of this minor component of gentamicins merits study at the chemical level.




6. Conclusions


Based on the arrangement of structural elements of ’Janus-faced’ molecules, the following factors have been determined regarding mycotoxins:




	- 

	
Cytotoxicity is attributable to the presence of multiple hydroxyl groups. In poly-hydroxylated benzenes, toxicity is associated with hydrophobicity and the probability of radical formation [123];




	- 

	
The IARC carcinogenic property is related to polyene structure (e.g., aflatoxins) [36,55];




	- 

	
Mutagenicity and genotoxicity could be contributed by the simultaneous presence of keto, hydroxy, and cumulative presence of carboxy groups, although the genotoxicity and mutagenicity of ketamines are doubted [124];




	- 

	
The general tendency of the toxicity of mycotoxins largely depends on the oxidation state, with -OH groups responsible for cytotoxicity, and keto groups for the apoptotic effect. Oxidative stress is a plausible mechanism for mycotoxin-induced toxicity [125,126].









Furthermore, the following factors have been determined regarding aminoglycosides:




	- 

	
Ring structures are not aromatic and do not contribute to genotoxicity. Examples are most of the vitamins, nucleic acids, enzymes, coenzymes, hormones, and alkaloids containing N-based heterocycles as scaffolds;




	- 

	
Polyhydroxy and carbonyl (=CO) groups contribute to the oxidation state but are biodegradable;




	- 

	
Poly(hydroxy acids) are prepared by the self-condensation polymerization of hydroxy acids. They are biodegradable and have the potential to be chemically recycled [127];




	- 

	
Gentamicins are less toxic than one would expect from their oxygen-containing substituents.









Finally, despite the known cellular interactions of the functional groups, cytotoxic antifungal agents have not been given much attention. Our results call attention to those cytotoxic ’Janus-faced’ molecules that could be used in tumour treatments despite their moderate genotoxicity.







Funding


The research was supported by the Research Institute of Pharmaceutical Chemistry, Budapest, Hungary. The National Science Research Foundation (OTKA) grant T042762 was provided to G.B.




Institutional Review Board Statement


Ethics approval and consent to participate—not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


Data is contained within the article.




Acknowledgments


Janos Berdy at the Department of Preparative Chemistry, Research Institute of Pharmaceutical Chemistry, performed the chemical analysis of gentamicin fractions and provided them to the author for antibiotic tests. István Koczka, head of the Department of Chemotherapeutics and Antibiotics, permitted the use of collections of fungal and bacterial strains. The technical assistance of Laszlo Ando and Otto Szabo is gratefully acknowledged. The reading and correction of the manuscript by Henry Paulus is gratefully acknowledged.




Conflicts of Interest


The author declares no conflict of interest.




References


	



Hammond, N.G.L. The Oxford Classical Dictionary, 2nd ed.; Hammond, N.G.L., Scullard, H.H., Eds.; Clarendon Press: Oxford, UK, 1970; ISBN 978-0198691174. [Google Scholar]

	



Gupta, N.; Verma, K.; Nalla, S.; Kulshreshtha, A.; Lall, R.; Prasad, S. Free Radicals as a Double-Edged Sword: The Cancer Preventive and Therapeutic Roles of Curcumin. Molecules 2020, 25, 5390. [Google Scholar] [CrossRef]

	



Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M.G. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8, 766–775. [Google Scholar] [CrossRef]

	



A Receptor-Mediated Pathway for Cholesterol Homeostasis, Nobel lecture, December 9, 1985 by Michael Brown and Joseph Goldstein. Available online: http://nobelprize.virtual.museum/nobel_prizes/medicine/laureates/1985/brown-goldstein-lecture.pdf (accessed on 5 November 2021).

	



Shivaji, A.; Thadke, V.; Hridya, M.; Dinithi, J.; Perera, R.; Gil, R.R.; Mukherjee, A.; Ly, D.H. Shape selective bifacial recognition of double helical DNA. Commun. Chem. 2018, 1, 79. [Google Scholar] [CrossRef]

	



Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Novotna, E. Ochratoxin A: Developmental and reproductive toxicity—An overview. Birth Defects Res. B Dev. Reprod. Toxicol. 2013, 98, 493–502. [Google Scholar] [CrossRef]

	



Wang, J.S.; Groopman, J.D. DNA damage by mycotoxins. Mutat. Res. 1999, 424, 167–181. [Google Scholar] [CrossRef]

	



Dornetshuber, R.; Heffeter, P.; Kamyar, M.R.; Peterbauer, T.; Berger, W.; LemmensGruber, R. Enniatin exerts p53-dependent cytostatic and p53-independent cytotoxic activities against human cancer cells. Chem. Res. Toxicol. 2007, 20, 465–473. [Google Scholar] [CrossRef] [PubMed]

	



Behm, C.; Degen, G.H.; Föllmann, W. The Fusarium toxin enniatin B exerts no genotoxic activity, but pronounced cytotoxicity in vitro. Mol. Nutr. Food Res. 2009, 53, 423–430. [Google Scholar] [CrossRef] [PubMed]

	



Tedjiotsop Feudjio, F.; Dornetshuber, R.; Lemmens, M.; Hoffmann, O.R.; LemmensGruber, R.; Berger, W. Beauvericin and enniatin: Emerging toxins and/or remedies? World Mycotox. J. 2010, 3, 415–430. [Google Scholar] [CrossRef]

	



Yoon, H.J.; Choi, H.Y.; Kim, Y.K.; Song, Y.J.; Ki, M. Prevalence of fungal infections using National Health Insurance data from 2009–2013, South Korea. Epidemiol. Health 2014, 36, E2014017. [Google Scholar] [CrossRef]

	



Hoenigl, M. Invasive Fungal Disease complicating COVID-19: When it rains it pours. Clin. Infect. Dis. 2021, 73, e1645–e1648. Available online: https://ncbi.nlm.nih.gov/pmc/articles/pmc7499555 (accessed on 5 November 2021). [CrossRef]

	



Van de Veerdonk, F.L.; Brüggemann, R.J.; Vos, S.; De Hertogh, G.; Wauters, J.; Reijers, M.H.E.; Netea, M.; Shouten, J.A.; Verwei, P. COVID-19-Associated Aspergillus Tracheobronchitis: The interplay between viral tropism, host defence, and fungal invasion. Lancet Respir. Med. 2021, 9, 795–802. [Google Scholar] [CrossRef]

	



Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis external icon. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef] [PubMed]

	



Mohamed, A.; Rogers, T.R.; Talento, A.F. COVID-19 associated invasive pulmonary aspergillosis: Diagnostic and therapeutic challenges external icon. J. Fungi 2020, 6, 115. [Google Scholar] [CrossRef]

	



Verweij, P.E.; Gangneu, J.; Bassetti, M.; Bruggemann, R.J.M.; Cornely, O.A.; Koehler, P.; Hoenigl, M.; Lass-Flörl, C.; van de Veerdonk, F.L.; Chakrabarti, A. Diagnosing COVID-19-associated pulmonary aspergillosis external icon. Lancet Microbe 2020, 1, E53–E55. [Google Scholar] [CrossRef]

	



Dellière, S.; Dugnon, E.; Fodil, S.; Voicu, S.; Collet, M.; Oillic, P.; Salmona, M.; Depret, F.; Ghelfenstein-Ferreira, T.; Plaud, B. Risk factors associated with COVID-19-associated pulmonary aspergillosis in ICU patients: A French multicentric retrospective cohortexternal icon. Clin. Microbiol. Infect. 2020, 27, 790.e1–790.e5. [Google Scholar] [CrossRef]

	



Benedetti, M.F.; Alava, K.H.; Sagardia, J.; Cadena, R.C.; Laplume, D.; Capece, P.; Posse, G.; Nusblat, A.D.; Cuestas, M.L. COVID-19 associated pulmonary aspergillosis in ICU patients: Report of five cases from Argentina. Med. Mycol. Case Rep. 2020, 31, 24–28. [Google Scholar] [CrossRef]

	



Marr, K.A.; Platt, A.; Tornheim, J.A.; Zhang, S.X.; Datta, K.; Cardozo, C.; Garcia-Vidal, C. Aspergillosis complicating severe coronavirus disease. Emerg. Infect. Dis. 2021, 27, 18–25. [Google Scholar] [CrossRef] [PubMed]

	



Schoental, R. Trichothecenes, zearalenone, and other carcinogenic metabolites of Fusarium and related microfungi. In Advances in Cancer Research; Klein, G., Weinhouse, S., Eds.; Academic Press: Cambridge, MA, USA, 1985; Volume 45, pp. 217–290. [Google Scholar]

	



Sulaiman, M.R.; Chye, F.Y.; Hamid, A.A.; Yatim, A.M. The occurrence of aflatoxins in raw shelled peanut samples from three districts of Perak, Malaysia. Electron J. Environ. Food Chem. 2007, 2045–2052. Available online: http://eprints.ums.edu.my/3769/ (accessed on 5 November 2021).

	



Palacios, C.F.; Spichler Moffarah, A. Diagnosis of pneumonia due to ivasive moulds. Diagnostics 2021, 11, 1226. Available online: https://doi.org/10.3390/diagnostics11071226 (accessed on 5 November 2021). [CrossRef]

	



Al-Hatmi, A.M.S.; Bonifaz, A.; Ranque, S.; Sybren de Hoog, G.; Verweij, P.E.; Meis, J.F. Current antifungal treatment of fusariosis. Int. J. Antimicrob. Agents 2018, 51, 326–332. [Google Scholar] [CrossRef]

	



Banfalvi, G. Retrospective evaluation of in vitro effect of gentamicin B1 against Fusarium species. Appl. Microbiol. Biotechnol. 2018, 102, 10353–10359. [Google Scholar] [CrossRef]

	



Banfalvi, G. Antifungal activity of gentamicin B1 against systemic plant mycoses. Molecules 2020, 25, 2401. [Google Scholar] [CrossRef]

	



Baradaran-Heravi, A.; Niesser, J.; Balgi, A.D.; Choi, K.; Zimmerman, C.; South, A.P.; Anderson, H.J.; Strynadka, N.C.; Bally, M.B.; Roberge, M. Gentamicin B1 is a minor gentamicin component with major nonsense mutation suppression activity. Proc. Natl. Acad. Sci. USA 2017, 114, 3479–3484. [Google Scholar] [CrossRef]

	



Bidou, L.; Bugaud, O.; Belakhov, V.; Baasov, T.; Namy, O. Characterization of new-generation aminoglycoside promoting premature termination codon readthrough in cancer cells. RNA Biol. 2017, 14, 378–388. [Google Scholar] [CrossRef] [PubMed]

	



Baradaran-Heravi, A.; Niesser, J.; Balgi, A.D.; Choi, K.; Zimmerman, C.; South, A.P.; Anderson, H.J.; Strynadka, N.C.; Bally, M.B.; Roberge, M. Retraction for Baradaran-Heravi et al., Gentamicin B1 is a minor gentamicin component with major nonsense mutation suppression activity. Proc. Nat. Acad. Sci. USA 2018, 115, E1185. [Google Scholar] [CrossRef]

	



Gadó, I.; Bérdy, J.; Koczka, I.; Horváth, I.; Járay, M.; Zlatos, G. Gentamicin Antibiotics. Hungarian Patent 1975, 30 December 1973. [Google Scholar]

	



Bérdy, J.; Pauncz, J.K.; Vajna, Z.M.; Horváth, G.; Gyimesi, J.; Koczka, I. Metabolites of gentamicin-producing Micromonospora species I. Isolation and identification of metabolites. J. Antibiot. 1977, 30, 945–954. [Google Scholar] [CrossRef] [PubMed]

	



Van de Veerdonk, F.L.; Gresnigt, M.S.; Romani, L.; Netea, M.G.; Latgé, J.-P. Aspergillus fumigatus morphology and dynamic host interactions. Nat. Rev. Microbiol. 2017, 15, 661–674. [Google Scholar] [CrossRef] [PubMed]

	



Pócsi, I.; Király, G.; Bánfalvi, G. Antineoplastic potential of mycotoxins. Acta Microbiol. Immunol. 2018, 65, 267–307. [Google Scholar] [CrossRef] [PubMed]

	



Pócsi, I.; Giacometti, F.; Ambrus, Á.; Logrieco, A.F. Editorial: Aspergillus-derived mycotoxins in the feed and food chain. Front Microbiol. 2020, 11, 606108. [Google Scholar] [CrossRef] [PubMed]

	



Ráduly, Z.; Szabó, L.; Madar, A.; Pócsi, I.; Csernoch, L. Toxicological and medical aspects of Aspergillus-derived mycotoxins entering the feed and food chain. Front Microbiol. 2020, 10, 2908. [Google Scholar] [CrossRef]

	



Peles, F.; Sipos, P.; Győri, Z.; Pfliegler, W.P.; Giacometti, F.; Serraino, A.; Pagliuca, G.; Gazzotti, T.; Pócsi, I. Adverse effects, transformation and channeling of aflatoxins into food raw materials in livestock. Front Microbiol. 2019, 10, 2861. [Google Scholar] [CrossRef] [PubMed]

	



Norlia, M.; Jinap, S.; Nor-Khaizura, M.A.R.; Radu, S.; Samsudin, N.I.P.; Azri, F.A. Aspergillus section Flavi and aflatoxins: Occurrence, detection, and identification in raw peanuts and peanut-based products along the supply chain. Front Microbiol. 2019, 10, 2602. [Google Scholar] [CrossRef]

	



Miklós, G.; Angeli, C.; Ambrus, Á.; Nagy, A.; Kardos, V.; Zentai, A.; Kerekes, K.; Farkas, Z.; Józwiak, Á.; Bartók, T. Detection of aflatoxins in different matrices and food-chain positions. Front Microbiol. 2021, 12, 669714. [Google Scholar] [CrossRef] [PubMed]

	



Ren, X.; Yue, X.; Mwakinyali, S.E.; Zhang, W.; Zhang, Q.; Peiwu, L. Small molecular contaminant and microorganism can be simultaneously detected based on nanobody-phage: Using carcinogen aflatoxin and its main fungal Aspergillus section Flavi spp. in stored maize for demonstration. Front Microbiol. 2019, 10, 3023. [Google Scholar] [CrossRef] [PubMed]

	



Serraino, A.; Bonilauri, P.; Kerekes, K.; Farkas, Z.; Giacometti, F.; Canever, A.; Zambrini, A.V.; Ambrus, Á. Occurence of aflatoxin M1 in raw milk marketed in Italy: Exposure assessment and risk characterization. Front Microbiol. 2019, 10, 2516. [Google Scholar] [CrossRef]

	



Pfliegler, W.P.; Pócsi, I.; Győri, Z.; Pusztahelyi, T. Aspergilli and their mycotoxins: Metabolic interactions with plants and the soil biota. Front Microbiol. 2019, 10, 2921. [Google Scholar] [CrossRef]

	



Soni, P.; Gangurde, S.S.; Ortega-Beltran, A.; Kumar, R.; Parmar, S.; Hari, K.P.; Sudini, H.K.; Lei, Y.; NI, X.; Huai, D.; et al. Functional biology and molecular mechanisms of host-pathogen interactions for aflatoxin contamination in groundnut (Arachis hypogaea L.) and Maize (Zea mays L.). Front Microbiol. 2020, 11, 227. [Google Scholar] [CrossRef] [PubMed]

	



Lewis, M.H.; Carbone, I.; Luis, J.M.; Payne, G.A.; Bowen, K.L.; Hagan, A.K.; RoKemerait, R.; Heiniger, R.; Ojiambo, P.S. Biocontrol strains differentially shift the genetic structure of indigenous soil populations of Aspergillus flavus. Front Microbiol. 2019, 10, 1738. [Google Scholar] [CrossRef]

	



Agbetiameh, D.; Ortega-Beltran, A.; Awuah, R.T.; Atehnkeng, J.; Islam, M.-S.; Callicott, KA.; Cotty, P.J.; Bandyopadhyay, R. Potential of atoxigenic Aspergillus flavus vegetative compatibility groups associated with maize and groundnut in Ghana as biocontrol agents for aflatoxin management. Front Microbiol. 2019, 10, 2069. [Google Scholar] [CrossRef]

	



Shenge, K.C.; Adhikari, B.N.; Akande, A.; Callicott, K.A.; Atehnkeng, J.; Ortega-Beltran, A.; Kumar, P.L.; Bandyopadhyay, R.; Cotty, P. Monitoring Aspergillus flavus genotypes in a multi-genotype aflatoxin biocontrol product with quantitative pyrosequencing. Front Microbiol. 2019, 10, 2529. [Google Scholar] [CrossRef]

	



Lagogianni, C.S.; Tsitsigiannis, D.I. Effective biopesticides and biostimulants to reduce aflatoxins in maize fields: A Corrigendum on: Effective biopesticides and biostimulants to reduce aflatoxins in maize fields. Front Microbiol. 2020, 11, 29. [Google Scholar] [CrossRef]

	



Ren, Y.; Jin, J.; Zheng, M.; Yang, Q.; Xing, F. Ethanol Inhibits aflatoxin B1 biosynthesis in Aspergillus flavus by up-regulating oxidative stress-related genes. Front Microbiol. 2020, 10, 2946. [Google Scholar] [CrossRef]

	



Wang, G.; Zhang, H.; Wang, Y.; Liu, F.; Li, E.; Ma, J.; Yang, B.; Zhang, C.; Li, L.; Liu, Y. Requirement of LaeA, VeA, and VelB on asexual development, ochratoxin A biosynthesis, and fungal virulence in Aspergillus ochraceus. Front. Microbiol. 2019. [Google Scholar] [CrossRef]

	



Barda, O.; Maor, U.; Sadhasivam, S.; Bi, Y.; Zakin, V.; Prusky, D.; Sionov, E. The pH-Responsive Transcription Factor PacC Governs Pathogenicity and Ochratoxin A Biosynthesis in Aspergillus carbonarius. Front. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]

	



Loi, M.; Paciolla, C.; Logrieco, A.F.; Mulè, G. Plant Bioactive Compounds in Pre- and Postharvest Management for Aflatoxins Reduction. Front Microbiol. 2020, 11, 243. [Google Scholar] [CrossRef] [PubMed]

	



Qu, S.; Yang, K.; Chen, L.; Liu, M.; He, X.; Li, X.; Liu, Y.; Tian, J. Cinnamaldehyde, a promising natural preservative against Aspergillus flavus. Front Microbiol. 2019, 10, 2895. [Google Scholar] [CrossRef] [PubMed]

	



Haidukowski, M.; Casamassima, E.; Cimmarusti, M.T.; Branà, M.T.; Longobardi, F.; Acquafredda, P.; Logrieco, A.; Altomar, C. Aflatoxin B1—Adsorbing capability of Pleurotus eryngii mycelium: Efficiency and modeling of the process. Front Microbiol. 2019, 10, 1386. [Google Scholar] [CrossRef] [PubMed]

	



Pangga, I.B.; Salvacion, A.R.; Cumagun, C.J.R. Climate change and plant diseases caused by mycotoxigenic fungi: Implications for food security. In Climate Change and Mycotoxins; DeGruyter: Berlin, Germany, 2015; pp. 1–28. [Google Scholar]

	



Moretti, A.T.; Logrieco, A.F.; Susca, A. Mycotoxin: An underhand food problem. In Mycotoxigenic Fungi Methods and Protocols; Moretti, A., Susca, A., Eds.; Humana Press: New York, NY, USA, 2017; pp. 3–12. [Google Scholar]

	



Sweeney, M.J.; Dobson, A.D. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int. J. Food Microbiol. 1998, 43, 141–158. [Google Scholar] [CrossRef]

	



Pashin, Y.V.; Bakhitova, L.M. Mutagenic and carcinogenic properties of polycyclic aromatic hydrocarbons. Environ. Health Perspect. 1979, 30, 185–189. [Google Scholar] [CrossRef]

	



Pitot, H.C.; Dragan, Y.P. The multistage nature of chemically induced hepatocarcinogenesis in the rat. Drug Met. Rev. 1994, 26, 209–220. [Google Scholar] [CrossRef]

	



Jacob, J. The significance of polycyclic aromatic hydrocarbons as environmental carcinogens. Pure Appl. Chem. 1996, 88, 301–308. [Google Scholar] [CrossRef]

	



Gerhards, N.; Neubauer, L.; Tudzynski, P.; Li, S.M. Biosynthetic pathways of ergot alkaloids. Toxins 2014, 6, 3281–3295. [Google Scholar] [CrossRef]

	



Eadie, M.J. Convulsive ergotism: Epidemics of the serotonin syndrome? Lancet Neurol. 2003, 2, 429–434. [Google Scholar] [CrossRef]

	



Plenge-Tellechea, F.; Soler, F.; Fernandez-Belda, F. On the inhibition mechanism of sarcoplasmic or endoplasmic reticulum Ca2+-ATPases by cyclopiazonic acid. J. Biol. Chem. 1997, 272, 2794–2800. [Google Scholar] [CrossRef] [PubMed]

	



Maiya, S.; Grundmann, A.; Li, X.; Li, S.M.; Turner, G. Identification of a hybrid PKS/NRPS required for pseurotin A biosynthesis in the human pathogen. Aspergillus fumigatus. ChemBioChem 2007, 8, 1736–1743. [Google Scholar] [CrossRef] [PubMed]

	



Voödisch, M.; Scherlach, K.; Winkler, R.; Hertweck, C.; Braun, H.P.; Roth, M.; Haas, H.; Werner, E.R.; Brakhage, A.A.; Kniemeyer, O. Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin A biosynthesis gene cluster in response to hypoxia. J. Proteome Res. 2011, 10, 2508–2524. [Google Scholar] [CrossRef]

	



Schmeda-Hirschmann, G.; Hormazabal, E.; Rodriguez, J.A.; Theoduloz, C. Cycloaspeptide A and pseurotin A from the endophytic fungus Penicillium janczewskii. Zeitschrift Naturforsch. 2008, 63, 383–388. [Google Scholar] [CrossRef] [PubMed]

	



Ishikawa, M.; Ninomiya, T.; Akabane, H.; Kushida, N.; Tsujiuchi, G.; Ohyama, M.; Gomi, S.; Shito, K.; Murata, T. Pseurotin A and its analogues as inhibitors of immunoglobuline E production. Bioorg. Med. Chem. Letts. 2009, 19, 1457–1460. [Google Scholar] [CrossRef] [PubMed]

	



Vašíček, O.; Fedr, R.; Skoroplyas, S.; Chalupa, D.; Sklenář, M.; Tharra, P.R.; Švenda, J.; Kubala, L. Natural pseurotins and analogs thereof inhibit activation of B-cells and differentiation into the plasma cells. Phytomedicine 2020, 69, 153–194. [Google Scholar] [CrossRef]

	



Rubanova, D.; Dadova, P.; Vasicek, O.; Kubala, L. Pseurotin D inhibits the activation of human lymphocytes. Int. J. Mol. Sci. 2021, 2, 1938. [Google Scholar] [CrossRef]

	



Vasicek, O.; Rubanova, D.; Chytkova, B.; Kubala, L. Natural pseurotins inhibit proliferation and inflammatory responses through the inactivation of STAT signaling pathways in macrophages. Food Chem. Toxicol. 2020, 141, 111348. [Google Scholar] [CrossRef]

	



Abdelwahed, K.S.; Siddique, A.B.; Mohyeldin, M.M.; Qusa, M.H.; Goda, A.A.; Sitanshu, S.S.; Ayoub, N.M.; King, J.A.; Jois, S.D.; El Sayed, K. Pseurotin A as a novel suppressor of hormone-dependent breast cancer progression and recurrence by inhibiting PCSK9 secretion and interaction with LDL receptor. Pharmacology 2020, 158, 104847. [Google Scholar] [CrossRef]

	



Chen, L.C.; Blank, E.S.; Casadevall, A. Extracellular proteinase activity of Cryptococcus neoformans. Clin. Diagnost. Lab. Immunol. 1996, 3, 570–574. [Google Scholar] [CrossRef] [PubMed]

	



Bradner, W.T.; Bush, J.A.; Myllymaki, R.W.; Nettleton, D.E. Jr.; O’herron, F.A. Fermentation, isolation, and antitumour activity of sterigmatocystins. Antimicrob. Agents Chemother. 1975, 8, 159–163. [Google Scholar] [CrossRef] [PubMed]

	



Adpressa, D.A.; Loesgen, S. Bioprospecting chemical diversity and bioactivity in a marine derived Aspergillus terreus. Chem. Biodiv. 2016, 13, 253–259. [Google Scholar] [CrossRef]

	



Kuiper-Goodman, T.; Scott, P.M. Risk assessment of the mycotoxin ochratoxin. Biomed. Environ. Sci. 1989, 2, 179–248. [Google Scholar]

	



Boorman, G.A.; McDonald, M.R.; Imoto, S.; Persing, R. Renal lesions induced by ochratoxin A exposure in the F344 rat. Toxicol Pathol. 1992, 20, 236–245. [Google Scholar] [CrossRef]

	



Chen, K.; Qiu, P.; Yuan, Y.; Zheng, L.; He, J.; Wang, C.; Guo, Q.; Kenny, J.; Liu, Q.; Zhao, J.; et al. Pseurotin A inhibits osteoclastogenesis and prevents ovariectomized-induced bone loss by suppressing reactive oxygen species. Theranostics 2019, 9, 1634–1650. [Google Scholar] [CrossRef]

	



Atanasova-Penichon, V.; Pons, S.; Pinson-Gadais, L.; Picot, A.; Marchegay, G.; Bonnin-Verdal, M.N.; Ducos, C.; Barreau, C.; Roucolle, J.; Sehabigue, P.; et al. Chlorogenic acid and maize ear rot resistance: A dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation. Mol. Plant-Microb. Interact. 2012, 25, 1605–1616. [Google Scholar] [CrossRef] [PubMed]

	



Shank, R.A.; Foroud, N.A.; Hazendonk, P.; Eudes, F.; Blackwell, B.A. Current and future experimental strategies for structural analysis of trichothecene mycotoxins—A prospectus. Toxins 2011, 3, 1518–1553. [Google Scholar] [CrossRef]

	



McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From simple to complex mycotoxins. Toxins 2011, 3, 802–814. [Google Scholar] [CrossRef]

	



Hofgaard, I.S.; Aamot, H.U.; Torp, T.; Jestoi, M.; Lattanzio, V.M.T.; Klemsdal, S.S.; Waalwijk, C.; Van der Lee, T.; Brodal, G. Associations between Fusarium species and mycotoxins in oats and spring wheat from farmers’ fields in Norway over a six-year period. World Mycotoxin J. 2016, 9, 365–378. [Google Scholar] [CrossRef]

	



Gab-Allah, M.A.; Kim, B. Accurate determination of type B trichothecenes and conjugated deoxynivalenol in grains by isotope dilution–liquid chromatography tandem mass spectrometry. Food Control 2021, 121, 107557. [Google Scholar] [CrossRef]

	



Normand, A.-C.; Imbert, S.; Brun., S.; Al-Hatmi, A.M.S; Chryssanthou, E.; Cassaing, S.; Schuttler., C.; Hasseine, L.; Caroline Mahinc, C.; Costa, D.; et al. Clinical origin and species distribution of Fusarium spp. Isolates identified by molecular sequencing and mass spectrometry: A European multicenter hospital prospective study. J. Fungi 2021, 25, 246. [Google Scholar] [CrossRef] [PubMed]

	



Claridge, C.A.; Schmitz., H. Antitumor activity of some microbial and chemical transformation products of anguidine (4,15-diacetoxyscirpene-3-ol). Cancer Chemother. Pharmacol. 1979, 2, 81–82. [Google Scholar] [CrossRef]

	



Jakšić, D.; Puel, O.; Canlet, C.; Kopjar, N.; Kosalec, I.; Šegvić Klarić, M. Cytotoxicity and genotoxicity of versicolorins and 5-methoxysterigmatocystin in A549 cells. Archives Toxicol. 2012, 6, 1583–1591. [Google Scholar] [CrossRef] [PubMed]

	



Almeida, F.; Wolf, J.M.; Casadevall, A. Virulence-associated enzymes of Cryptococcus neoformans. Eukaryot. Cell 2015, 14, 1173–1185. [Google Scholar] [CrossRef]

	



Baldissera, M.D.; Souza, C.F.; Zeppenfeld, C.C.; Garzon, L.R.; Descovi, S.N.; Da Silva, A.S.; Stefani, L.M.; Baldisserotto, B. Urinergic signalling displays a pro-inflammatory profile in spleen and splenic lymphocytes of Rhamdia quelen fed with a diet contaminated by fungal mycotoxin: Involvement on disease pathogenesis. Microb Pathog. 2018, 123, 449–453. [Google Scholar] [CrossRef]

	



Matsunaga, S.; Fusetani, N.; Kato, Y.; Hirota, H. Aurantosides A and B: Cytotoxic tetramic acid glycosides from the marine sponge Theonella sp. J. Am. Chem. Soc. 1991, 113, 9690–9692. [Google Scholar] [CrossRef]

	



Sata, N.U.; Matsunaga, S.; Fusetani, N.; van Soest, R.W. Aurantosides D, E and F: New antifungal tetramic acid glycosides from the marine sponge Siliquariaspongia japonica. J. Nat. Prod. 1999, 62, 969–971. [Google Scholar] [CrossRef]

	



Lewis, R.E.; Wiederhold, N.P. Murine model of invasive aspergillosis. In Antifungal Agents; Humana Press: Totowa, NU, USA, 2005; pp. 129–142. [Google Scholar] [CrossRef]

	



Herbst, S.; Shah, A.; Carby, M.; Chusney, G.; Kikkeri, N.; Dorling, A.; Bignell, E.; Shaunak, S.; Armstrong-James, D. A new and clinically relevant murine model of solid-organ transplant aspergillosis. Dis. Models Mech. 2013, 6, 643–651. [Google Scholar] [CrossRef]

	



Banfalvi, G. Improved and adopted murine models to combat pulmonary aspergillosis. Appl. Microbiol. Biotechnol. 2018, 102, 6865–6875. [Google Scholar] [CrossRef]

	



Ford, S.; Friedman, L. Experimental study of the pathogenicity of aspergilli for mice. J. Bacteriol. 1967, 94, 928–933. [Google Scholar] [CrossRef]

	



Hanson, L.H.; Clemons, K.V.; Denning, D.W.; Stevens, D.A. Efficacy of oral saperconazole in systemic murine aspergillosis. J. Med. Vet. Mycol. 1995, 33, 311–317. [Google Scholar] [CrossRef]

	



Graybill, J.R.; Kaster, S.R.; Drutz, D.J. Treatment of experimental murine aspergillosis with BAY n7133. J. Infect. Dis. 1983, 148, 898–906. [Google Scholar] [CrossRef]

	



Williams, D.M.; Weiner, M.H.; Drutz, D.J. Immunologic studies of disseminated infection with Aspergillus fumigatus in the nude mouse. J Infect Dis. 1981, 143, 726–733. [Google Scholar] [CrossRef]

	



Sheppard, D.C.; Rieg, G.; Chiang, L.Y.; Filler, S.G.; Edwards, J.E., Jr.; Ibrahim, A.S. Novel inhalational murine model of invasive pulmonary aspergillosis. Antimicrob. Agents Chemother. 2004, 48, 1908–1911. [Google Scholar] [CrossRef]

	



Steinbach, W.J.; Benjamin, D.K., Jr.; Trasi, S.A.; Miller, J.L.; Schell, W.A.; Zaas, A.K.; Foster, W.M.; Perfect, J.R. Value of an inhalational model of invasive aspergillosis. Med. Mycol. 2004, 42, 417–425. [Google Scholar] [CrossRef] [PubMed]

	



Stephens-Romero, S.D.; Mednick, A.J.; Feldmesser, M. The pathogenesis of fatal outcome in murine pulmonary aspergillosis depends on the neutrophil depletion strategy. Infect Immun. 2005, 73, 114–125. [Google Scholar] [CrossRef] [PubMed]

	



Szigeti, Z.M.; Talas, L.; Palicz, Z.; Szentesi, P.; Hargitai, Z.; Csernoch, L.; Balla, J.; Pocsi, I.; Banfalvi, G.; Szeman-Nagy, G. Murine model to follow hyphal development in invasive pulmonary aspergillosis. Appl. Microbiol. Biotechnol. 2018, 102, 2817–2825. [Google Scholar] [CrossRef] [PubMed]

	



Pizer, S.M.; Johnston, R.E.; Rogers, D.C.; Beard, D.V. Effective presentation of medical images on an electronic display station. Radiographics 1987, 7, 1267–1274. [Google Scholar] [CrossRef]

	



Obayashi, T. (1→3)-β-D-glucanemia in deep mycosis. Mediat. Inflamm. 1997, 6, 271–273. [Google Scholar] [CrossRef]

	



Barbedo, J.G.A. Digital image processing techniques for detecting, quantifying and classifying plant diseases. Springer Plus 2013, 2, 660. [Google Scholar] [CrossRef]

	



Nagy, G.; Hennig, G.W.; Petrenyi, K.; Kovacs, L.; Pocsi, I.; Dombradi, V.; Banfalvi, G. Time-lapse video microscopy and image analysis of adherence and growth patterns of Candida albicans strains. Appl. Microbiol. Biotechnol. 2014, 98, 5185–5194. [Google Scholar] [CrossRef]

	



Rafferty, P.; Biggs, B.–A.; Crompton, G.K.; Grant, I.W. What happens to patients with pulmonary aspergilloma? Analysis of 23 cases. Thorax 1983, 38, 579–583. [Google Scholar] [CrossRef] [PubMed]

	



Morgan, J.; Wannemuehler, K.; Marr, K.A.; Hadley, S.; Kontoyiannis, D.P.; Walsh, T.J.; Fridkin, S.K.; Pappas, P.G.; Warnock, D.W. Incidence of invasive aspergillosis following hematopoietic stem cell and solid organ transplantation: Interim results of a prospective multicenter surveillance program. Med. Mycol. 2005, 43, 9–58. [Google Scholar] [CrossRef]

	



Kaufmann, C.A. Pulmonary and invasive fungal infections. Semin. Respir. Crit. Care Med. 2015, 36, 639–640. [Google Scholar] [CrossRef]

	



Pham, C.D.; Ahn, S.; Turner, L.A.; Wohrle, R.; Lockhart, S.R. Development and validation of benomyl birdseed agar for the isolation of Cryptococcus neoformans and Cryptococcus gattii from environmental samples. Med. Mycol. 2014, 52, 417–421. [Google Scholar] [CrossRef]

	



Lionakis, M.S.; Chamilos, G.; Lewis, R.E.; Wiederhold, N.P.; Raad, I.I.; Samonis, G.; Kontoyiannis, D.P. Pentamidine is active in a neutropenic murine model of acute invasive pulmonary fusariosis. Antimicrob Agents Chemother. 2006, 50, 294–297. [Google Scholar] [CrossRef] [PubMed]

	



Hata, K.; Horii, T.; Miyazaki, M.; Watanabe, N.A.; Okubo, M.; Sonoda, J.; Nakamoto, K.; Tanaka, K.; Shirotori, S.M.; Urai, N.; et al. Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis. Antimicrob. Agents Chemother. 2011, 55, 4543–4551. [Google Scholar] [CrossRef]

	



Coleman, J.J.; Muhammed, M.; Kasperkovitz, P.V.; Vyas, J.M.; Mylonakis, E. Fusarium pathogenesis investigated using Galleria mellonella as a heterologous host. Fungal Biol. 2011, 115, 1279–1289. [Google Scholar] [CrossRef] [PubMed]

	



Navarro-Velasco, G.Y.; Prados-Rosales, R.C.; Ortíz-Urquiza, A.; Quesada-Moraga, E.; Di Pietro, A. Galleria mellonella as model host for the trans-kingdom pathogen Fusarium oxysporum. Fungal Genet. Biol. 2011, 48, 1124–1129. [Google Scholar] [CrossRef] [PubMed]

	



Schäfer, K.; Di Pietro, A.; Gow, N.A.; MacCallum, D. Murine model for Fusarium oxysporum invasive fusariosis reveals organ-specific structures for dissemination and long-term persistence. PLoS ONE 2014, 9, e89920. [Google Scholar] [CrossRef] [PubMed]

	



González, G.M.; Márquez, J.; Treviño-Rangel, R.D.J.; Palma-Nicolás, J.P.; Garza-González, E.; Ceceñas, L.A.; González, J.G. Murine model of disseminated fusariosis: Evaluation of the fungal burden by traditional CFU and quantitative PCR. Mycopathologia 2013, 176, 219–224. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, H.; Wang, L.; Li, Z.; Liu, S.; Xie, Y.; He, S.; Deng, X.; Yang, B.; Liu, H.; Chen, G.; et al. A novel murine model of Fusarium solani keratitis utilizing fluorescent labeled fungi. Exp Eye Res. 2013, 110, 107–112. [Google Scholar] [CrossRef] [PubMed]

	



Zhu, Z.; Zhang, H.; Yue, J.; Liu, S.; Li, Z.; Wang, L. Antimicrobial efficacy of corneal cross-linking in vitro and in vivo for Fusarium solani: A potential new treatment for fungal keratitis. BMC Ophthalmol. 2018, 18, 65. [Google Scholar] [CrossRef]

	



Li, Y.; Fang, X.; Zhou, X.; Geng, S.; Wang, Y.; Yang, X. Pathogenicity of Conidiobolus coronatus and Fusarium solani in mouse models. Mycoses 2017, 60, 394–401. [Google Scholar] [CrossRef]

	



Muraosa, Y.; Schreiber, A.Z.; Trabasso, P.; Matsuzawa, T.; Taguchi, H.; Moretti, M.L.; Mikami, Y.; Kamei, K. Development of cycling probe-based real-time PCR system to detect Fusarium species and Fusarium solani species complex (FSSC). Int. J. Med. Microbiol. 2014, 304, 505–511. [Google Scholar] [CrossRef]

	



Merz, W.G.; Karp, J.E.; Hoagland, M.; Goheen, M.J.; Junkins, J.M.; Hood, A.F. Diagnosis and successful treatment of fusariosis in the compromised host. J. Infect. Dis. 1988, 158, 1046–1055. [Google Scholar] [CrossRef]

	



Wiederhold, N.P.; Najvar, L.K.; Bocanegra, R.; Graybill, J.R.; Patterson, T.F. Efficacy of posaconazole as treatment and prophylaxis against Fusarium solani. Antimicrobial Agents Chemother. 2010, 54, 1055–1059. [Google Scholar] [CrossRef]

	



He, J.; Zhou, T.; Young, C.; Boland, G.J.; Scott, P.M. Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: A review. Trend Food Sci. Technol. 2010, 21, 67–76. [Google Scholar] [CrossRef]

	



Pinton, P.; Oswald, I.P. Effect of Deoxynivalenol and other type B trichothecenes on the intestine: A review. Toxins 2014, 6, 1615–1643. [Google Scholar] [CrossRef] [PubMed]

	



Janik, E.; Niemcewicz, M.; Ceremuga, M.; Stela, M.; Saluk-Bijak, J.; Siadkowski, A.; Bijak, M. Molecular aspects of mycotoxins-a serious problem for human health. Int. J. Mol. Sci. 2020, 21, 8187. [Google Scholar] [CrossRef] [PubMed]

	



Da Rocha, M.E.B.; Freire, F.D.C.O.; Maia, F.E.F.; Guedes, M.I.F.; Rondina, D. Mycotoxins and their effects on human and animal health. Food Control 2014, 36, 159–165. [Google Scholar] [CrossRef]

	



Chandrika, N.T.; Garneau-Tsodikova, S. A review of patients (2011–2015) towards combating resistance to and toxicity of aminoglycosides. MedChemComm 2016, 7, 50–68. [Google Scholar] [CrossRef]

	



Wargo, K.A.; Edwards, J.D. Aminoglycoside-induced nephrotoxicity. J. Pharm. Pract. 2014, 27, 573–577. [Google Scholar] [CrossRef] [PubMed]

	



Netzeva, T.I.; Aptula, A.O.; Chaudary, S.H.; Duffy, J.C.; Schultz, T.W.; Schüürmann, G.; Cronin, M.T.D. Structure-activity relationships for the toxicity of substituted poly-hydroxylated benzenes to Tetrahymena pyriformis: Influence of free radical formation. QSAR Combinat Sci. 2003, 22, 575–582. [Google Scholar] [CrossRef]

	



Cavalcanti, B.C.; de Andrade Neto, J.B.; de Sousa Silva, A.A.; Barreto, F.S.; de Oliveira Ferreira, J.R.; Da Silva, C.; Aires do Nascimento, F.B.S.; Gurgel do Amaral Valente Sa, L.; Iury FerreiraMagalhães, H.; Vitoriano Nobre Júniora, H.; et al. Evaluation of genotoxicity and mutagenicity of ketamine on human peripheral blood leukocytes and in Salmonerlla typhimurium. Toxicol. Vitro 2020, 62, 104718. [Google Scholar] [CrossRef] [PubMed]

	



Da Silva, E.O.; Loureiro-Bracarense, A.-P.; Oswald, I.P. Mycotoxins and oxidative stress: Where are we? World Mycotox J. 2018, 11, 113–133. [Google Scholar] [CrossRef]

	



Gabirondo, E.; Sangroniz, A.; Etxeberria, A.; Torres-Giner, S.; Sardon, H. Poly(hydroxy acids) derived from the self-condensation of hydroxy acids: From polymerization to end-of-life options. Polymer Chem. 2020, 30, 4861–4874. [Google Scholar] [CrossRef]








[image: Ijms 22 12323 g001 550] 





Figure 1. Major carcinogenic Aspergillus mycotoxins. Polyaromatic: aflatoxin (a), aliphatic compounds: aurantosides (b), cyclopiezonic acid (c), ergotamine (d), podophyllotoxin (e), gliotoxin (f), stigmatocystins (g), pseurotin (h). Modified with permission [32]. 
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Figure 2. Structural similarities and IARC carcinogenic classification of major Fusarium mycotoxins. (a) aflatoxin B1—IARC I category, (b) 5-methoxysterigmatocystin (5-MS)—IARC 2B category, (c) ochratoxin A—IARC 2B, (d) fumonisin B1—IARC 2B. Identical structural parts of aflatoxin B1 and 5-MS are boxed. 
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Figure 3. Fusarium toxins. Type A trichothecenes: (A) diacetoxyscirpenol, T-2 toxin, neosoleniol, HT-2 toxin. Type B trichothecene group: nivalenol, fusarenon-X, diacetylnivalenol. (B) Anguidine analogues of trichothecenes: 3,4,15-TAS; 3,-15 DAS; 3,4-DAS; 15 DAS; 4,15-DAS (anguidine); 15-AS; 4-AS; scirpenetriol. (C) The chemical structure of antileukemic 5-methoxysterigmatocystin (5-MS) derivatives. (a) 5-MS, (b) O-acetyl-5-MS, (c) sterigmatocystin. The ring structure consists of 2 five-membered bisfurano rings and 3 six-membered rings forming the xanthone skeleton. Metabolic pathways of Fusarium mycotoxins are diversified. Formulas permitted by [32]. 
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Figure 4. Grocott’s methenamine silver (GMS) staining to detect aspergillosis in the lung tissue of mice. (a) Control lung section. (b) Staining of lung section in immunocompromised mice 96 h after infection. Modified with permission [94]. 
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Figure 5. Antifungal activity of aminoglycosides on Fusarium solani. The ring structure of gentamicin C consists of garoseamine, 2-deoxystreptamine, and purpuroseamine. The substituents of purpuroseamine derivatives are given for aminoglycosides that are numbered (1–12). In the figure, only the structure of the aminoglycosides that consist of 3 rings are given. Modified with permission of [26]. 






Figure 5. Antifungal activity of aminoglycosides on Fusarium solani. The ring structure of gentamicin C consists of garoseamine, 2-deoxystreptamine, and purpuroseamine. The substituents of purpuroseamine derivatives are given for aminoglycosides that are numbered (1–12). In the figure, only the structure of the aminoglycosides that consist of 3 rings are given. Modified with permission of [26].



[image: Ijms 22 12323 g005]













	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file4.png





nav.xhtml


  ijms-22-12323


  
    		
      ijms-22-12323
    


  




  





media/file2.png





media/file5.jpg
22828x

288

ReoHC "

P oy - W
Ry Rs Sidsmmpoped AISDS)  0COGH N -000CH,
' ey = E =
i e, ™ Ba S
2 5 = =i
" e -l
OH  0=C< (kew) c
]
===





media/file3.jpg





media/file1.jpg





media/file7.jpg





media/file10.png
o4 Gentamicin C MIC 12.5 pg/mL
No Aminoglycoside | MIC HECCQ | N 03 4 CHy
derivatives ng/mL | we” * ol M ¢ il : ;NHZ
. Gar?)se- OHMNHz Purpurose-
E solani amine 2-deoxystreptamine amine
1 Gentamicin B1 0.4 I Ha | Tew, io HQ Demon
2 Hygromycin 0.8 =0~ o NH,
3 Paromomycin 31 P wq P T
. H. HO
4 Tobramycin 3.1 ZWN% VSN
5 Nebramycin F12| 6.2 |5 ax 8 |6 s
o o HO HzN o
6 Gentamicin Cla 6.2 0 N, N
7 Sisomicin 125 [ OH 8, CH
- HoN 5 2! o)
8 Gentamicin C1 12.5 NH, ek
9 Kanamycin A 25 P ax (10 g M
. HO H,N
10 Neomycin 25 @j\oﬂ m%
11 Gentamicin A 25 I o M 12 g,
12 GentamicinX1 |[100 HZ”F?i\OH HoN F






media/file9.jpg
No Aminoglycoside

MIC

o e,
derivatives pg/mL e
. |Garose- ~
FE solani |amine  2-deoxystreptamine  amine
1 Gentamicin BI | 04 [1_po $y |2 2 if-'n,m.
2 Hygromycin 0.8 i ' e
3 Paromomycin 31 P Ty
4 Tobramycin 3 " e e on
5 Nebramycin F12| 62 5 uwy 0 |6 v
o H HN'
6 Gentamicin Cla| 6.2 i ﬁ\w’
7 Sisomicin 12.5 "R a
HN Lo
8 Gentamicin C1 12.5 He HC
9 KanamycinA [ 25 |7 uy 9% [
4 0
10 Neomycin 25 He, o N Hy
11 Gentamicin A 25 T |2 m T
12 GentamicinX1 (100 wﬁm ha






media/file0.png





media/file8.png
L )

1 L Oy \J
'{' '),'{\ F:::’f: \}'\
. v o
o \,f.f”‘\.,:_::,\, s S O™
..J - \‘ 4’ .
¢ B8 ®

#

SR e /S
Q:\"‘ . ' l'a 1
K ~ Siert - RN

e S TR E

= . =8 : :

. AT G

o Y, oo o ¥ g
. P ; “~ W"
\&. L .i‘ - — . “!

Qe 2 DSt VT vl 'Cw\)'w
— L ]
XA !

i~ LD






media/file6.png
Type A group
Diacetoxyscirpenol
T-2 toxin
Neosolaniol

HT-2 toxin

Type B group
Nival enol
Fusarenon-X
Diacetyl nival enol

OH
OH
OH
OH

OH
OH
OH

OAc
QAc
OH

OAc
OAc

OH
OH
OAc

e vie N v e ¥

OH
OH

H
OCOCH,CH(CH;),
OH
OCOCH2CH(CH3)2

0=C< (keto)
0O=C< (keto)
O=C< (keto)

B CH,

Rl _Hzé

3,4,15-riacetoxyscirpenol (3,4,15-TAS)
3,5-diacetox ysdrpenol /3,15-DAS)
3,4-diacetox ysdrpenol (3,4-DAS)
4,15-DAS (anguidine)

15-AS

4-AS
Sdrpenetriol

C






