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Anna Pierzchlińska 1 , Marek Droździk 2,* and Monika Białecka 1

����������
�������

Citation: Pierzchlińska, A.;
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Abstract: Parkinson’s disease (PD) is the second most common neurodegenerative disease charac-
terised by both motor- and non-motor symptoms, including cognitive impairment. The aetiopatho-
genesis of PD, as well as its protective and susceptibility factors, are still elusive. Neuroprotective
effects of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors—statins—via
both cholesterol-dependent and independent mechanisms have been shown in animal and cell
culture models. However, the available data provide conflicting results on the role of statin treatment
in PD patients. Moreover, cholesterol is a vital component for brain functions and may be considered
as protective against PD. We present possible statin effects on PD under the hypothesis that they
may depend on the HMG-CoA reductase gene (HMGCR) variability, such as haplotype 7, which was
shown to affect cholesterol synthesis and statin treatment outcome, diminishing possible neuropro-
tection associated with HMG-CoA reductase inhibitors administration. Statins are among the most
prescribed groups of drugs. Thus, it seems important to review the available data in the context of
their possible neuroprotective effects in PD, and the HMG-CoA reductase gene’s genetic variability.

Keywords: Parkinson’s disease; statins; HMG-CoA reductase inhibitors; genetic polymorphisms;
neuroprotection

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease
characterised mainly by its motor symptoms, i.e., bradykinesia, tremor, rigidity, and
postural instability. Along with motor impairment [1,2], PD patients may also suffer from
non-motor symptoms, such as sleep disturbances, dysautonomia, and neuropsychiatric
disorders, including depression and visual hallucinations [3]. In a substantial number of
PD patients, cognitive impairment occurs, most often affecting visuospatial and executive
functions [3,4]. Dementia, which may parallel the disease progression and increased
neurodegeneration, is estimated to be six times more prevalent in PD than in age-matched
general population, and is related to a loss of response to dopaminergic medications [3].
It substantially affects the quality of patient’s life, entails health economics and caregiver
burden, and has a detrimental impact on life expectancy [5].

The aetiology of this devastating disease remains ambiguous despite a considerable
number of preclinical and clinical studies. Available data indicate that age, gender, pesti-
cides, and traumatic brain injury are seen as possible risk factors [6].

A misfolded protein—α-synuclein (α-syn)—constitutes the major component of in-
tracellular and intraneuritic deposits typical for PD [7]. Although α-syn aggregation does
not typically start in the substantia nigra, the PD motor symptoms become visible once
dopamine neurons in this domain are affected (Stage 3 in the Braak system) [8]. A part
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of inherited forms of PD is caused by mutations in genes coding for α-synuclein (SNCA),
leucine-rich repeat kinase 2 (LRRK2), parkin (PRKN), and PTEN-induced putative kinase 1
(PINK1) [7]. However, most of PD cases do not have a clear established background. Some
factors, such as oxidative stress, neuroinflammation, proapoptotic mechanisms, excitotoxi-
city, and mitochondrial dysfunction have been suggested [6,9]. A multifactorial aetiology
of PD seems to be plausible with mutual involvement of genetic and environmental fac-
tors [7]. Another obstacle to understand the PD pathogenesis may rely on the existence
of overlapping symptoms of Parkinson’s disease dementia (PDD) and Alzheimer’s dis-
ease (AD). Thus, the clinical picture of some patients may resemble both AD and α-syn
pathologies [10].

Evidence suggests neuroprotective effects of cholesterol-lowering agents—3-hydroxy-
3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors (i.e., statins) [11]. How-
ever, clinical research conducted in PD patients assessing the impact of statin treatment
on PD incidence did show conflicting results [12]. Moreover, there is a body of evidence
determining high cholesterol levels as a protective factor in PD risks [13]. The relationship
appears to be complex, since statin beneficial effects may depend on HMG-CoA reduc-
tase’s gene variability, haplotype 7, which results in reduced enzyme activity, diminished
sensitivity to statins, and impaired cholesterol synthesis [14,15]. In the manuscript, we
review a possible neuroprotective role of statins in Parkinson’s disease, considering the
influence of haplotype 7 of the HMG-CoA reductase’s gene (HMGCR).

2. Pathogenesis of Dementia in Parkinson’s Disease

Cognitive decline is a frequent finding in PD patients with prevalence estimated at
20–30% for dementia (PDD) and over 60% for all executive functions. The cumulative preva-
lence of dementia is very high as at least 80% of patients with PD who survive >12 years
from the diagnosis develop dementia [16]. Zhu et al. determined the following PDD risk
factors: advanced age and fewer years of education, longer disease duration, later age-at-
onset, higher levodopa (LD) use, more advanced Hoehn and Yahr disease stage, dyskinesia,
excessive daytime sleepiness, autonomic dysfunction, depression, and hallucinations [17].
Available data demonstrate a multifactorial origin of PD dementia (pathological findings of
Alzheimer-like and cortical Lewy body, metabolic and iatrogenic factors as dopaminergic
or anticholinergic medications, blood pressure variability), and its identification may have
an important prognostic value as well as potentially therapeutic role [18,19].

Parkinson’s and Alzheimer’s diseases are characterised by protein aggregation (with
the majority of α-synuclein in PD and β-amyloid in AD) and inclusion body formation
in the central nervous system (CNS) [20]. As it was stated above, clinical features of PD
and AD may overlap—significantly more severe AD pathology (including cortical amyloid
plaque load) is more often observed in PDD than in non-demented PD patients [21]—thus
suggesting common pathogenic mechanisms of AD and PDD. Therefore, it seems justified
to investigate the similar risk and protective factors of both disorders.

3. Protective Role of Cholesterol in Neurodegenerative Diseases

Approximately 25% of total body cholesterol resides in the brain, from which the major
part constitutes myelin surrounding axons (70%) and plasma membranes of astrocytes and
neurocytes [22,23]. Only a small amount of brain cholesterol is located within intercellular
space and in cerebrospinal fluid (CNF), being associated with apolipoproteins, mainly
apoE [22]. Nearly all cholesterol present in the CNS is produced in situ, since plasma
lipoproteins do not cross the blood–brain barrier (BBB) [23]. Cholesterol is synthesised
in the isoprenoid biosynthetic pathway, which starts from acetyl-CoA as a substrate and
involves at least 20 enzymes [22]. Cholesterol plays an essential role in normal brain func-
tioning, including memory and learning, neurotransmitter receptor expression, peripheral
signalling, and antioxidant transport, such as coenzyme Q10 [15].

The protective role of cholesterol against PD was suggested by Huang et al. [13]. The
authors found an association between lower levels of low-density lipoprotein cholesterol
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(LDL-C) and higher occurrence of PD. One of the recent prospective studies involving a
cohort of over 250,000 individuals has shown that both higher total cholesterol and LDL-C
levels decreased the PD risk. Nevertheless, the finding reached significance only in men [24].
A modest tendency of slower PD progression in subjects with higher total cholesterol levels
has also emerged [25]. There are two possibilities of explaining those relationships: lower
levels of cholesterol may result from malnutrition and smaller exogenous cholesterol
intake [26] or from its reduced synthesis due to decreased activity of HMG-CoA reductase,
which was defined in fibroblasts from patients with PD [27]. The correlation between
serum and brain levels of cholesterol is still ambiguous and measurable only indirectly. In
some analyses, hydroxylated form of cholesterol—24-hydroxycholesterol—was decreased
in the plasma of PD patients. It is the main form of cholesterol excreted from the brain,
and its level may reflect brain cholesterol metabolism. Furthermore, the phospholipids to
cholesterol ratio in membrane microdomains, called lipid rafts, was increased in the frontal
cortex of PD patients’ brains, indicating a net reduction of cholesterol content [28].

Since cholesterol is vital to normal brain functioning, the impact of its levels on
cognitive functions has been examined. In one study, baseline higher serum LDL-C levels
among PD patients were associated with better cognitive performance in statin non-users,
but not in statin users. However, small sample size of this subgroup (18 participants) could
affect the observations [26]. The protective impact of high cholesterol levels on PDD was
established in the Sławek et al. research, although no information on statin treatment was
provided [29].

Nevertheless, it needs to be considered that even if higher cholesterol levels are
beneficial for cognitive functions, high LDL-C levels may increase risks of cardiovascu-
lar diseases [26]. Thus, administration of lipid-lowering medications and its possible
consequences should be carefully analysed.

4. Detrimental Role of Cholesterol in Neurodegenerative Diseases

Nonetheless, there are uncertainties over the role of cholesterol in the development
of neurodegenerative diseases. Cholesterol has been determined to enhance α-syn and
β-amyloid aggregation, while metabolites of cholesterol (oxysterols) were associated with
oxidative stress and inflammation in neuronal cells or even apoptosis of dopaminergic
neurons [30].

The negative impact of high cholesterol levels was demonstrated in a prospective
Finnish study [31]. Accordingly, Anstey et al., in their meta-analysis, correlated the risk for
dementia and cognitive impairment with higher total cholesterol levels. However, the study
population did not include PD cases [32]. High cholesterol levels are often accompanied by
other vascular risk factors, such as obesity, glucose intolerance or hypertension, described
together as metabolic syndrome. In one of the recent studies metabolic syndrome has been
determined as a risk factor for mild cognitive decline (MCI) and dementia in PD, along
with total cholesterol level as an individual factor alone [33]. Additionally, the authors also
analysedtreatment of metabolic syndrome—treated patients exhibited lower dementia risk
than the untreated ones. On the other hand, in several studies no associations between
cognitive functions or dementia in PD and cholesterol levels were found [34,35].

5. Statins and HMG-CoA Reductase

Statins are commonly prescribed as lipid-lowering agents, serving as protective agents
in cardiovascular diseases. A wide range of their beneficial effects, including cholesterol-
independent mechanisms, has resulted in statins being one of the most prescribed groups
of drugs [36]. The statin family consists of eight drugs: mevastatin and lovastatin, the
first studied in humans; then pravastatin and simvastatin, derivatives of lovastatin; and
atorvastatin, fluvastatin, pitavastatin, and rosuvastatin, synthetic compounds [37]. Statins
comprise modified 3,5-dihydroxyglutaric acid moiety, which is structurally similar to an
endogenous compound, i.e., 3-hydroxy-3-methyl-glutarylcoenzyme A (HMG-CoA) [38].
Statins act by competitive inhibition of HMG-CoA reductase (therefore their full name is
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HMG-CoA reductase inhibitors) in the above-mentioned metabolic pathway resulting in
interference with HMG-CoA conversion into mevalonate, and thus decreased endogenous
cholesterol levels [39]. Finally, it leads to upregulation of LDL-C receptor expression
in hepatocytes, which is followed by LDL-C uptake and a net reduction of its plasma
level [40]. Statins reduce triglycerides, and to a much lesser degree, increase high-density
lipoprotein cholesterol (HDL-C) levels [37]. What is important, the inhibition of HMG-
CoA reductase does not cause generation of potentially harmful cholesterol precursors
since water-soluble hydroxymethylglutarate—HMG-CoA product of reversible reaction
catalysed by transferase—can serve as a substrate in other metabolic pathways [41].

The pharmacokinetics of statins is determined by their lipophilicity, resulting from
nonpolar substituents, and other structural properties—the presence of inactive lactone
form converted into an active metabolite (simvastatin, lovastatin) or active acid form (ator-
vastatin, rosuvastatin, pitavastatin, fluvastatin and pravastatin) [38,42]. The metabolism of
some statins involves cytochrome P450 (CYP450) system—a family of enzymes crucial for
oxidative metabolism of several drug classes, as well as endogenous substances. The high-
est activity of CYP450 enzymes is defined in hepatocytes [43]. Atorvastatin, simvastatin
and lovastatin are substrates of CYP3A4, a CYP450 isoenzyme that oxidises the majority
of drugs, whereas fluvastatin is metabolised by CYP2C9. On the other hand, pravastatin,
pitavastatin and rosuvastatin are not metabolised by any of the CYP450 enzymes [38,42].

Statins may cross the BBB depending on their lipophilicity, thus pravastatin and
rosuvastatin have a minimal permeability [44]. However, fluvastatin does not cross the
BBB either, in spite of its amphiphilic character [45]. On the other hand, the lipophilicity
theory does not seem to be definitive, since lipophobic statins were found in the brain of
animal models and in human cerebrospinal fluid (CSF) [36]. Thus, other mechanisms than
passive diffusion have been suggested to transport lipophobic statins into the CNS, such
as organic anion transporting polypeptides (OATP) or monocarboxylic acid transporters
(MCT) [36,46].

6. Statins in Neuroprotection

A number of evidence on antioxidant, anti-inflammatory and anti-excitotoxic proper-
ties of statins has been shown [11], which may not only be based on cholesterol-dependent
mechanisms. As an example, statins may improve vascular function and increase cerebral
blood flow. LDL-C downregulates the production of endothelium-derived nitric oxide
(eNO), a well-known vasodilator. Statins do not only reduce LDL-C level, but also activate
protein kinase B (Akt/PKB), which in turn induces eNO production by Akt-mediated
phosphorylation of eNO synthase (eNOS) [47,48].

Isoprenylation with isoprenoid intermediates: farnesylpyrophosphate (FPP) and
geranylgeranyl pyrophosphate (GGPP) is vital for intracellular transport and function
of small GTP-binding proteins. The protein, depending on its structure, can be either
isoprenylated with FPP (Ras family proteins) or GGPP (Rab and Rap family proteins).
However, Rho family proteins can be post-translationally modified with GGPP only, or with
both intermediates. Statins block synthesis of the isoprenoid intermediates, thus prevent
isoprenylation and inhibit function of signalling molecules [49]. It seems important, as Rho
activation downregulates eNOS expression. Furthermore, statins increase half-life of eNOS
mRNA and prevent its destabilisation, which can be caused by tumour necrosis factor-
alpha (TNF-α), oxidised LDL-C, and hypoxia. The effect of statins was reversed by GGPP,
but not by FPP or LDL-C, suggesting cholesterol- and FPP-independent mechanism [49,50].

Statins improved stroke outcome in wild-type animal models, but not in eNOS-
deficient mice, indicating eNO-based mechanisms [47,51]. However, other types of nitric
oxide, namely inducible nitric oxide (iNO) or neuronal nitric oxide (nNO), have detrimental
consequences for surrounding tissues. Ischaemia induces iNO and nNO synthesis, which
in turn leads to toxic concentrations of NO in neurons and further aggravates the ischaemic
damage [47]. iNO was correlated with neuroinflammation in PD. Moreover, tyrosine
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nitration of α-syn accelerated its aggregation [52]. Statins downregulate the activities of
both iNO and nNO synthases [53].

In addition to improvement of vascular functions, statins can reduce oxidative stress,
which is presumably involved in the pathogenesis of several neurodegenerative diseases,
such as AD and PD [54]. Oxidative stress highly correlates with overproduction of reactive
oxygen species (ROS), synthesised mainly by NADPH-dependent oxidases [11,55]. ROS
may be converted into a reactive hydroxyl ion (OH-) and peroxynitrite, which produce dam-
age to cell constituents: lipids, proteins as well as nucleic acids, thus inducing ischaemic cell
death [56]. Moreover, oxidative stress upregulates non-enzymatic production of oxidised
cholesterol derivatives—oxysterols, i.e., 7-ketocholesterol (7-K), 7β-hydroxycholesterol
(7β-OH), 5α,6α-epoxycholesterol (α-EPOX) and 5β,6β-epoxycholesterol (β-EPOX) [57].
In PD, 7-K and 7β-OH plasma levels (along with an enzymatic product of cholesterol
oxidization—27-hydroxycholesterol) were significantly elevated compared to the control
group, indicating an association between PD and oxidative stress [58]. Statins can down-
regulate ROS production by inhibiting NADPH-complex [53,55]. Furthermore, pitavastatin
was shown to protect against ischeamia-induced neuronal damage by preservation of the
antioxidant enzyme—superoxide dismutase (SOD) [59]. On the other hand, inhibition of
HMG-CoA reductase may result in a decrease in isoprenoid ubiquinone or coenzyme Q10
levels that perform antioxidative functions [53].

Inflammation in the CNS involves chronic activation of glial cells—microglia and
astrocytes. Microglia serve as the CNS immune response cells. Upon activation they
produce proinflammatory cytokines, such as TNF-α or interleukin-1β (IL-1β), which were
found to be elevated in the substantia nigra of PD patients [9]. Moreover, activated
microglia were described as clustered around dystrophic dopamine neurons [60]. In an
animal PD model, atorvastatin not only decreased TNF-α and IL-1β levels in the striatum
but also prevented overproduction of ROS [61]. McFarland et al. discovered in in vitro
study using lipopolysaccharide (LPS)-induced neuroinflammation, that pretreatment with
atorvastatin, pravastatin, or rosuvastatin reduced TNF-α levels and prevented cell death.
Interestingly, rosuvastatin did not lead to a decrease in IL-1β levels, which may imply
IL-1β-independent neuroprotective mechanisms of the drug [62].

The release of several inflammatory cytokines, such as TNF-α, IL-6, and IL-1, is regu-
lated by transcription nuclear factor-κB (NF-κB) [56], which is activated in the substantia
nigra pars compacta (SNpc) of PD patients and PD animal models [63]. Ghosh et al.
showed in an experimental study, using a well-established neurotoxin 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), that NF-κB required a small G-protein, p21ras for its
activation. Simvastatin, by inhibiting p21ras, decreased activation of NF-κB, thus signifi-
cantly lowering TNF-α, IL-1β and iNOS expression. The treatment diminished microglial
and astroglial activation. Presumably, the effect on p21ras was related to inhibition of
the protein isoprenylation. However, it should be stated that, according to some research,
simvastatin in high doses may exert deleterious impact on the nigrostriatum [63].

A beneficial effect of statin treatment may also be produced by inhibition of α-
synuclein aggregation. In the analysis carried out by Bar-On et al., statins, i.e., lovastatin,
simvastatin, and pravastatin, diminished α-syn aggregation in the detergent-insoluble
fraction of a neuroblastoma cell line. Similar results were obtained using lovastatin in
mature human neurons transfected with lentiviral vectors expressing α-syn [64]. Several
probable mechanisms, as the findings explanation, have been suggested—first of all, a
decrease in cholesterol level may result in a depletion of lipid rafts, which α-syn is associ-
ated with [65]. Furthermore, oxidative stress is responsible for synthesis of oxysterols that
enhance α-syn aggregation [11]. Thus, it is possible that statins ameliorate α-syn accumula-
tion through their antioxidative properties. An example was demonstrated in an animal
model—lovastatin decreased level of oxidised α-syn and reduced its accumulation [66].
Finally, oxidative stress may lead to post-transcriptional modification of α-syn via nitrative
radicals, such as iNO, which was associated with α-syn aggregation [64,66].
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Summarising, statins exerted neuroprotective effects both through cholesterol-dependent
as well as cholesterol-independent mechanisms, including vasorelaxation, anti-inflammatory,
and antioxidative functions (Figure 1).
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7. Statins in PD

Despite many studies describing beneficial effects of statins in neuroprotection, there
are conflicting results on the role of HMG-CoA reductase inhibitors in Parkinson’s disease.
The latest meta-analysis included 17 observational studies: 8 case-control and 9 cohort
studies [12]. The predominant number of the cited observations are in favour of statin use,
demonstrating lower PD occurrence in statin users with a summary OR = 0.92 (95% CI:
0.86–0.99). However, different types of statins exerted diverse impact on PD incidence,
with atorvastatin showing the most beneficial effect. The results of another meta-analysis
suggested an association between pravastatin use and PD occurrence, presumably due
to its lowest lipophilicity, thus difficulties to cross the BBB [39]. Statins in PD subjects
increased performance in cognitive functions, i.e., global cognition, verbal fluency, and
executive processing [67]. Considering the lipophilicity of HMG-CoA reductase inhibitors
used in the analysis, better scores in the Montreal Cognitive Assessment (MoCA) test
were observed in the case of lipophilic statin users than in lipophobic ones. Moreover,
longitudinally, patients medicated with lipophilic statins declined slower in Dementia
Rating Scale-2 (DRS) than non-statin users. In a recent prospective study, statins also have
shown protective effect against motor symptoms progression, with the highest impact on
rigidity [68].

Numerous issues have arisen concerning the available information. First, several of
studies did not analyse a vital confounding factor, i.e., LDL-C level. Huang et al. indicated
that high LDL-C levels, established to be associated with lower PD occurrence, trigger
statin prescription [25]. Thus, statin advantages may result from beneficial effects of higher
cholesterol levels, and to a lesser extent to statin treatment itself. In addition, regarding
high LDL-C levels as a PD protective factor, it is likely that the use of HMG-CoA reductase
inhibitors, decreasing LDL-C, could be inversely associated with PD occurrence. Indeed,
in the meta-analysis reported by Bykov et al., the protective effect of statins on PD was
observed when no adjustment for cholesterol levels was applied, and disappeared after
the adjustment [69]. Other confounding factors that could influence findings, and were
omitted in several studies, included comorbidity of diabetes mellitus or medications, such
as nonsteroidal anti-inflammatory drugs (NSAIDs), anti-diabetics, or calcium channel
blockers [70]. The characteristics of PD, namely a rather slow progression with a long
presymptomatic period, is a crucial obstacle in the PD study design. Moreover, an impact
of variability in HMG-CoA gene (HMGCR) should be taken into consideration since it can
alter statin treatment responses but may also be involved in PD susceptibility. So far, no
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study has analysed possible associations between HMGCR genotype, statin treatment, and
PD or PDD risks altogether.

8. HMGCR Gene Polymorphisms and Haplotypes

Although statins’ lipid-lowering features have been proven, it is assessed that almost a
third of patients do not reach treatment goals. Besides the possibility of insufficient dosage,
there are several other factors that may affect treatment outcomes. The response to HMG-
CoA reductase inhibitors depends on patient’s age, environmental factors, such as smoking
status, body weight, physical activity, and diet, but also on genetic factors—ethnicity and
polymorphisms in HMGCR [71]. In the study performed by Chasman et al., two common
and closely linked HMGCR single nucleotide polymorphisms (SNPs) (named in the study
SNP 12 and SNP 29) were associated with 22% smaller reduction in total cholesterol, and
19% smaller reduction in LDL-C plasma levels in patients treated with pravastatin for
24 weeks [72]. It was suggested that minor alleles of the intronic SNPs (rs17244841 and
rs17238540, respectively) defining haplotype 7 (H7), correlated with altered response to
pravastatin therapy. Haplotype 7 was later redefined by Krauss et al., by an additional
intronic SNP 20144 (rs3846662), also present in haplotype 2 (H2) of HMGCR gene [40,71,73].
Among simvastatin users a significant impact of H2 and H7 on reduced LDL-C change was
observed only in subjects of African or African American ancestry. The lowest response to
the treatment was noticed in carriers of combined H2 + H7 haplotypes, who were almost
entirely of non-Caucasian ancestry. Haplotype 2 is observed much more frequently among
subjects of African ancestry than in Caucasians (32% vs. 2%); thus, the ethnic factor may be
responsible for the observed differences [71].

Haplotype 7 prevalence is defined in 3% of Caucasians and 6% of African Ameri-
can, and though all H7 SNPs are located in the introns, a crucial impact on HMG-CoA
activity is observed. H7 is strongly associated with an alternative splicing product lacking
exon 13 (HMGCR13(−)). Since the substrate-binding domain of HMG-CoA reductase is
encoded, among others, by exon 13, it is possible that HMGCR13(−) has a deleterious
impact on statin affinity. In fact, mRNA expression analysis in simvastatin-incubated
immobilised lymphocyte cell lines (derived from simvastatin-treated patients) revealed
a correlation between lower reduction of plasma total cholesterol and LDL-C levels with
higher expression of HMGCR13(−). Accordingly, the alternative splicing of HMGCR was
associated with reduced mRNA upregulation of LDL-C receptor gene, and a weaker statin
response [40]. However, it needs to be considered that HMG-CoA reductase forms a
tetramer comprised of two dimers. Hypothetically, each of the monomers can vary be-
tween HMGCR13(+) and HMGCR13(−) form, thus the resulting enzyme activity may be
only partially attenuated [74].

Up to date, most of studies analysed individual SNPs in HMGCR gene and their influ-
ence on statin responses. The major A allele of HMGCR rs3846662 polymorphism strongly
correlates with the splicing defect and results in high prevalence of the HMGCR13(−)
transcript. Thus, it has been suggested that A allele carriers may respond worse to the
treatment. Indeed, in the Leduc et al.’s study in familial hypercholesterolaemia, the patients
homozygous for the A allele experienced significantly lower reduction in LDL-C levels,
but the relationship was observed only in women [75]. The baseline total cholesterol and
LDL-C levels were higher in all patients carrying the AA genotype. However, since the
population comprised subjects with heterozygous familial hypercholesterolaemia, statin
treatment response could be affected by reduced activity of LDL-C receptors. The same
variant of HMGCR gene was investigated in dyslipidaemic patients, yet the results showed
an inverse relationship, as the G allele carriers were less likely to reach the treatment goal of
total cholesterol reduction [76]. In a Korean study, the rs3846662 GG genotype carriers had
significantly higher baseline LDL-C levels than AA homozygotes with a similar tendency
during atorvastatin treatment [77]. Nevertheless, the significance level decreased after
compressing the initial range of LDL-C levels between study groups.
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Another polymorphism, which haplotype 7 includes—HMGCR rs17238540—was
analysed for statin response in diabetic patients [78]. The treatment goal (total serum
cholesterol level of 4 mmol/L or less) was achieved in 72% of homozygotes for the major T
allele. However, only 49% of the minor G allele carriers reached the aim of the treatment.
This group also experienced lower reduction in total cholesterol, as well as in triglycerides
levels. No significant correlation between HMGCR rs17238540 and the baseline levels of
total cholesterol, LDL-C, HDL-C or triglycerides levels was observed.

Considering conflicting results on the relationship between the polymorphisms of
HMGCR gene and statin treatment response, the available data do not facilitate a simple
understanding.

9. HMGCR Genetic Variability in PD and Other Neurodegenerative Diseases

Single nucleotide polymorphisms (SNPs) in the gene coding for HMG-CoA reductase
have recently been investigated in neurodegenerative diseases, mostly in Alzheimer’s
disease. As mentioned above, haplotype 7 may downregulate the protein activity, LDL-
C synthesis and affect statin treatment outcome [14]. Therefore, provided that higher
cholesterol levels serve as protective factors in PD, HMGCR lacking exon 13 may constitute
a susceptibility factor. On the other hand, unresponsiveness to HMG-CoA reductase
inhibitors of HMGCR13(−) carriers could diminish their neuroprotective role describedin
the previous paragraphs. The majority of studies analysed rs3846662: A > G polymorphism
and defined a protective impact of the major A allele against AD or conversion of MCI
to AD [14,75,79,80]. Leduc et al. in their study in 324 autopsy-confirmed cases of AD
showed that in women the AA genotype of rs3846662 was protective against sporadic
AD (OR = 0.521; p = 0.0028), and delayed its onset by 3.6 years (p = 0.017). In another
cohort of patients, the authors tested the risk of conversion from MCI to AD. While
there was no impact of the rs3846662: AA alone, it significantly decreased the risk of
the conversion in patients carrying APOE4. The APOE4 allele codes a variant e4 of a
lipid carrier protein apolipoprotein E, and was strongly associated with the risk of AD,
MCI to AD conversion, and decreased age at AD onset [14]. Wright et al. performed a
similar study in 490 AD subjects, which showed a protective effect of the AA genotype
of rs3846662 (p = 0.049), even stronger in male and female APOE4 carriers (p = 0.016).
However, the authors did not find an association between rs3846662 and the risk of
MCI to AD conversion, in either of APOE4 allelic groups [80]. Keller et al. and Licastro
et al. examined another functional polymorphism, −911C > A (rs3761740) [81,82], located
in HMGCR gene promoter, possibly near a binding site for SREBP-2 (sterol regulatory
element-binding protein 2), a membrane-bound transcription factor capable of increasing
HMGCR transcription [81]. In fact, the polymorphism was associated with upregulated
SREBP-2 sensitivity in in vitro experiment. Although Keller et al. reported no correlation
between the risk of AD and rs3761740 alone among APOE4 carriers, the minor A allele
of rs3761740 increased the risk by 36% (OR = 6.21; p < 0.001) compared to the group
carrying only APOE4 (OR = 4.57; p < 0.001) [81]. Licastro et al. analysed several gene
variants that favour inflammation, including APOE4 and HMGCR rs3761740 in 260 AD
subjects [82]. The authors identified four risk sets: with a low intrinsic risk of AD, with
early onset AD (having more rapid cognitive decline), and two late-onset AD (divided
according to age at onset: 65–74 and 75+ years). The early-onset group, as well as the group
being affected at the age of 65–74, were more likely to be heterozygous for the HMGCR
SNP. Moreover, in the latter group the AA genotype of HMGCR was more prevalent
than in other risk groups. The APOE4 allele was over-represented in both late-onset
groups. Interestingly, HMGCR SNP was assessed to be more informative, displaying more
different frequencies from group to group than APOE4 genotype. Rodriguez-Rodriguez
et al. studied the same HMGCR SNP along with HMGCR rs3931914: G > C located
in the untranslated region (5′UTR) of the gene [83]. None of the SNPs analysed alone
exhibited an impact on AD incidence, yet the risk was significantly greater among wild-
type homozygotes of rs3931914 expressing either ABCA1 (cholesterol transporter gene)
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polymorphisms: rs1800977 (OR = 2.77; p = 0.02) or rs2422493 (OR = 2.07; p = 0.02). Genetic
variants of ABCA1 were implicated in modifying the risk of AD and influencing CSF level
of 24-hydroxycholesterol—a possible marker of brain cholesterol metabolism [28,83]. So
far, only two studies have examined the impact of HMGCR variability on PD [84,85]. Benn
et al. analysed rs17238484—a polymorphism downregulating cholesterol synthesis—in
participants of two prospective Danish studies [84]. Among over 111,000 subjects, 1001
developed AD, 256 vascular dementia, 2154 any dementia, and 460 PD (no information
on cognitive status of PD patients) during 37 years of follow-up. The authors did not find
a correlation between the polymorphism and any of those disease states. An increased
hazard ratio (HR) for PD in subjects with LDL-C level < 1.8 mmol/L vs. ≥ 4.0 mmol/L
(HR = 1.70; p = 0.01), indicating a possible role of HMGCR activity and a neuroprotective
impact of high cholesterol levels was observed. A recent study has investigated an impact
of 6 HMGCR polymorphisms on PD and 21 other non-vascular diseases [85]. The authors
calculated a weighted genetic risk score (GRS), which included rs17238484, but none of
the polymorphisms within haplotype 6. The results suggested a correlation between GRS,
linked to a decrease in LDL-C levels, and PD, however, without statistical significance after
the Bonferroni correction. Nevertheless, the study showed that lower LDL-C levels should
not be simply taken as beneficial in the case of PD.

10. Conclusions

In a society with a constantly increasing median age, it is necessary to understand
the aetiology of neurodegenerative diseases such as PD, as this knowledge may help to
develop an effective treatment approach. HMG-CoA reductase inhibitors are commonly
used drugs, which were shown to provide neuroprotective effects in animal and cell culture
models, yet statin treatment is not considered as protective against PD. In fact, several
studies investigated the role of statin treatment in PD susceptibility with conflicting results,
not reflecting the possibilities demonstrated in preclinical observations. Another obstacle
constitutes the ambiguous role of cholesterol in the pathogenesis of PD. The available
knowledge on the role of cholesterol and statins in PD, impact of HMGCR polymorphisms
on statin treatment, and questions that have not been answered yet are summarised
in Table 1 and Figure 2. Up to date, there has been no study assessing the impact of
HMGCR13(−), which is suggested to affect statin treatment outcome and cholesterol
synthesis, on PD. Such analysis would help to answer the question of whether statins
exert a neuroprotective effect in PD, and if so, whether this effect depends on HMGCR
genetic variability. The acquired knowledge could contribute to earlier diagnosis, better
management of the disease, and to a possible individualisation of treatment.

Table 1. Available data on the effect of statins on PD, the role of HMGCR variants in statin treatment, and unanswered
questions in the field. PD—Parkinson’s disease, LDL-C—low-density lipoprotein cholesterol.

Statins in PD Influence of HMGCR Variants on Statin
Treatment Questions Raised

• statins exert protective function
against PD [12,39];

• significant protective effect is linked
to atorvastatin [39];

• progression of the motor symptoms
in PD is slower in statin users [68];

• statin users experience lower
cognitive decline [67].

• haplotype 7 (rs17244841, rs17238540,
and rs3846662) is associated with
reduced change in LDL-C level
upon statin treatment [71,72];

• conflicting results of HMGCR
rs3846662 major allele (correlated
with splicing defect) in terms of
statin treatment responses [75–77];

• HMGCR rs17238540 polymorphism
is associated with lower reduction
in total cholesterol level [78].

• neuroprotive actions of statins may
differ depending on the statin used
[12,39];

• ambiguous role of cholesterol in PD
[13,24–26,29,31,33–35];

• HMGCR variants may influence
baseline LDL-C level [77], statin
treatment [71,72,75–78] and possibly
their neuroprotective effects.
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