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Abstract: According to proteomics technology, as impacted by the complexity of sampling in the
experimental process, several problems remain with the reproducibility of mass spectrometry exper-
iments, and the peptide identification and quantitative results continue to be random. Predicting
the detectability exhibited by peptides can optimize the mentioned results to be more accurate, so
such a prediction is of high research significance. This study builds a novel method to predict the
detectability of peptides by complying with the capsule network (CapsNet) and the convolutional
block attention module (CBAM). First, the residue conical coordinate (RCC), the amino acid com-
position (AAC), the dipeptide composition (DPC), and the sequence embedding code (SEC) are
extracted as the peptide chain features. Subsequently, these features are divided into the biological
feature and sequence feature, and separately inputted into the neural network of CapsNet. Moreover,
the attention module CBAM is added to the network to assign weights to channels and spaces, as
an attempt to enhance the feature learning and improve the network training effect. To verify the
effectiveness of the proposed method, it is compared with some other popular methods. As revealed
from the experimentally achieved results, the proposed method outperforms those methods in most
performance assessments.

Keywords: peptide detectability; CapsNet; CBAM; physicochemical properties of residues; amino
acid composition; dipeptide composition

1. Introduction

Proteomics is a vital technology in the field of high-throughput experiments. To be
specific, protein detection and quantification are vital for gaining more insights into cell
biology and human disease [1]. The advancement of mass spectrometry (MS) analysis is
of critical significance to provide reliable results at the proteomics level, whereas several
problems remain with the existing technology (complex experimental procedures make
data processing difficult) (e.g., peptide detectability). The detectability of a peptide is
defined as the possibility of observing (or identifying) the peptide from a standard sam-
ple mixture. The predicted peptide detectability can be drawn upon to solve shotgun
proteomics (e.g., protein inference [2] and label-free quantification [3]). Since there are con-
siderable variables when a certain peptide chain or amino acid sequence is being detected
with the mass spectrometer, the characteristics of a set peptide are difficult to quantify [4].
Recently, researchers have proposed a wide range of methods to assess the detectability
of peptides by employing standard samples [5] or peptide groups identified in different
biological samples [6]. Since there have been numerous positive and negative samples with
detectable peptide chains over the past few years, some machine learning (deep learning)
methods [7,8] can be exploited to predict the detectability of peptides.

Guruceaga et al. initially defined two types or classes of peptides according to detected
and undetected peptides by MS [9]. They extracted features by the physicochemical
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properties of peptides stored in the AAlndex resource [10], and subsequently used machine
learning methods (e.g., SVM and random forest (RF)) for classification. Li et al. [5] proposed
a novel algorithm for the iterative learning of peptide detectability from complex samples.
Based on their method, 292 features were computed solely from peptide chains and the
neighboring residues in proteins as the feature input. Next, a modular neural network
was designed to estimate protein quantities and predict the peptide detectability. Zimmer
etal. [11] developed an algorithm by complying with the deep fully connected feed-forward
neural network, thereby achieving the informed selection of synthetic prototypic peptides
to effectively design targeted proteomics quantification assays. They adopted a BioFSharp
toolbox to convert a set peptide chain into a feature vector with 45 entries, representing a
numerical footprint of physicochemical properties of peptides as the input of the neural
network. Wei et al. [12] developed PEPred-Suite, a tool that introduces an adaptive feature
representation strategy capable of learning the most representative features exhibited by
different peptide types. Thus, it can predict a variety of peptide types simultaneously
(e.g., anti-inflammatory peptides and antiviral peptides). Zhang et al. [13] proposed a
therapeutic peptide prediction feature by complying with the physicochemical properties
of residues, and then adopted the RF prediction method to solve various peptide prediction
problems. These researchers finally achieved a satisfactory prediction result. Recently, deep
learning methods have been applied for feature extraction and learning and have been
extensively employed in biological data prediction and classification [14]. For instance,
Guruceaga et al. proposed a deep learning method for the detectability of peptides [15].
They extracted the sequence coding feature and subsequently adopted CNN training to
develop a DeepMSPeptide method. By this method, the test dataset in the GPMDB database
achieved an accuracy of 79.53%. Cheng et al. [6] proposed PepFormer, a novel type of
end-to-end conjoined network that couples with a hybrid architecture of Transformer and
gated cyclic units, which is capable of predicting the detectability of peptides by only
complying with the peptide chain.

This study introduces a novel integrated learning network framework based on the
capsule network (CapsNet) and the convolutional block attention module (CBAM) to
predict the detectability of peptides. First, it builds the residue conical coordinate (RCC)
feature [16] by complying with the physicochemical properties of residues and combines
the statistical information to improve feature extraction. In addition, the amino acid
composition (AAC) and dipeptide composition (DPC) and the sequence embedding code
(SEC) are fused as the feature input for the detectability prediction of peptides. Next, the
mentioned features are split into biological features and sequence features and separately
inputted into the neural network model to reduce the influence attributed to the mentioned
two types of features. In the proposed neural network framework, it applies CapsNet [17],
thereby reducing the impact of losing part of the convolutional and pooling layers of
CNN. Furthermore, CBAM [18] is introduced to the capsule network to assign weights to
channels and spaces to learn the vital features and optimize the prediction results. The
experimentally achieved results verify the effectiveness of this method.

2. Results

CapsNet and CBAM are integrated to design a novel neural network model for
predicting the peptide detectability. To assess the proposed model, a comparison is drawn
for the performance with or without a CBAM module, the experiment is performed using
different feature inputs, and different neural network frameworks are compared to verify
the effectiveness of the proposed model. Subsequently, this study analyzes the accuracy
of the test set with the GPMDB database [3] and compares it with some popular methods.
Furthermore, the detectability of different peptides is predicted for additional benchmark
tests. In addition, to explore the ability of this model to predict other types of peptides,
a test is set to predict whether the predicted peptides are anti-angiogenic peptides or
antibacterial peptides.
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2.1. Comparison with or without CBAM Module and with or without Feature Separation Input

To verify the effect of the CBAM attention module and feature separation input on peptide
detectability prediction, three experimental groups are set, i.e., CapsNet + CBAM + feature
(biological and sequence feature) separation input, CapsNet + feature separation input, and
CapsNet + CBAM + feature combination input. The experimentally achieved results are
presented in Figure 1 (Figure 1a draws a comparison of the area under the ROC curve (AUC)
and Figure 1b shows a comparison of accuracy (ACC)). When repeating the experiment ten
times (the experiment is repeated through the ten-fold cross-validation, and the average
and deviations of ten results are taken as the result), box plots are employed to compare
AUC and ACC indicators of the mentioned three frameworks. AUC and ACC indicators
can reveal the advantage of the attention module of this study and the role of the feature
separation input here (AUC and ACC by CBAM module and feature separation input
achieve the highest values of 0.862 and 0.801, respectively). This study finds that the feature
area receives more attention after convolution with a large degree of discrimination because
of the CBAM module, thereby improving the accuracy of the detectability prediction of
peptides. In addition, the feature separation operation is exploited to separate the feature of
embedding from the features by other biological calculations to reduce the noise influence
between two types of features during convolution, which can improve the prediction
results as well.

0.888 0.804
0.866 0.802
0.884 0.800

0.862 0798
0.860 0.796
0.858 0.794
0.856 0.792

0.790
CapsNet CapsNet CapsNet CapsNet Capsnet CapsNet
with feature +CBAM with CBAM with feature +CBAM with CBAM
separation input and feature separation input and feature
combined input combined input

(a) AUC comparison (b) ACC comparison

Figure 1. Comparison with or without CBAM and with or without feature separation input on the
peptide detectability prediction for the test set from GPMDB. The blue, green, and orange groups are
the results by CapsNet + feature separation input, CapsNet + CBAM + feature separation input, and
CapsNet + CBAM + feature combined input, respectively.

2.2. Comparison with Different Input Features

Besides the CBAM module, various input features play different roles in the proposed
prediction model. The ablation study is conducted by setting different feature inputs in the
proposed model. To be specific, the predicting performance is compared by inputting the
residue conical coordinate (RCC) feature, amino acid composition (AAC) and dipeptide
composition (DPC), and the sequence embedding code (SEC), respectively. The RCC
feature covers the effect of physicochemical properties exhibited by the respective amino
acid. The AAC and DPC reflect the effect of the frequency of the respective amino acid
and dipeptide on the detectability of peptides. The SEC contains the sequence information
of residues in the peptide chain. The comparison results are shown in Table 1, and their
ROC curves (the 10-fold cross-validation result is used to calculate the average value of
true positive rate and false positive rate to plot the ROC curve) are shown in Figure 2a—c.
In Table 1, the mean and standard deviations of ten-fold cross-validation are provided for
all different feature inputs. According to the table, the addition of RCC and SEC features
optimizes the results of peptide detectability prediction. The addition of AAC and DPC
(frequency features) slightly improves the AUC result, whereas it improves the F-score
result, which is shown in Figure 2d. Figure 2e provides the precision-recall (PR) curves
between the proposed model and other models with different feature input combinations.
The accuracy and recall rate of each model are obtained through the average of 10-fold
cross-validation. The figure shows that the area under the PR curve by our method is larger
than the areas under the PR curves by other models with different feature inputs, namely,
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the performance of the proposed method is better than that of other models. In the ten-fold
cross-validation, the statistically significant difference is analyzed between the proposed
model and other models with different feature input combinations. The respective p-value
in hypothesis testing is less than 0.05, indicating that the proposed model is significantly
different compared to the other three models.

Table 1. Performance comparison by different feature inputs for peptide detectability prediction on the test set from

GPMDB.
Model AUC Accuracy Specificity Sensitivity F-Score
CapsNet + CBAM 0.8692 +0.0029  0.8063+0.0027  0.88194+0.0152  0.7308 £ 0.0140  0.7906 + 0.0051
Without conical feature 0.8412+0.0040  0.7748+0.0040  0.8682+0.0266  0.6814+0.0219  0.7516 %+ 0.0090
w‘th;’r:;‘:;‘::; acid 0.8615+0.0045 07978 +0.0042  0.88604+0.0225  0.7096 +0.0196  0.7782 + 0.0084
Without embedding 0.8396 +0.0051  0.77554+0.0053  0.8663+0.0201  0.6847 +0.0197  0.7531 %+ 0.0072
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Figure 2. Performance comparison with different feature inputs for peptide detectability prediction

on the test set from GPMDB.

2.3. Different Prediction Method Comparison for the GPMDB Dataset Test

The proposed model of integrating CapsNet and CBAM is also compared with other
popular prediction methods for the detectability of peptides. The dataset is set up by
referencing the 1D-2C-CNN method [15], and the 10,000 tryptic peptides are divided into
75% training set and 25% test set. During the training, the hyperparameters of this study are
kept to be identical to those in the previous 10-fold cross-validation training model. Table 2
lists the comparison between the experimentally achieved results and other methods (e.g.,
the method of 1D-2C-CNN by Serrano et al. [15], RF, SvmR, C5, Pls, and GIm methods by
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Guuruceaga et al. [9], the DNN method by Zimmer et al. [11], and the Gaussian method
by Mallick et al. [16]). For the proposed method, the mean and standard deviations of
10-fold cross-validation are calculated as the result. For other methods, their trained model
is adopted to acquire the prediction result. It is indicated that our AUC is 1.22% higher
than that of the previous best model 1D-2C-CNN, and the other three indicators are better
than other models (specificity slightly lower than 1D-2C-CNN). In addition, the statistically
significant difference analysis is conducted between the proposed method and 1D-2C-
CNN. In other words, the p-values of ten-fold cross-validations are determined between
the proposed model and 1D-2C-CNN method. The results are presented in Figure 3, which
suggest that the proposed model is significantly different from the 1D-2C-CNN method
(p-value < 0.05). We also conduct a PR curve analysis between the proposed method and
1D-2C-CNN. The precision and recall of each model are obtained by averaging through the
10-fold cross-validation. The result is shown in Figure 4. The PR curve by the proposed
method mostly covers the curve by 1D-2C-CNN, which indicates that the performance of
the proposed model is better than that of 1D-2C-CNN.

Table 2. Performance comparison by different classifier algorithms for peptide detectability prediction on the test set from

GPMDB.

Model AUC Accuracy Specificity Sensitivity F-Score
CapsNet + CBAM 0.8692 4 0.0027 0.8050 4 0.0026 0.8823 +0.0147 0.7278 +0.0136 0.7887 4 0.0049

1D-2C-CNN [15] 0.8570 0.7953 0.8880 0.7027 0.7744

RF [9] 0.7549 0.6924 0.7746 0.6103 0.6649

SvmR [9] 0.7384 0.6813 0.7830 0.5797 0.6453

DNN [11] 0.7360 0.6692 0.6813 0.6572 0.6659

C5[9] 0.7312 0.6644 0.6513 0.6775 0.6687

Pls [9] 0.6350 0.6043 0.6396 0.5690 0.5898

Glm [9] 0.6349 0.6036 0.6426 0.5646 0.5875

Gaussian [16] 0.6342 0.5983 0.6121 0.5845 0.5927
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Figure 3. Statistically significant difference analysis of ten-fold cross-validation between our model
and 1D-2C-CNN method. Model_1, model_2, ..., model_10 are the models of CapsNet + CBAM by
the ten-fold cross-validation. When p-value is less than 0.05, the difference between two models is
significant. Since the p-values calculated by ten-fold cross-validation models are quite different, we
provide the result of —logjo (p-value) instead of p-value in this figure. When the p-value is higher than
the baseline (p-value = 0.05), it indicates that the ten-fold cross-validation of our model is significantly
different from the 1D-2C-CNN method.
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Figure 4. PR comparison of peptide detectability prediction between CapsNet + CBAM and 1D-2C-
CNN.

2.4. Additional Benchmarks for Testing

The MS evidence of the human proteome offered by the HPP project is applied, and
data are extracted from the neXtProt database [19] to build an additional benchmarking.
The peptides of this database (also covered in GPMDB, but not related to the training
and test sets of peptides according to Ref [15]) fall into three non-overlapping groups:
(1) Proteins with MS evidence (PE1) in the existing version (2019-01-11); (2) PE1 proteins in
the current release without MS evidence at the beginning of the HPP project (2011-08-23);
(3) Missing Proteins (MPs) in the existing version. A total of 8000 peptide chains are
selected from the respective group as three benchmark test sets.

Figure 5a,b show the detectability prediction results of peptides with different protein
evidence from the three benchmark test sets. For the comparison, the proposed method
on the first two datasets PE1 and Detected MPs shows the high detectability, which is
consistent with the prediction performance of 1D-2C-CNN on the whole. However, the
average probability values predicted by the proposed method on the PE1 and Detected
MPs datasets are 0.7143 and 0.838, respectively, which are higher than those predicted
by 1D-2C-CNN (0.7039 and 0.7052, respectively). For the Current MPs dataset, since the
peptides in this dataset are considered difficult to detect, the lower the detectability value,
the better the prediction method will be. As revealed from the comparison result, the
proposed prediction model is better than the 1D-2C-CNN method (the proposed method
achieves an average probability value of 0.3058 on the Current MPs dataset, while the
prediction probability by 1D-2C-CNN is 0.3288).

CapsNet+CBAM 1D-2C-CNN
>.‘1.0 . — 3,1,0 e
508 30.8
© ©
Q
20.6 g_O.G
§0.4 §0.4 i
go2 802
[
0.0 Qo0 ! ¢
PE1 Detected MPs Current MPs PE1 Detected MPs  Current MPs

(a) (b)
Figure 5. Detectability prediction comparison of peptides with different protein evidence from

3 benchmark test sets. (a) Additional benchmark result by our method. (b) Additional benchmark
result by 1D-2C-CNN.

2.5. Additional Datasets for Testing

For the detectability prediction of peptides, it aims to examine the intrinsic character-
istics in the peptide chain to distinguish the detectability of peptides. Lastly, an additional
two datasets are applied to test the ability of the proposed neural network for searching the
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mentioned features in the peptide chain. Two datasets include anti-angiogenic peptides
(AAP) and antibacterial peptides (ABP). We also compared the proposed method with
some popular methods (e.g., PEPred-Suite [12], AntiAngioPred [20], and AntiBP [21]), as
shown in Figure 6. It is shown that the proposed method is better than the mentioned latest
methods in the AUC indicator: the AUC by the proposed method reached 0.811 on the
AAP dataset (PEPred-Suited and AntiAngioPred reached 0.804 and 0.742, respectively),
and 0.979 on ABP (PEPred-Suite and AntiBP reached the same as 0.976). This verifies that
our network model can also be applied for predicting other therapeutic peptides.

1.0

L ] X *
0.9
2 0 » X
3 > ®  CapsNer+CBAM(AAP)
S 07 X PEPred-Suited(AAP)
< <« AntiAngioProd(AAP)
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Figure 6. Comparison of AUC indicators by different methods on AAP and ABP datasets.

3. Discussion

This study proposes a neural network model integrated with CapsNet and CBAM
to predict the detectability of peptides. It constructs the residue conical coordinate (RCC)
feature, amino acid composition (ACC) and dipeptide composition (DPC), and sequence
embedding code (SEC) to generate peptide chain features for the proposed network. For
the mentioned features, they fall to biological feature and sequence feature by separate
inputting to reduce the influence among the mentioned features. When using the CapsNet
network, it reduces the impact of data loss in the pooling layer after convolution. In
addition, a CBAM attention module is added to assign weights to channels and spaces to
learn important features. The proposed model is compared with other extensively used
deep learning frameworks (e.g., 1D-2C-CNN [15], RE, SvmR, DNN, C5, Pls, Glm, and Gaus-
sian [9,11,16]). It is suggested to outperform other methods in main assessment indicators
(AUC, accuracy, specificity, sensitivity, and F-score), which verifies the effectiveness of the
proposed method. Consequently, it can act as a valid supplementary method for peptide
detectability prediction and be applied in proteomics and other related fields.

Since the length of the peptide chain is short and its length is different, the proposed
method selects a truncated fixed length for calculation. It will be our future work to find a
feature extraction method that is more suitable for characteristics with different peptide
chain lengths. In addition, this method selects two biological features and directly joins
them together. We need to extract other biological features and explore a valid feature
fusion method for peptide detectability prediction so the mentioned biological features
can be more effectively integrated for training. With the growing popularity of neural
networks, we also look for a more suitable network model for the classification of peptide
chains. In addition, the CapsNet + CBAM model is an end-to-end model. It is expected
that this model can be employed to predict other peptide chains (e.g., cell-penetrating
peptides).

4. Materials and Methods
4.1. Dataset
The dataset applied for training and testing in this study originates from the GPMDB

database [3], involving mass spectrometry data and detection frequencies for proteins
identified by mass spectrometry. The method of generating the dataset was proposed
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by Guruceaga et al. [9], capable of classifying trypsin-digested peptides according to the
number of peptides observed in proteomics experiments and comparing the characteristics
exhibited by the most observed peptides and the less observed peptides. A total of
100,000 tryptic peptides are selected as the dataset, and then the ten-fold cross-validation is
performed for the experiment (i.e., it is divided into 10 parts, taking turns using 9 parts as
the training data and 1 part as the test data for repeating the experiment). The respective
test will obtain the corresponding prediction result. The average of the prediction results
by 10 times is used as the final prediction result.

4.2. Feature Selection

Feature selection refers to a vital step in the deep learning of a neural network frame-
work. The property of amino acids and sequence information are exploited to generate
three features, i.e., the residue conical coordinate (RCC) feature, amino acid composition
(AAC) and dipeptide composition (DPC), as well as the sequence embedding code (SEC)
feature.

4.2.1. RCC Feature Based on Physicochemical Properties of Amino Acids

The respective amino acid has specific physicochemical properties, thereby affect-
ing the characteristics of the peptide and being critical in determining the structure and
function of the peptide. The 100 physicochemical properties of amino acids are drawn
upon for feature extraction. Due to the significant numerical difference between the physic-
ochemical properties, the standardized operation is exploited to process the data and
improve the comparability of data. Furthermore, since some amino acids exhibit consistent
characteristics, the mentioned amino acids are classified into 4 types [17] (Table 3).

Table 3. Classification of 20 amino acids.

Groups Description Amino Acids
Class I Non-polar residues A, VL ILPFEWM
Class II Polar residues G,S, T,C,Y,N,Q
Class III Basic residues K, R, H
Class IV Acidic residues D,E

Zhang et al. [16] proposed a residue conical coordinate (RCC) feature by mapping
the respective amino acid to a point in a three-dimensional (3D) space. Subsequently,
they integrated this spatial coordinate feature with the RF method to conduct a satisfying
prediction for carbonylation site identification.

To be specific, to obtain the vital features of proteins with the use of a simple and
effective mapping method, the following two hypotheses were proposed. (1). The amino
acids in the same group are distributed on an identical conical surface since they exhibit
consistent characteristics. The amino acids in the same group are distributed on the same
conical surface because they show similar characteristics. For instance, as eight amino
acids (A, V, L, I, P, E W, and M) pertain to Class I, they are mapped on the identical cone
surface (¢ = ¢1) (Figure 7). Likewise, the other three types of amino acids are mapped
on their respective cones. (2). To reveal the difference between amino acids, the radius
vector length r of the conical surface is set in accordance with the molecular weight of the
corresponding amino acid (http:/ /lin-group.cn/server/iCarPS/download.html (accessed
on 4 November 2021)). Following such a mapping rule, the similarity of similar amino acids
and the difference between different amino acids can be indicated simply and effectively.
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P=02
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Figure 7. Schematic illustration of the 3-dimensional conical representation for characterizing amino
acid residues. A, V, G, and S are the first two amino acids in the Non-polar residue group and Polar
residue group. ¢ and ¢, represent the conical surface, which is formed by projection of amino acids
in the corresponding group.

Therefore, by combining the physicochemical properties and the above mapping
rules, each amino acid can be converted into a three-dimensional vector. The formula is as
follows:

xl-]- = 1’1']' X sin @; X COSs 91']'
Yij = tij X sin ¢; X sin 91‘]‘ Q; € [0, 7'(] , 91‘]' S [0, 27‘(} 1
Zi]' = Tl']' X COS @;
where rij expresses the molecular weight of the j-th residue (j = 1,2, -- ,L;) in the i-th

category (i = 1,2,3,4) of the amino acid classification; L; denotes the number of amino
acids in the i-th group; and ¢;, 0;; are defined below:

@; = T X |sin i | ()
1v45 1v4(5 1v45 2
(1 21 di) X123 (di—zzldz)
9 _
_1 PCjy,, — d;
6,‘]‘ =m+2X tanfl Zm_l = d (3)

2

\/Lll Z]L; Yozt PCjm — di

where d; = L% Zjil Z?nzl PCjy; PCjyy, represents the m-th (m =1,2,---,9) physicochemi-
cal properties of the j-th (j = 1,2, - - -, L;) residue in the i-th category of amino acid classifi-
cation. In the mentioned conversion process, since only 9 physicochemical properties of
amino acids are applied for the calculation, the yielded feature matrix is relatively small
for the proposed deep learning network model. This study improves the construction
of the RCC feature that fully extracts the physicochemical properties of the residue. In
other words, 100 physicochemical properties fall into 10 groups, each of which covers
10 physicochemical properties [13]. Subsequently, 10 sets of residue conical coordinate
features are yielded by Equations (1)-(3). Such a measure is capable of increasing the
feature dimension generated by the peptide chain and ensuring the feature proportion in
the proposed neural network training. Furthermore, we combine statistical information
(e.g., variance, skewness, and kurtosis) to extract features exhibited by peptide chains.

To be specific, the L-length peptide chain can be transformed as a 1 x 3L matrix (e.g.,
P=[x,y1,21," -, xL,yL,zL]T). The overall geometric center of the sequence (X, ¥,z) is
first determined as: .

Y uy 4)
k=1

where 1y represents the k-th 3D coordinate point (1 = X, yk, zx)-

ﬂ:

el e



Int. J. Mol. Sci. 2021, 22, 12080

10 of 16

Subsequently, the residues in the peptide chain are classified into 4 types (Table 3),
and the geometric center #; of the i-th category is determined (i = 1,2,3,4):

_ 1
= Y o tin ®)

where u;, denotes the coordinates of the n-th residue pertaining to the i-th category of
amino acid classification; v represents the total number of the i-th residue category.

Lastly, the overall geometric center of the peptide chain and the geometric center
of the amino acid classification are adopted to determine the statistical characteristics of
variance, skewness, and kurtosis [13] as:

= YL —u) ©)
1v4 (7. _7)\3

g=4==5— E’:lgﬁf 2 @)
Iyt —u)t

h=4==01 102 (8)

For each peptide chain, Equation (5) is used to generate a 1 x 12 dimensional vector ac-
cording to the amino acid classification (4 types), and Equation (4) and Equations (6)—(8) are
adopted to generate a 1 x 12 dimensional vector, so the total combination is a
1 x 24 dimensional vector. Since there are 10 groups of physicochemical properties exhib-
ited by amino acids, a 1 x 240 dimensional feature vector is lastly obtained.

4.2.2. Amino Acid Composition and Dipeptide Composition

Amino acid composition (AAC) acts as a vital feature of a single amino acid, and
dipeptide composition (DPC) represents the proportion information of adjacent amino
acids in the peptide chain. Both of the mentioned features can indicate the property of the
entire peptide chain [22,23]. AAC denotes the percentage of a single amino acid in a set
peptide chain and can be calculated by:

. _ Frequency of amino acid(i) .
AAC() = Length of the peptide i=12--20) ©)

where i represents the respective amino acid, and the length of the AAC generation vector
is 1 x 20.

Because AAC does not consider the order of amino acids in the peptide chain, the DPC
feature is added in our feature information. DPC denotes the probability of two adjacent
amino acids appearing in the entire peptide chain, which has a fixed length of 400 features,
as expressed below:

B Total number of dipeptides(;)
~ Total number of all possible dipeptides

DPC(j) (10)

where j represents one of 400 dipeptide compositions.

4.2.3. Neural Network Embedding

For biological sequences, the one-hot encoding is the most used feature as input in the
neural networks [24]. When processing the peptide chain, the one-hot encoding turns out
to be a 20-dimensional vector composed of 0 and 1, which is sparse and fails to show the
neighboring relationship of the respective residue. Here, the sequence embedding code
(SEC) [15] is adopted to calculate the neighboring relationship of the residues and control
the dimensionality of the vector. SEC acts as a method to convert discrete variables into a
continuous vector representation. Since the SEC is learnable, the representations of more
similar residues will be closer to each other in the embedding space during the continuous
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training process. For this reason, the SEC is selected as the feature input to participate
in training in the neural network, and the respective amino acid embedding is set as a
20-dimensional vector.

4.3. Neural Network Architecture

Convolutional Neural Network (CNN) refers to an extensively applied network frame-
work. Its capacity of solving classification is achieved primarily by using the convolutional
and pooling layers to reduce the spatial size of data passing through the network. On that
basis, the field of view of the neurons in the neural network increases, and the high-level
features of the input area are detected. However, there exist two main problems in such a
process. First, the convolution is locally connected and parameter-sharing, while it does
not consider the correlation and mutual positional relationship between different features.
Second, it keeps only the most active neurons in the process of maximum pooling and
pushes them to the next layer, thereby causing the loss of valuable spatial information.

This study uses the capsule neural network (CapsNet) [17] to solve the mentioned
problems. The difference between this neural network and the general neural network is
that its neuron is a vector (a set of values) (vector neuron) rather than a scalar (single value).
The vector is capable of representing a wide range of characteristics of a protein, and the
modulus length of the vector can be exploited to measure the probability of the respective
category. The greater the modulus value, the greater the probability of pertaining to a set
category will be. Compared with CNN neurons with scalar input and output, the input and
output vectors of the capsule network cover more feature space information. Furthermore,
the capsule network substitutes the maximum pooling with a dynamic routing mechanism.
Compared with the popular maximum pooling, it can retain the weighted sum of the
features of the previous layer, whereas the maximum pooling only retains the most active
neurons.

The proposed neural network model comprises a CNN convolutional layer, a CBAM
module, a convolutional capsule layer (PrimaryCaps), as well as a fully connected capsule
layer (BindCaps) (Figure 8). First, the RCC, AAC, and DPC features of the peptide chain
are employed as the biological features, and the SEC feature is inputted into the CNN layer
as the sequence feature. The mentioned features are convolved via CNN to extract local
feature information and then inputted to the CBAM module. CBAM combines the channel
attention mechanism and the spatial attention mechanism [18]. In the CBAM module, the
local feature information will be multiplied by the different weights trained, which can
arouse the attention to vital feature information and suppress the unimportant feature
information. The CBAM module is presented in Section 2.4. Moreover, the detailed feature
transfer in the neural network is expressed in Section 4.5.

oy
L
biological e
feature | T
L

input

NN 1
sequence .- e |
embedding ...F ) L 256 CBAM )
|| o
input

CNN

BindCaps

! Routing

PrimaryCaps

prediction

32%16%544

PrimaryCaps.

Figure 8. The neural network framework of the proposed method.
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Subsequently, the biological and sequence features processed by CBAM are converted
into 32 x 16 x 544, 32 x 16 x 704 feature maps and then inputted to the PrimaryCaps
layer. To be specific, 32 represents the number of peptide chains input in one training, 16
indicates the number of channels in the PrimaryCaps layer, and 544 and 704, respectively,
represent the size of the biological and sequence feature information obtained after CBAM.
For the feature map corresponding to the respective peptide chain, the calculation of the
iterative dynamic routing between the PrimaryCaps and BindCaps layers is illustrated in
Figure 9. To be specific, the PrimaryCaps layer comprises 1248 (544 + 704) capsules u; (each
u; denotes a 16-dimensional vector), and each capsule is multiplied by the weight matrix
Wi, (thesize 16 x 32,i=1,...,1248,j =1,2) to obtain 121-|]-. ﬁi‘j is multiplied by the weighted
sum of the parameters ¢;; to yield s;. Subsequently, through the nonlinear “Squeeze’
function, the capsule vector in BindCaps is obtained after a set number of iterations (epoch).
To be specific, the “squeeze” function [15] is adopted to scale the length of the output vector
of each capsule to between [0, 1] and keep the direction unchanged, as expressed below:

7

Isil[* s

vj = — (11)
P T+l sl

where s; and v}, respectively, represent the input and output of the j-th capsule.

32D
flm
16D
i y - S SqL_lash.mg
activation
1248 | U; = ! Ciaagyi
Uj|i248 e
L= | 32 p051t1.ve
Gy negative
bW BindCaps
primaryCaps 2
" S, Squashing
Sai z activation
16x32 Wi Ciaasp
02\1148

Figure 9. Routing calculation process between PrimaryCaps and BindCaps.

Lastly, the two output capsules calculated by using the routing algorithm are inte-
grated to obtain two 32-dimensional BindCaps, corresponding to two possible markers of
the input protein sequence, i.e., peptide detectability and undetectability. The modulus
of the 32-dimensional vector represents the detectability and undetectability probability
of the peptide. To be specific, the L2-norm of two 32-dimensional vectors is calculated,
and the detectability of the peptide is predicted by comparing the magnitude of the two
probability values.

In the proposed neural network framework, the loss function adopted to train the
CapsNet model is the sum of two separate losses in BindCaps. For each BindCaps, the
separate loss Ly is expressed as:

L = Temax(0,0.9 — ||vg|[)? 4 0.5(1 — T )max (0, | |o|| — 0.1)? (12)

where v, denotes the vector output by BindCaps. If the peptide is detectable, T = 1;
otherwise, it is 0.

4.4. CBAM Module

In the proposed neural network, to extract vital features distinguishing the detectabil-
ity of peptides, the CBAM module is added after the first layer of convolution. CBAM
refers to an attention mechanism module combining space and channel information. The
spatial module assigns different weights to the identical dimension of biological features
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and sequence features, while the channel attention assigns different weights to the feature
map channels after convolution, which is inconsistent with SENet [25] that only focuses
on the channel attention module. CBAM focuses on both space and channel information,
so it can more effectively predict the detectability of peptides. The specific process of
this module is that the first layer of CNN processes the feature map F € RE*H*W ag the
input. Subsequently, the channel attention module M (F) and the spatial attention module
Mgs(F) of CBAM are employed to set different weights to the feature map (Figure 10). The
complete process can be written as:

F' = Mc(F) x F

Fr = MS(F/) X F/ (13)

where x denotes the element-wise multiplication.

Channel
Attention Sqatial
Model Attention

=2 e I

@ ®ﬂ

Input Refined
feature Feature

Figure 10. CBAM module.

According to the CBAM module, the channel attention module is adopted to compress
the feature map of the peptide in the spatial dimension to yield a one-dimensional vector.
Next, the vector is multiplied with the feature map of the initial input peptide element by
element (Figure 11). During channel compressing in the spatial dimension, two pooling
operations are considered, i.e., the average pooling Fy,, and the maximum pooling Fy,;, .
They can be exploited to aggregate the spatial information of the feature-mapped peptides,
and then the information is transmitted to a shared fully connected network. The size

C
of the hidden layer is set to R7 *1*1, where r denotes the reduction rate. The calculation

formula is:
M¢c(F) = o(MLP(AvgPool(F)) + MLP(MaxPool(F))) (14)

where 0 denotes the sigmoid function and F represents the peptide feature after CNN
processing. For the feature map after convolution, the channel places its stress on which
channel is critical to the detectability of peptides, and average pooling has feedback for
each pixel on the feature map. In addition, maximum pooling is applied for the gradient
backpropagation calculation, and only the place with the largest response in the feature
map achieves the gradient feedback.

Max Pool

®e— 7

Sigmod Channel Attention

h MLP
Avg Pool shared

Figure 11. Channel attention module in CBAM.

The spatial attention module is exploited to compress the channel (Figure 12). Two
pooling (average pooling and maximum pooling) operations are used to aggregate the
channel information of the feature map and then merged to yield a 2-channel feature map.
After the convolutional layer is passed through and activation function (sigmoid function)
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operation is achieved, the weight coefficient is obtained and then multiplied with the first
input feature to obtain the final output feature. The calculation formula is written below:

Ms(F) = a( £7%7 (| AvgPool (F); MaxPool (F)] )) (15)

where ¢ denotes the sigmoid function, f”*7 represents the convolution operation, and
the filter size is 7 x 7. For spatial attention, the focus is placed on which part of the
corresponding convolution feature map of a peptide is critical to predicting the detectability
of the peptide. Up-regulating the weight of the more important areas of the convolution
feature map can optimize the detectability exhibited by the peptide.

Conv

Y layer ra
B

i MaxPool,AvgPool]  Sigmod Spatial
Channel-refined [MaxPool,AvgPool] g Attention
feature

Figure 12. Spatial attention module in CBAM.

4.5. Network Parameter Setting and Feature Transfer

In the proposed framework, the corresponding parameter setting and the transfer
process of features in the neural network are expressed below. The batch size input for
training is set to 32 peptide chains. At the first network layer, the feature size of the
biometric input is 32 x 33 x 20, the convolution kernel is 9 x 9 in size, and the resulting
feature input is 32 x 256 x 27 x 14. The sequence feature input has the feature size of
32 x 50 x 20, the size of the convolution kernel is 7 x 7, and the resulting feature input
is 32 x 256 x 42 x 12. At the second layer of the CBAM attention module, the reduction
rate is set to 16, and the activation function is ReLU under the channel attention module,
while the size of the first convolution kernel layer is 7 x 7 according to the spatial attention
module. Based on the attention module, the feature input and output dimensions remain
constant. At the third layer of PrimaryCaps, it is implemented by using 16 filters with
the size of 9 and 7, respectively, and the stride is set to 2 in the respective capsule. The
tensor generated by the sequence feature is 32 x 256 x 17 x 2, and the tensor generated
by the biological feature is 32 x 256 x 11 x 4. The output feature sequence is changed to
32 x 16 x 544, and the biological feature is altered to 32 x 16 x 704, where 32 represents
the training data, 16 denotes the attribute of each sequence trained by the capsule network,
and 544 and 704 express the data trained by different weights. Next, at the fourth layer
BindCaps, the features are calculated as two 32-dimensional vectors by using the routing
algorithm, corresponding to the two classifications applied for prediction. The Adam
optimizer [26] is used for the training, the number of epochs is set to 6, the initial learning
rate is set to 0.001, and the loss function is set by complying with Equation (12). The ¢
hyperparameter of the capsule network is set to 1 x 1078, the routing parameter is set to 3,
and the reduction parameter of the squeeze-and-excitation (SE) layer in CBAM module is
set to 16.

4.6. Evaluation Index

The detectability prediction of peptides falls into 4 types, i.e., (1) True Positive (TP):
the detectability of the detected peptide, consistent with the detectability of the actual
peptide; (2) False Positive (FP): the detectability of the detected peptide, whereas the match
set by the undetectability of the actual peptide is incorrect; (3) True Negative (TN): the
undetectability of the detected peptide, complying with the undetectability of the actual
peptide; (4) False Negative (FN): the undetectability of the detected peptide, as well as the
detectability of the actual peptide.
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The assessment indicators involved in this study include the area under the ROC curve
(AUC), accuracy, specificity, sensitivity, and F-score [27]. To be specific, AUC is defined
as the area under the ROC curve. The value of this area will not exceed 1. Since the ROC
curve is generally above the line y = x, the value range of AUC is generally between 0.5
and 1. The AUC value acts as the assessment criterion since in many cases the ROC curve
does not clearly indicate which classifier performs better; however, as a value, a classifier
with a larger AUC is more effective. Sensitivity: The degree of a positive reaction to a real
target. The higher the sensitivity, the easier it will be to identify the target. Specificity:
The degree of negative reaction to false targets. The higher the specificity, the less likely
there will be false positives, and there are only positive reactions for specific scenarios, i.e.,
strong screening ability or high pertinence. F-score refers to an index applied in statistics
to measure the accuracy of a two-classification model. It considers the accuracy rate and
recall rate of the classification model. F-score can be considered a harmonic average of
model accuracy and recall that ranges from 0 to 1. The calculation formulas for the above
assessment indicators are presented below:

Accuracy = 7TPTEFP (16)
Sensitivity = TPT}—iPFN (17)
Specificity = FPiiNTN (18)

F = score =2- Aiﬁf;i;yfﬁiilu (19)
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